Optimization of the COSINUS experiment for background reduction using Monte Carlo simulations

By: Matthew Stukel VIEWS 2024 workshop 2024/04/25 What is COSINUS?

### **Dark Matter**



- Evidence includes: Weak gravitational lensing, rotational curves of galaxies, cosmological modeling
- Many experiment employ many techniques

#### **Direct Detection: Annual Modulation**



- The sun moves through the galactic dark matter halo
  - The earth rotates around the sun inducing a change in the dark matter flux throughout the year
- Unique and detectable signal for dark matter
  - Period of one year
  - Peaks around June 2nd
  - Signal expected in low energy region (O(keV))

## **DAMA/LIBRA** Results



- The DAMA collaboration has detected a peculiar annual modulation signal since
  1997
- Signal is consistent with WIMP dark matter halo predictions (0.75 keV threshold shown)
  - Statistics: >13σ
  - Period: 0.999 +/- 0.001
  - Phase: 25th May +/- 5 days
  - Non-dark matter explanation: No

#### **Complications with DAMA**



Incompatible with every other experiment in a model dependent way

#### Global Efforts using Nal(TI)



Astroparticle Physics European Consortium (APPEC) Recommendation:

• "The long-standing claim from DAMA/LIBRA [...] needs to be independently verified using the same target material."





HELSINKI

**INSTITUTE OF** PHYSICS







Max-Planck-Institut für Physik (Werner-Heisenberg-Institut)



#### **COSINUS** Detection Technique



- COSINUS Goal: Aims at a model independent test of the DAMA/LIBRA experiment
  - Same material (Nal)
  - Same location (LNGS)
  - Need 1000 kg days
- Unique Technique: Operate Nal as a cryogenic detector (First ever!!)
  - Dual Channel: Phonon (~90%) and Light (~10%) signal for event-by-event particle discrimination

## **COSINUS** Detection Principle



- Nal is hygroscopic (should not come into contact with humid air)
- Very soft and low melting point (easy to damage when handling)
- Separate wafer that holds the TES-Wafer:
- Scintillation light is detected by a surrounding silicon beaker
  - 1mm thick, 40mm in diameter
  - $\circ$  4 $\pi$  coverage to maximize light collection

#### **Particle Discrimination**



- December 2021: Demonstrated the first particle discrimination in Nal at a surface setup
- June 2022: Measurement was carried out using a CRESST test facility at the Gran Sasso National Laboratory (underground)
- Nal phonon resolution: 440 eV nr, proof of particle discrimination in Nal

### Gran Sasso National Laboratory





https://www.appec.org/news/hands-on-experimental-underground-physics-at-Ings

# How simulations helped built the shielding of the experiment

## **COSINUS** simulation group



- A simulation toolkit used in the CRESST, COSINUS and NUCLEUS experiment
- Geant4 (v10) and Root (v6 based)
- Paper to cite if used: DOI:10.1140/epjc/s10052-019-7385-0
- COSINUS adapted ImpCRESST to design the shielding for the experiment and model the background
- Used in conjunction with external programs such as MUSUN and SOURCES-4C

## Shielding for COSINUS



- Major backgrounds
  - Ambient radiation (gamma/neutrons)
  - Radiogenic (gamma/neutrons)
  - Cosmogenic (neutrons)
- Ambient radiation in Gran Sasso can be significantly reduced by a <u>3 m radius water tank</u>
- Radiogenic backgrounds are reduced through proper material selection
  - Detailed material screening campaign performed at LNGS
- Cosmogenic neutron background will give 3.5
   cts/kg/yr, needs an active veto

| Angloher | Material        | Method    | 232               | <sup>2</sup> Th   |                   | <sup>238</sup> U  |                    | <sup>235</sup> U | <sup>40</sup> K |
|----------|-----------------|-----------|-------------------|-------------------|-------------------|-------------------|--------------------|------------------|-----------------|
| experime |                 |           | <sup>228</sup> Ra | <sup>228</sup> Th | <sup>226</sup> Ra | <sup>234</sup> Th | <sup>234m</sup> Pa |                  |                 |
|          | Stainless Steel | HPGe      | < 1.1             | < 1.3             | 0.9(4)            | < 84              | < 26               | < 1.5            | < 5             |
|          | Copper          | HPGe      | < 0.2             | < 0.11            | 0.15(4)           | < 7.2             | < 3.8              | < 0.14           | < 1.7           |
|          | NaI Powder      | HR-ICP-MS | Th: <             | 10 ppt            |                   | U: < 1            | 10 ppt             |                  | < 15 ppb        |

15

#### Active Water Cherenkov Muon Veto



- 230 tonne water tank (7mx7m cylinder)
- Optical dead layer for the muon veto
  - Reduce the spurious triggers of PMT from ambient background and triggers
- Need a trigger rate less than 1 Hz to be viable
- Detailed optical simulation created with ImpCRESST to optimize PMT placement, detector efficiency and background rate

### Muon Veto PMT Placement



- Photon illumination plots of muon and shower events give clues on where to place the limited amount of PMTs
- Muon events make lots of Cherenkov radiation near the centre so can be detected by a circle of PMTs at a radius of 1m
- Shower events produce Cherenkov radiation near the edge so another ring at radius 2.7 m should be placed

## **Optical Dead Layer and PMT Triggering**



- Ambient gammas can trigger PMTs, but this can be reduced by creating an optical dead layer in the water tank
- Optical dead layer will also reduce veto efficiency
- Final Configuration:
  - 30 PMTs, 30cm optical dead layer, 99% muon efficiency, 44% shower efficiency
  - Cosmogenic neutron background reduced to: <u>0.11 ± 0.02 cts/kg/yr</u>

#### COSINUS Inauguration Laboratori Nazionali del Gran Sasso

18

04

24



Florian Reindl TU Wien & HEPHY

#### Intrinsic Nuclear Recoil Background in Nal



- Background modeling has just begun for the COSINUS experiment
- Most important background will be intrinsic nuclear recoil backgrounds of the crystals
- Nal astrograde powder: 15 ppb K-40, 0.01 ppb Th, and 0.01 ppb U
- 1- 10 keV: 0.066 +/- 0.024 cts / kg /yr (Preliminary)
  - Does not include resolution or light yield leakage effects



# Summary

- COSINUS is a Nal-based dark matter search whose goal is to check the longstanding DAMA/LIBRA claim
- Cryogenic Nal calorimeters have demonstrated the ability to discriminate particle interaction types
- Facility completed and recently celebrated the inauguration of the experiment!!
- Data taking is expected to begin by the end of the year
- Simulations have played a large role so far in the design of the experiment so far (shielding and muon veto)
- Next step is the background model

#### Extra Slides

| models<br>• Which particle?<br>• Which interaction coupling?<br>• Which EFT operators contribute?<br>• Which EFT operators contribute?                                                                                                                                          | and experimental aspects<br>• Exposures<br>• Energy threshold<br>• Detector response (phe/keV)<br>• Energy scale and energy resolution<br>• Calibrations<br>• Stability of all the energy conditions                                                                                                                                                                          | 10 <sup>-39</sup><br>10 <sup>-40</sup><br>$\overline{u} = 10^{-41}$<br>$10^{-42}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| <ul> <li>Which router target-material?</li> <li>Which Spin Factor?</li> <li>Which nuclear model framework?</li> <li>Which scaling law?</li> <li>Which halo model, profile and related parameters?</li> <li>Streams?</li> <li>Uncertainty in experimental parameters.</li> </ul> | <ul> <li>Stability of all the operating conditions.</li> <li>Selections of detectors and of data.</li> <li>Subtraction/rejection procedures and stability<br/>in time of all the selected windows and related<br/>quantities</li> <li>Efficiencies</li> <li>Definition of fiducial volume and non-<br/>uniformity</li> <li>Quenching factors, channeling</li> <li></li> </ul> | 10-43         The structure struct |
| astrophysical, nuclear and particle-physics a<br>terms of exclusion plots and in terms of allow<br>assumptions and parameters' values are intrins                                                                                                                               | spects, affect all the results at various extent, both in wed regions/volumes. Thus comparisons with a fixed set of sically strongly uncertain.                                                                                                                                                                                                                               | 1 10<br>WIM                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |

and "correct" way to of DM and comparisons?



arbitrary/partial/incorrect exercise

https://agenda.infn.it/getFile.py/access?contribId=34&sessionId=1&resId=0&materialId=slides&confId=15474

#### **MUSUN: MUons Simulated UNderground**

MUSUN events

Dangerous events



- MUSUN simulates the muon flux at LNGS, using the topographical layout of the mountains
- 30 million muons where simulated in the COSINUS geometry
- Events that generate neutrons in the dry-well are classified as "dangerous" and simulated with the optical physics turned on

#### SOURCES-4C



• SOURCES-4C is a fortran based code that calculates the  $(\alpha,n)$  interaction from spontaneous fission of primordial radionuclides



| Background source |                       | Estimated number of particles entering the detector volume $(yr^{-1})$ |                                                              |                                                              |                                                                                         |                                                                                 |  |  |
|-------------------|-----------------------|------------------------------------------------------------------------|--------------------------------------------------------------|--------------------------------------------------------------|-----------------------------------------------------------------------------------------|---------------------------------------------------------------------------------|--|--|
| Dackgr            | ound source           | Option 1                                                               | Option 2                                                     | Option 3                                                     | Option 4                                                                                | Option 5                                                                        |  |  |
|                   | Ambient               | $< 3.50 \cdot 10^{-2}$                                                 | $< 3.50 \cdot 10^{-2}$                                       | $< 3.50 \cdot 10^{-2}$                                       | $< 3.50 \cdot 10^{-2}$                                                                  | $< 3.50 \cdot 10^{-2}$                                                          |  |  |
| Neutrons 〈        | Radiogenic            | $(9.17 \pm 0.01) \cdot 10^{0}$                                         | $(9.18 \pm 0.01) \cdot 10^{0}$                               | $(2.17 \pm 0.01) \cdot 10^{0}$                               | $(9.31 \pm 0.07) \cdot 10^{-1}$                                                         | $(4.22 \pm 0.05) \cdot 10^{-1}$                                                 |  |  |
|                   | Cosmogenic            | $(2.10\pm 0.03)\cdot 10^2$                                             | $(1.15 \pm 0.02) \cdot 10^2$                                 | $(3.36 \pm 0.04) \cdot 10^2$                                 | $(2.22 \pm 0.03) \cdot 10^2$                                                            | $(1.11 \pm 0.02) \cdot 10^2$                                                    |  |  |
| Gammas {          | Ambient<br>Radiogenic | $(3.15 \pm 1.41) \cdot 10^3$<br>$(5.68 \pm 0.14) \cdot 10^6$           | $(6.81 \pm 1.15) \cdot 10^4$<br>$(5.68 \pm 0.14) \cdot 10^6$ | $(7.88 \pm 1.05) \cdot 10^4$<br>$(4.08 \pm 0.13) \cdot 10^5$ | $\begin{array}{c} (1.71 \pm 0.57) \cdot 10^4 \\ (4.46 \pm 0.14) \cdot 10^5 \end{array}$ | $\begin{array}{c} (4.94\pm0.47)\cdot10^5 \\ (2.09\pm0.04)\cdot10^6 \end{array}$ |  |  |

27

COSINUS

Shielding

**Evaluation from** 

#### Ambient Gamma in LNGS

| Energy Region (keV) | Flux ( $\gamma \cdot \mathrm{cm}^{-2} \cdot \mathrm{s}^{-1}$ ) |
|---------------------|----------------------------------------------------------------|
| 7.4 - 249.8         | 0.137                                                          |
| 250.2 - 500.4       | $4.24 \times 10^{-2}$                                          |
| 500.8 - 1005.2      | $2.99 \times 10^{-2}$                                          |
| 1005.6 - 1555.8     | $1.46 \times 10^{-2}$                                          |
| 1556.2 - 2055.8     | $3.50 \times 10^{-3}$                                          |
| 2056.2 - 2734.2     | $2.02 \times 10^{-3}$                                          |

**Table 1**: Ambient gamma flux as a function of energy in Hall B of LNGS. Adopted from [32].