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What is COSINUS?



Dark Matter

Ordinary
Matter — Production Indirect Direct
24 ' BEP O X+X  X+XP*P  X+tPoXEP
X Direct X
e 4

0941pM)

Production

SM SM

e Evidence includes: Weak gravitational lensing, rotational curves of galaxies,
cosmological modeling
e Many experiment employ many techniques
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Direct Detection: Annual Modulation

The sun moves through the
galactic dark matter halo
The earth rotates around the
sun inducing a change in the
dark matter flux throughout the
year
Unique and detectable signal
for dark matter

o Period of one year

o Peaks around June 2nd

o Signal expected in low

energy region (O(keV))



DAMA/LIBRA Results
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« The DAMA collaboration has detected a peculiar annual modulation signal since
1997
* Signal is consistent with WIMP dark matter halo predictions (0.75 keV threshold
shown)

« Statistics: >130

* Period: 0.999 +/- 0.001

* Phase: 25th May +/- 5 days

* Non-dark matter explanation: No



Complications with DAMA
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e Incompatible with every other experiment in a model dependent way



Global Efforts using Nal(TI)
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Recommendation:
* “The
long-standing claim
from DAMA/LIBRA
[...] needs to be
independently
verified using the
same target
material.”
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COSINUS Detection Technique

e COSINUS Goal: Aims at a
model independent test of the
DAMA/LIBRA experiment

o Same material (Nal)

o Same location (LNGS)

o Need 1000 kg days

e Unique Technique: Operate
Nal as a cryogenic detector
(First ever!!)

o Dual Channel: Phonon
(~90%) and Light (~10%)
signal for event-by-event
particle discrimination




COSINUS Detection Principle

Thermal link
to heat bath

Absorber

https://doi.org/10.1016/j.nima.2022.167532

Nal is hygroscopic (should not come into contact with humid air)
Very soft and low melting point (easy to damage when handling)
Separate wafer that holds the TES-Wafer:
Scintillation light is detected by a surrounding silicon beaker

o 1mm thick, 40mm in diameter

o 41T coverage to maximize light collection
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Particle Discrimination

Neutron Calibration (30 hrs)

. Background Data (60 hrs) .
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December 2021: Demonstrated the first particle discrimination in Nal at a surface setup

Energy (keV)
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e June 2022: Measurement was carried out using a CRESST test facility at the Gran Sasso National
Laboratory (underground) .

e Nal phonon resolution: 440 eV nr, proof of particle discrimination in Nal



Gran Sasso National Laboratory
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https://www.appec.org/news/hands-on-experimental-underground-physics-at-Ings



How simulations helped built the
shielding of the experiment



COSINUS simulation group

e A simulation toolkit used in the
CRESST, COSINUS and NUCLEUS
experiment

e Geant4 (v10) and Root (v6 based)

e Paper to cite if used:
DOI:10.1140/epjc/s10052-019-7385-0

e COSINUS adapted ImpCRESST to
design the shielding for the experiment
and model the background

e Used in conjunction with external
programs such as MUSUN and
SOURCES-4C
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Active Water Cherenkov Muon Veto

\
Cosmic-ray muon--—-——-—=========—-\
\
Water tank ———-----—-—————1

Copper shielding
Detector modules
Photomultiplier tube
Dry-well support pillars

Reflective foil

Optical dead layer --———~"~

230 tonne water tank

(7mx7m cylinder)

Optical dead layer for the

muon veto

o Reduce the spurious

triggers of PMT from
ambient background
and triggers

Need a trigger rate less

than 1 Hz to be viable

Detailed optical simulation

created with ImpCRESST

to optimize PMT

placement, detector

efficiency and background

rate 16



Muon Veto PMT Placement

Muon Events — Shower Events ——
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e Photon illumination plots of muon and shower events give clues on where to place the limited amount of
PMTs

e Muon events make lots of Cherenkov radiation near the centre so can be detected by a circle of PMTs at a
radius of 1Tm

e Shower events produce Cherenkov radiation near the edge so another ring at radius 2.7 m should be 17
placed



Optical Dead Layer and PMT Triggering
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e Ambient gammas can trigger PMTs, but this can be reduced by creating an optical dead
layer in the water tank
e Optical dead layer will also reduce veto efficiency
e Final Configuration:
o 30 PMTs, 30cm optical dead layer, 99% muon efficiency, 44% shower efficiency
o Cosmogenic neutron background reduced to: 0.11 * 0.02 cts/kg/yr 8
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Intrinsic Nuclear Recoil Background in Nal
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e Background modeling has just begun for the COSINUS experiment

e Most important background will be intrinsic nuclear recoil
backgrounds of the crystals

e Nal astrograde powder: 15 ppb K-40, 0.01 ppb Th, and 0.01 ppb U

e 1-10 keV: 0.066 +/- 0.024 cts / kg /yr (Preliminary)

o  Does not include resolution or light yield leakage effects
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taking

First
physics

COSINUS facility
construction

COSINUS
commissioning phase
+ cryogenic

Final detector design -
+ production

Data taking of
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Summary

COSINUS is a Nal-based dark matter search whose goal
is to check the longstanding DAMA/LIBRA claim
Cryogenic Nal calorimeters have demonstrated the ability
to discriminate particle interaction types

Facility completed and recently celebrated the
inauguration of the experiment!!

Data taking is expected to begin by the end of the year
Simulations have played a large role so far in the design
of the experiment so far (shielding and muon veto)

Next step is the background model
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About interpretation and comparisons

See eg: Riv.N.Cim.26 0no.1(2003)1, ITMPD13(2004)2127,
EPJC47(2006)263, LIMPA21(2006)1445, EPJC56(2008)333,
PRD84(2011)055014, TMPA28(2013)1330022

..and experimental aspects...

+ Exposures
+ Energy threshold

..models... + Detector response (phe/keV)

+ Which particle? + Energy scale and energy resolution
+ Calibrations

+ Which interaction coupling?
+ Which EFT operators contribute?
* Which Form Factors for each

+ Stability of all the operating conditions.
« Selections of detectors and of data.
+ Subtraction/rejection procedures and stability

target-
+ Which Spin Factor? in time of all the selected windows and related
* Which nuclear model framework? ; qE"'f:'.".m's.
+ Which scaling law? i AN
- Which halo model, profile and + Definition of fiducial velume and non-
related parameters? uniformity ’
+ Streams? * Quenching factors, channeling

Uncertainty in experimental parameters, as well as necessary assumptions on various related
astrophysical, nuclear and particle-physics aspects, affect all the results at various extent, both in
terms of exclusion plots and in terms of allowed regions/vol Thus comparisons with a fixed set of

ptions and parameters' values are intrinsically ;?mngly uncertain.

No experiment can - at least in principle - be directly
compared in a model independent way with DAMA so far

Is it an "universal” and “correct” way to
approach the problem of DM and comparisons?

2
WIMP-nucleon cross section [cm?®)
WIMP-nucleon cross section [pb]

1 10 100 1000 104
WIMP Mass [GeV/c?]

No, it isn't. This is just a largely arbitrary/partial/incorrect exercise

https://agenda.infn.it/getFile.py/access?contribld=34&sessionld=1&resld=0&materialld=slides&confld=15474
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MUSUN: MUons Simulated UNderground

. JMUSUN events [l Dangerous events
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e MUSUN simulates the muon flux at LNGS, using the topographical layout of the
mountains

e 30 million muons where simulated in the COSINUS geometry

e [Events that generate neutrons in the dry-well are classified as “dangerous” and
simulated with the optical physics turned on
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SOURCES-4C

Neutron Yield (neutrons /s - cm?3)

e SOURCES-4C is a fortran based code that calculates the (a,n) interaction from
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spontaneous fission of primordial radionuclides
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(b) Option 2.

Detector Volume

(a) Option 1. Left: lateral view. Right: top view

(¢) Option 3.

(d) Option 4.

COSINUS
Shielding
Evaluation from
simulations

(e) Option 5.

Estimated number of particles entering the detector volume (yr—1)

Background source
Option 1 Option 2 Option 3 Option 4 Option 5
Ambient < 3.50-1072 < 3.50-10~2 < 3.50-10~2 < 3.50-1072 < 3.50-10~2
Neutrons Radiogenic  (9.1740.01)-10°  (9.18 £0.01)-10°  (2.174+0.01)-10°  (9.31 4+ 0.07)-10~1  (4.22+0.05)-10*
Cosmogenic  (2.10 4 0.03) - 102 (1.15 4+ 0.02) - 10? (3.36 £ 0.04) - 102 (2.22 4 0.03) - 102 (1.11 4 0.02) - 102
Ambient  (3.1541.41)-10%  (6.81 +1.15)-10*  (7.88+1.05)-10*  (1.71£0.57)-10*  (4.94 +0.47) - 10°
G Radiogenic  (5.68+0.14)-106  (5.68+£0.14)-106  (4.08+0.13)-10°  (4.46 £0.14)-10°  (2.09 = 0.04) - 106 27




Ambient Gamma in LNGS

Energy Region (keV) Flux (y-cm™2-s™1)

74— 2498 0.137
250.2 - 500.4 4.24x10~2
500.8 - 1005.2 2.99%x10~2
1005.6 - 1555.8 1.46x10~2
1556.2 - 2055.8 3.50x10~3

2056.2 - 2734.2 2.02x103

Table 1: Ambient gamma flux as a function of energy in Hall B of LNGS.
Adopted from [32].



