

Deep Generative Models for Calorimeter Simulations — Vienna Workshop on Simulations (VIEWS) , Vienna, AT —

Claudius Krause

Institute of High Energy Physics (HEPHY), Austrian Academy of Sciences (OeAW)

April 27, 2024

DEMY O

Deep Generative Models ...

... are machine-learning models that "generate" new samples of a (complicated) p(x).

AUSTRIAN ACADEMY OF SCIENCES

The Landscape of Generative Models.

Variational Autioencoder (VAE)

 \Rightarrow Compressing data through a bottleneck.

Diffusion Models

 \Rightarrow Gradually add noise and revert.

AUSTRIAN ACADEMY OF SCIENCES

Generative Models are Fast Surrogates!

	CALOFLOW*		CALOGAN*	Geant4 [†]
	teacher [2106.05285]	student [2110.11377]	[1712.10321]	
training	22+82 min	+ 480 min	210 min	0 min
generation time per shower	36.2 ms	0.08 ms	0.07 ms	1772 ms

*: on Rutgers TITAN V GPU, †: on the CPU of CaloGAN: Paganini, de Oliveira, Nachman [1712.10321, PRD]

Statistical Amplification:

- implicit bias of the DGM lets us interpolate
 ⇒ extract more info
- effect diminishes with increasing sample size
- strongly depends on use case (combinatorics!)

Matchev et al.[2002.06307], Butter et al.[2008.06545], Bieringer et al.[2202.07352]

How can we evaluate generative models?

In text / image / video generation: "by eye". \Rightarrow Our brains are incredible good at this task, but it doesn't scale.

imagined with Meta AI.

In (high-energy) physics: depends on the application

- \Rightarrow We want to correctly cover p(x) of the entire phase space.
 - in importance sampling or MCMC, a bad DGM just means an inefficient setup.
 - in simulation (like end-to-end or calorimeter), we need to be more careful!
 - ⇒ Histograms are always just a 1-dim projection!
 - \Rightarrow Better: the classifier test

A Classifier provides the "ultimate metric".

According to the Neyman-Pearson Lemma we have:

- The likelihood ratio is the most powerful test statistic to distinguish two samples.
- A powerful classifier trained to distinguish the samples should therefore learn $w = \frac{p_{\text{data}}}{p_{\text{model}}}$.
- If this classifier is confused, we conclude $\Rightarrow p_{data}(x) = p_{model}(x)$
- \Rightarrow This captures the full phase space incl. correlations.

CK/D. Shih [2106.05285, PRD]

Now let's apply all of this to Calorimeter Showers.

Deep Generative Models can work with different data representations:

- GEANT4 Hits \Rightarrow point clouds
- Detector Cells \Rightarrow (irregular?) grid
- Shower-specific coordinate system \Rightarrow voxels

Crucial Differences to (most of) the other talks at VIEWS

- Considered energy: Calorimeter showers at colliders are usually $\mathcal{O}(GeV)$
- Physics accuracy: assume GEANT4 is ground truth and try to emulate it.
- Experimental setup: at LHC usually single showers

WAQ

AUSTRIAN ACADEMY OF SCIENCES

Deep Generative Models for Shower Simulations

Part I: Single Particle Showers

Part II: Event Background at Belle-II

Digitized showers are like images.

Application to full detector: center coordinate system at shower.

 $\tt https://g4fastsim.web.cern.ch/docs/ml_workflow/\#dataset-description$

Towards deployment in FastSimulation.

Have a rapidly evolving field: need a survey of current approaches on a common dataset!

ACADEMY OF

AUSTRIAN

SCIENCES

One example: CALOFLOW works well on dataset 1.

Comparing CK/Pang/Shih [2210.14245] to AtlFast3 [2109.02551, Comput.Softw.Big Sci.]

Claudius Krause (HEPHY Vienna)

DGMs in CaloSim

AUSTRIAN ACADEMY OF SCIENCES

More Examples for Normalizing Flows and Diffusion Models

CK/Pang/Shih [2210.14245]

Amram/Pedro [2308.03876]

×W ،

USTRIAN

Preliminary Evaluation of ds2

WA

AUSTRIAN ACADEMY OF SCIENCES

Deep Generative Models for Shower Simulations

Part I: Single Particle Showers

Part II: Event Background at Belle-II

The Belle-II experiment at KEK in Japan

- Precision e^+e^- collider at the Y(4S) resonance.
- The Pixel Vertex Detector (PXD) is the innermost detector component.

WAC

AUSTRIAN

The PXD Background is complex and high-dimensional.

Hashemi et al. [2303.08046/acc. in Nature Comm.]

The PXD has 16+24 sensors with 250×768 pixel each \Rightarrow 7.7M channels.

Main backgrounds in the PXD are

- synchrotron radiation
- residual gas collisions
- Bhabha scattering
- ...

This is the highest-dimensional dataset in HEP.

Hardware	Simulator	time/event $[s]$	Storage [Mb]	Speed-up
CPU	Geant4 PE-GAN IEA-GAN	≈ 1500 11.781 ± 0.357 10.159 ± 0.208	$\begin{array}{l} \approx 2000 \\ \approx 47 \\ \approx 47 \end{array}$	$\begin{array}{l} 1 \\ \approx \times 127 \\ \approx \times 147 \end{array}$
GPU	PE-GAN IEA-GAN	$\begin{array}{c} 0.090 \pm 0.010 \\ 0.070 \pm 0.006 \end{array}$	≈ 47 ≈ 47	$ \substack{\approx \times 16667 \\ \approx \times 21429 } $

Hashemi et al. [2303.08046/acc. in Nature Comm.]

AUSTRIAN

ACADEMY OF

DGMs in CaloSim

Deep Generative Models for Shower Simulations

- Deep Generative Models are promising candidates for fast surrogates.
- The field is moving fast, driven by progress in computer vision / image generation. Recent Review: [2312.09597]

- DGMs are $\mathcal{O}(10^4) \times$ faster than GEANT4.
- For $\mathcal{O}(10^2)$ channels, samples are indistinguishable.
- For $\mathcal{O}(10^3)$ channels, samples are almost indistinguishable.
- For $\mathcal{O}(10^4 10^6)$ channels, we are reaching the current limits.

via midjourney: "Albert Einstein smiling while having fun coding"