Geant4 usage for AMoRE

Eunju Jeon IBS CUP April 25, 2024

VIEnna Workshop on Simulation 2024 @Vienna

AMoRE project **Collaboration members**

Eunju Jeon, IBS CUP

AMORE (Advanced Mo-based Rare process Experiment) It aims at searching for neutrinoless double beta decay (0vββ)

- To determine whether the neutrino is a ulletMajorana particle
- To test the existence of lepton number violating process
- To estimate the absolute neutrino mass scale

Eunju Jeon, IBS CUP

precisely measured, the absolute neutrino masses can be calculated \rightarrow It helps to determine neutrino mass hierarchy

(for zero background) $T_{1/2}^{0\nu} \propto M \cdot T$ (for finite background) $M \cdot 1$ ΔE $T_{1/2}^{0\nu} \propto \sqrt{}$

- Half-life limits are proportional to the detector mass M and DAQ time T, if finite background, sqrt(MT)
- To discover a sharp peak @ Q-value:
 - **Good energy resolution**
- Extremely low background

Energy resolution and background for experimental sensitivity

- Understanding of background and its reduction

VIEnna workshop on Simulations 2024 @Vienna, 25-27 Apr 2024

AMoRE project in three phases

	AMoRE-pilot	AMoRE-I	AMoRE-II	
Crystal Tower		<image/>		
Crystal	СМО	CMO, LMO	LMO	
Crystal Mass (crystal #)	1.9 kg (6)	6.2 kg (18)	178 kg (596)	
Live exposure	~ 0.32 kg _{Mo-100} ·yr	12 ~ 4 kg _{Mo-100} ·yr ×12	0 > 500 kg _{Mo-100} ⋅yr	
Background rate at ROI (counts/keV/kg/year)	0.5 ×1	0.03 ×1/2	~10-4	
Expected T1/2 sensitivity (year)	> 3.0x10 ²³ (90% C.L.)	> 3.4x10 ²⁴ (90% C.L.)	5x10 ²⁶	
Expected <mββ>(meV)</mββ>	600-1000	210-370	18-31	
Location	Y2L	Y2L	Yemilab	
Schedule	2015-2018	2020-2023	2024-2029	

Eunju Jeon, IBS CUP

VIEnna workshop on Simulations 2024 @Vienna, 25-27 Apr 2024

TAUP2023

Status of the progress

A5 at Y2L

AMoRE-Pilot

July 2015

- Two vibration reduction systems were installed
- adding additional γ/n shield layers, based on the Geant4 simulation studies

Eunju Jeon, IBS CUP

VIEnna workshop on Simulations 2024 @Vienna, 25-27 Apr 2024

AMoRE-I

AMoRE-II at Yemilab

- Muon detector installed
- DR inside heavy sheilding with Pb, PE, and water

Simulations of background sources

- We simulated background sources inside the crystals, surrounding materials, outer shielding, and rock walls and estimated their background rate
- Based on the Geant4 simulations, the detector shielding design is optimized, and materials used for the detector system are selected and replaced

Nucl. Instrum. Meth. A 855 (2017) 140-147

Reducing backgrounds in AMoRE-Pilot Configurations 1, 2, and 3 conf.3

Background modeling for AMoRE-pilot

- β/γ spectrum: Rn in the air, gamma from rock, and neutron-induced events are dominant
- Alpha analysis provides activity levels from both surface and bulk contaminations

Eur. Phys. J. C 81 (2021) 837

VIEnna workshop on Simulations 2024 @Vienna, 25-27 Apr 2024

- 5304 keV alpha energy can be the ²⁰⁶Pb surface recoil escapes
- Since we do not know the depth profile of the surface contaminants, we modeled the background spectrum in variable bins covering loss of 0~100 keV

2500

3000

3500

4500

4000

5000

5500

VIEnna workshop on Simulations 2024 @Vienna, 25-27 Apr 2024

Energy (keV)

6000

6500

7000

Reducing backgrounds in AMoRE-I

- 6 CMO (1.89 kg)
 - → 13 CMO (4.58 kg) + 5 LMO (1.61 kg)
 → total crystal mass = 6.19 kg, ¹⁰⁰Mo
 mass = 3.0 kg
- Shielding enhancements:
 - Outer Pb: $15 \rightarrow 20$ cm
 - neutron shields: boric acid silicon + more PE/B-PE
- More muon counter coverage and a more stable supply of Rn-free air
- Estimated background level in ROI was lowered from 0.5 in AMoRE-Pilot to 0.03 counts/keV/kg/year
 → Geant4-based background modeling is in progress

Muon veto system

• We compared the water Cherenkov detector with the plastic scintillator detector for the above part of the cryostat

→ water Cherenkov detector with an active muon veto capability has been selected

Water Cherenkov detector

Il Nuovo 35. Cimento 45 C (23) (2022)

VIEnna workshop on Simulations 2024 @VIENA, 25-27 Apr 2024

			9	
	F		1	
	F		-	
	ŀ		ţ	
	ŀ		-	
	r		1	
			1	
			1	
	ŀ		-	
			1	
			1	
	ŀ		-	
			1	
			-	
			-	
			1	
			1	
			1	
			ţ	
			J	
			1	
			J	
			3	
			1	
2	2		1	
			1	
			1	
			_	
			1	
			_	
			-	
			_	
			1	
			-	
			1	
			1	
	-		-	
	-		-	
			4	
			1	
	-		ł	
			ł	
			9	
			1	
÷	-		ł	
			ţ	
			4	
			1	
			÷	
			1	
	÷		1	
	ţ		ţ	
	t		1	
	ł		4	
	ł		-	
	ſ		ţ	
	I		J	
	J		į	
	I		p	
	I		į,	
	1	1		
1	1	ſ	۲	
	1		1	
	_		- 1	
	J		P	
	1			

Summary

- AMoRE-pilot and AMoRE-I phases
 - We replaced radioactive components with purer materials and added additional γ/n shield layers
 - to 0.03 counts/keV/kg/year

• Based on background simulations using Geant4, we gained a comprehensive understanding of detector performance and background components during the

• We lowered the background level in ROI in AMoRE-I from 0.5 in AMoRE-Pilot

 For AMoRE-II, we conducted intensive background simulations based on Geant4 and estimated it to be 1.8×10⁻⁴ counts/keV/kg/year, which meets the requirement

