

Simulation of Low-energy Calibration using Geant4

in Search of Reactor Neutrino Coherent Scattering

Jiachen Yu

yujiachen@mail.ustc.edu.cn

University of Science and Technology of China

On behalf of the RELICS Collaboration

VIEWS24, Vienna, Austria

April 22-27, 2024

CEvNS & RELICS experiment

University of the second secon

REactor neutrino LIquid xenon Coherent Scattering ---- RELICS

Coherent Elastic Neutrino-Nucleus Scattering ---- CEvNS

Α scattered neutrino 萨克斯坦 蒙古 Z boson nuclear recoi 巴基斯坦 孟加拉国 太平洋 孟加拉潘 斯里兰卡 econdary recoils scintillation

arXiv:1708.01294

$$\sigma \propto Q_W^2 \propto (N - (1 - 4\sin^2\theta_W)Z)^2$$

 $\Rightarrow \sigma \propto N^2$

- Power ~ 3GW
- Distance to Core ~ 25m
- Expected ν flux ~ $10^{13}\nu/cm^2/s_2$

RELICS experiment

3D-Reconstruction

Calibration in RELICS

Simulation Configuration

simulation

preliminary design

physics list

- EM Physics --- G4EmLivermorePhysics
- Decays ---- G4DecayPhysics

G4RadioactiveDecayPhysics

- hadron physics ----
 - G4HadronElasticPhysicsHP
- shielding --- G4HadronPhysicsShielding
- stopping physics ---- G4StoppingPhysics
- ion physics----- G4IonQMDPhysics

Results of 137Cs & 60Co

6

Results of ²⁴¹AmBe

Issue of Xe excitation

164keV:236keV=1:1

simulation ratio --> 164keV:236keV=4:1

Calibration of sub-keV NR by DD neutron generator

Calibration of sub-keV NR by DD neutron generator

- first scattering --- > maintain direction
- second scattering --- > deposit high energy
- double scattering --- >distance

Results of DD Simulation

X-Y position inversely proportional to S2 6.0 5.5 5.0 ь 3.0 2.5 2.0 <u>↓</u>____0 200 400 600 1000 800 S2[PE] Run0 mean 14 Run1 mean Run0 $\pm 1\sigma$ 12 Run1 $\pm 1\sigma$ م_{pos} [mm] « 10^{2} 10 $Q_{S2_{b}}^{c}$ [PE] PANDAX : arXiv:2403.04239

Z position directly proportional to drift time

Results of DD Simulation

Type of radioactive source	target energy	activity	efficiency	rate/day	
DD neutron generator	0.3-1keV	1e6 n/s	5.2 e-9	445 ± 17	
DD neutron generator	0.3-1keV	1e6 n/s	5.2 e-9	445 ± 17	

Attempts to reduce energy uncertainty

1-sigma spread : **2** ° • precision of reconstruction and number of photons

distance between the two scatterings

lower energies correspond to smaller relative errors

- 1) ¹³⁷Cs ,⁶⁰Co ,²⁴¹AmBe can maintain adequate rate within the required activity limits .
- 2) we hope to calibrate sub-keV NR by selecting double scattering events of specific angles.
- 3) There are still some questions in the simulation such as the excitation of xenon.

RELICS Collaboration

香港中丈大學(深圳) The Chinese University of Hong Kong, Shenzhen

Thanks for your listening !

Issue of Xe excitation

Xenon isotope: Xe129, Xe131

 ^{131}Xe and ^{129}xe Deexcitation emits specific energy γ rays

¹³¹Xe : 80 KeV (0.48 ns) and 164kev (11.84 day)
¹²⁹xe : 40 KeV (0.97 ns) and 236 keV (8.88 day)

- QGSP_BIC consists of elastic, inelastic, and capture processes. The inelastic hadron-nucleus processes are implemented by the Quark-gluon String (QGS), the Fritiof parton model (FTF), Bertini, Binary, and Precompound models.
- QGSP_BERTconsists of elastic, inelastic, capture and fission processes. The inelastic hadron-nucleus
processes are implemented by the quark-gluon model (QGS), the Fritiof parton model (FTF),
Bertini and Precompound models.
- Shieldingt is recommended for simulation of deep shielding. Neutrons of 20 MeV and lower use the
High Precision neutron models and cross sections to describe elastic and inelastic
scattering, capture and fission.