JUNO detector simulation based on customized Geant4 physics list

Simon Blyth (IHEP), Guofu Cao (IHEP), Ziyan Deng (IHEP), Yuxiang Hu (IHEP), Cecile Jollet (Bordeaux university, LP2iB - CNRS/IN2P3), <u>Tao Lin</u> (IHEP), Yaoguang Wang (SDU), Peidong Yu (IHEP), Haosen Zhang (IHEP)

The VIEnna Workshop on Simulations 2024 (VIEWS24)

22-27 April 2024, Vienna, Austria

Outline

Introduction

- JUNO Simulation Software
- Modified Geant4 processes for JUNO
- Summary

JUNO physics program

 JUNO is a multipurpose Neutrino Observatory with a rich program in neutrino physics and astrophysics, studying neutrinos in a large energy range.

JUNO detector

- Central Detector (CD)
 - 20 kilo-ton Liquid
 Scintillator (LS)
 - o 17,612 20inch PMTs
 - o 25,600 3inch PMTs
- ✤ Water Pool (WP)
 - 2,400 20inch PMTs
- Top Tracker (TT)
 - 3 layers of plastic scintillator

Outline

Introduction

JUNO Simulation Software

- Overview
- Physics generator interface
- Detector simulation
- Electronics simulation
- Data model and MC truth
- Modified Geant4 processes for JUNO
- Summary

JUNO Simulation Software

- JUNO Simulation software is based on the Geant4 toolkit and the SNiPER (Software for Non-collider Physics Experiment) framework
 - o Ref: Eur.Phys.J.C 83 (2023) 5, 382, Eur.Phys.J.C 83 (2023) 7, 660 (erratum).

Physics Generator Interface

Support a variety of physics generators

- Cosmic ray muons, reactor neutrinos, atmospheric neutrinos, DSNB, natural radioactivities, calibration sources.
- HepMC 2 as the intermediate data object
- Multiple converters: HepEvt, GHEP (GENIE)
- Geant4 Radioactivity Decay Module (GRDM)
- Generator level pre-mixing for data production of radioactivities.

Dataset Name +	Generators to be used +	Number of Events +	Rates (used in elecsim) +	Shift persons +	Status +	
Muon	Muon.exe	1,000,000 events (x10)	28.2 Hz	tilai Vo	1 000 000 (v10)	
U238@LS	GRDM	1,000,000 events (x13)	3.234 Hz	4 \ 1 1-	3)	
Th232@LS	GRDM	1,000,000 events (x10)	0.733 Hz	1) Hz))	
K40@LS	GRDM	1,000,000 events	0.53 Hz		.,	
Pb210@LS	GRDM	1,000,000 events (x3)	17.04 Hz	shift	1,000,000 events (x3)	
C14@LS	GRDM	1,000,000,000 events	3.3e4 Hz	shift	1,000,000,000 events	
Kr85@LS	GRDM	1,000,000 events	1.163 Hz			
U238@Acrylic	GRDM	10,000,000 events (x13)	98.41 Hz	102)	H7 ¹³⁾	
Th232@Acrylic	GRDM	10,000,000 events (x10)	22.29 Hz	,	10)	
K40@Acrylic	GRDM	10,000,000 events	161.25 Hz	shift	10,000,000 events	
U238@node/bar	GRDM	100,000,000 events (x13)	2102.36 Hz	shift	100,000,000 events (x13)	
Th232@node/bar	GRDM	100,000,000 events (x10)	1428.57 Hz	-1.164	100 000 000 (x10)	
K40@node/bar	GRDM	100,000,000 events	344.5 Hz	104)		
Co60@node/bar	GRDM	100,000,000 events	97.5 Hz	1U ⁻)	ΠZ –	
U238@PMTGlass	GRDM	1,000,000,000 events (x13)	4.90e6 Hz		., (x13)	
Th232@PMTGlass	GRDM	1,000,000,000 events (x10)	8.64e5 Hz	shift	1,000,000,000 events (x1	
K40@PMTGlass	GRDM	1,000,000,000 events	4.44e5 Hz	shift	1,000,000,000 events	
TI208@PMTGlass	GRDM	1,000,000,000 events	1.39e5 Hz			
Co60@Truss	GRDM	N events	? Hz	1()6)	H7	
TI208@Truss	GRDM	N events	? Hz	·• /		
Rn222@WaterRadon	GRDM	100,000,000 events (x7)	90 Hz	shift	100,000,000 events (x7)	

Detector Simulation (1)

- A lightweight simulation framework is developed to adapt the original Geant4 workflow in the SNiPER framework.
 - The event loop is controlled by the framework instead of Geant4.
 - Multi-threading is supported.

Detector Simulation (2)

- Flexible geometry and parameter management
 - Geometries are grouped into different IDetElements.
 - Parameters are accessed from a unified interface.

Detector Simulation (3)

- Several processes have been changed in Geant4 10.04.p02 in order to better fit with the requirements of the experiment.
 - Most of the physics processes are unchanged.
 - For details of modifications, see the next section.
- JUNO PMT optical model
 - Develop a package to use transfer matrix method (TMM) to consider the interference effects within the thin layers of anti-reflection coating and photocathode between the PMT glass and interior vacuum.

Physics constructors	Status
G4EmLivermorePhysics	Customized
G4EmExtraPhysics	Unchanged
G4DecayPhysics	Unchanged
G4RadioactiveDecayPhysics	Customized
G4HadronPhysicsQGSP_BERT_HP	Customized
G4StoppingPhysics	Unchanged
G4IonPhysics or G4IonPhysicsPHP	Unchanged
G40pticalPhysics	Customized

Electronics Simulation

- The ElecSim package implements the PMT response and readout electronics of CD, WP and TT.
- ✤ A pull based workflow is implemented using SNiPER incidents.
 - The event mixing is invoked on demand. It could avoid the excessive memory usage.

Data Model and MC truth

- Two-level design
 - The event data model is implemented following Header-Event design.

Event Navigator

- An event navigator consists of a list of lightweight header objects.
- The header object points to the event object and the event object is loaded on demand.

Event correlation

• For the event split or mixing in ElecSim, a new EvtNavigator is created and the SimEvt is recreated with the tracks from mixed events.

Outline

- Introduction
- JUNO Simulation Software
- Modified Geant4 processes for JUNO
 - Positronium
 - Nuclei radioactive decay
 - Neutron capture
 - Scintillation process
 - Cerenkov process
 - OP boundary process
- Summary

Positronium

- The positronium process is made of 4 classes
 - G4PositroniumFormation: the formation of positronium.
 - G4Positronium: the particle.
 - G4PositroniumDecayChannel2G, G4PositroniumDecayChannel3G: the decay channel.

14

 In the case of JUNO, the formation probability of 0.545 and lifetime of 3.08 ns from *Phys.Rev.C 88 (2013) 065502*

Time distribution of the p.e. on the PMT

Nuclei radioactive decay

- One important background of reactor anti-neutrinos experiment is the decay of two cosmogenic isotopes: ⁹Li and ⁸He.
 - Their spectra have been measured by nuclear spectroscopy and their decay is accompanied by neutrons and alpha emission.
 - In previous Geant4 versions the excited states decayed by gamma emission.
 - The RadioactiveDecay files are modified and the decay with the emission of triton is added (*NIM A 949, 162904 (2020)*).
 - These modifications have been implemented officially in the Geant4 10.6.

z4.a9

#	9BE (8.1814e-17)							
#	Excitation	Flag	Halflife	Mode	Ex	flag	Intensity	0
P	11810	-	4.22e-21					~
-				Alpha	0		0.75	
				Alpha	0	-	28.	9340
				Alpha	0	-	47.	8070
				Neutron	0		0.25	
				Neutron	0	-	2.	10140
				Neutron	3030	-	11.	7110
				Neutron	11350	-	12.	10
Р	11282	-	4.22e-21					
				Alpha	0		0.76	
				Alpha	0	-	76.	8812
				Neutron	0		0.24	
				Neutron	0	-	3.	9612
				Neutron	3030	-	21.	6582
Р	7940	-	4.22e-21					
				Alpha	0		0.8	
				Alpha	0	-	80.	5470
				Neutron	0		0.2	
				Neutron	0	-	10.	6270
				Neutron	3030	-	10.	3240
Р	2780	-	4.22e-21					
				Alpha	0		0.25	
				Alpha	0	-	25.	310
				Neutron	0		0.75	
				Neutron	0	-	15.	1110
				Neutron	3030	-	60.	10
Р	2429.4	-	4.22e-21					
				Alpha	0		0.025	
				Alpha	0	-	2.5	10
				Neutron	0		0.975	
				Neutron	0	-	11.	759.4
				Neutron	3030	-	86.5	10

z4.a8

#	8BE (8.1814e-17)							
#	Excitation	Flag	Halflife	Mode	$\mathbf{E}\mathbf{x}$	flag	Intensity	\mathbf{Q}
Р	0	-	8.181436e-17					
				Alpha	0		1.	
				Alpha	0	-	100.	91.84
Р	3030	-	1.3e-22					
				Alpha	0		1.	
				Alpha	0	-	100.	3121.84
Ρ	11350	-	1.3e-22	-				
				Alpha	0		1.	
				Alpha	0	-	100.	11441.84
Р	16626	-	4.22e-21	-				
				Alpha	0		1.	
				Alpha	0	-	100.	16717.84

Neutron capture

- The multiplicity and energy of gammas emitted after neutron capture is important for reactor antineutrinos experiment.
 - Using Geant4.9, some issues are found in the gamma emission for neutron capture on these different nuclei : Gd, Fe, Ni, Si, P, Mn, S, Cr, O, N and C.
 - For all these nuclei, 32 .txt files with the gamma lines from NNDC are generated in total.
 - A class DsG4NNDCCaptureGammas is created to read the files and generate the gammas.

```
# Neutron capture gammas for 0-17 generated by sums.py from data obtained from
# NNDC capture gamma tables at http://www.nndc.bnl.gov/capgam/indexbyn.html
#
# Number of gammas in a decay chain limited to 10
#
# First column lists probability for decay scheme; second column lists number of gammas
# in decay scheme; gamma energies (in keV) are then listed separated by a space.
#
0.244492673801 3 3588.0 2473.0 1982.0
0.349320808975 4 3588.0 1982.0 1652.0 822.0
0.257347797328 3 3396.0 2666.0 1982.0
0.17008505995 4 2473.0 1982.0 1652.0
```

Scintillation process

- G4Scintillation process is modified in several ways
 - Support different Birks constants for different particles

```
if(aParticleName == "gamma" || aParticleName == "e+" || aParticleName == "e-"){
    birk1 = birksConstant1[11];
    birk2 = birksConstant2[11];
}else if(abs(aParticle->GetCharge())<1.5){
    birk1 = birksConstant1[2212];
    birk2 = birksConstant2[2212];
}else{
    birk1 = birksConstant1[1000020040];
    birk2 = birksConstant2[1000020040];
}</pre>
```

- Different emission time constants and exponential decay components were used for different particles.
- Photon reemission in LS is implemented.
 - Optical photons from both scintillation and Cerenkov processes can be absorbed in LS and then re-emitted with different wavelength.
 - The reemission probability depends on waveform.

Cerenkov process

 Due to the RINDEX of the LS is not a monotonic function, the default G4Cerenkov cannot be applied.

• G4Cerenkov is modified to able to calculate the Cherenkov Angle Integral (CAI) according to the energy ranges where RINDEX>1/ β .

Photons emitted with an energy beyond a certain value are immediately re-absorbed by the material; this is the window of transparency of the radiator. As a consequence, all photons are contained in a cone of opening angle $\cos \theta_{max} = 1/(\beta n(\epsilon_{max}))$. The average number of photons produced is given by the relations:

$$dN = rac{lpha z^2}{\hbar c} \sin^2 heta d\epsilon dx = rac{lpha z^2}{\hbar c} (1 - rac{1}{n^2 eta^2}) d\epsilon dx$$

 $pprox 370 z^2 rac{ ext{photons}}{ ext{eV cm}} (1 - rac{1}{n^2 eta^2}) d\epsilon dx$

and the number of photons generated per track length is

$$rac{dN}{dx}pprox 370 z^2 \int_{\epsilon_{min}}^{\epsilon_{max}} d\epsilon \left(1-rac{1}{n^2eta^2}
ight) = 370 z^2 \left[\epsilon_{max}-\epsilon_{min}-rac{1}{eta^2}\int_{\epsilon_{min}}^{\epsilon_{max}} rac{d\epsilon}{n^2(\epsilon)}
ight] \;.$$

where $n(E)>1/\beta$

In GEANT4, n(E) is assumed as an increasing function of energy.

https://geant4-userdoc.web.cern.ch/UsersGuides/PhysicsReferenceMan ual/html/electromagnetic/xray_production/cerenkov.html

OP boundary process

To support the transverse matrix method (TMM) in PMT optical model (POM), the standard boundary process is modified in a way that reuses as much of standard Geant4 as possible.

ß

∃ README.rst

Custom4: Geant4 Customizations

This Custom4 mini-package was created to avoid circular dependency between opticks and junosw by splitting off classes/struct that depend only on Geant4 so as to allow high level communication between opticks and junosw in the "language" provided by Custom4.

Classes/Structs

C4OpBoundaryProcess.hh

modified G4OpBoundaryProcess with customized calculation of absorption, reflection, transmissing coefficients using C4CustomART.h

C4CustomART.h

integrates between the boundary process and the TMM calculation

C4MultiLayrStack.h

TMM (transfer-matrix method) calculation of absorption, reflection and transmission (ART) coefficients based on complex refractive indices and layer thicknesses

C4IPMTAccessor.h

pure virtual protocol interface for providing PMT information including layer refractive indices and thicknesses to the boundary process

C4CustomART_Debug.h

debug struct with serialization to std::array

https://github.com/simoncblyth/customgeant4/

TMM : Transfer Matrix Method

multi-layer thin films, coherent calc:

- complex refractives indices, thicknesses
- => (A,R,T) (Absorb, Reflect, Transmit) + E (Efficiency)
- Used from C4OpBoundaryProcess

header-only GPU/CPU : C4MultiLayrStack.h

- Custom4 depends only on Geant4
- Dependency of JUNOSW and Opticks

Outline

- Introduction
- JUNO Simulation Software
- Modified Geant4 processes for JUNO
- Summary

Summary

- The JUNO Simulation Software is developed based on Geant4 10.04.p02 with customized physics processes.
 - We implemented the positronium generator instead of standard e+ annihilation. The lifetime and the probability of positronium are dependent of the material.
 - We would be also interested in a more precise of radioactive nuclei taking into account of the width of the energy states.
 - We created several files to reproduce the multiplicity and the energy of gammas for neutron radiative captures.
 - We extended the Scintillation process to support the reemission of photons.
 - We customized the Cerenkov process in order to take into account of the dependance of the refractive index with the photons energy.
 - We developed a complex optical model to better reproduce the photons interactions with the PMTs. This has been accompanied by a customization of the boundary processes.

Thank you for your attention