

The simulation framework of the DELight experiment

Francesco Toschi on behalf of the DELight collaboration VIEWS24 – 26.04.2024, Vienna

www.kit.edu

oik (IAP)

Superfluid ⁴He for LDM searches

- Impurities freezing out (~20 mK)
- Multiple signal channels
 - ER/NR discrimination
 - Energy reconstruction
- Inexpensive material and scalable technology
- Light nuclei maximize recoil energy for LDM

Working principle

- Prompt detection of UV and IR photons
- Ballistic triplet excimers
 - Lifetime ~13 s, speed ~2-4 m/s
 - Decay at interface with solid or vacuum
- Quasiparticles (phonons and rotons)
 - Ballistic propagation within He target
 - Reflection at interface with solid

Working principle

5

- Prompt detection of UV and IR photons
- Ballistic triplet excimers
 - Lifetime ~13 s, speed ~2-4 m/s
 - Decay at interface with solid or vacuum
- Quasiparticles (phonons and rotons)
 - Ballistic propagation within He target
 - Reflection at interface with solid
- Quantum evaporation
 - Noise-free gain ≥10 (E_{He-He} < E_{He-MMC})
 - Sensors in vacuum must be film-free
 - Film burner (already tested by HERON)

R. Torii et al., Rev. Sci. Instrum., 63, 230, (1992)

Magnetic microcalorimeters (MMC)

Phys. Rev. D 109, 043035 (2024)

Photon

Recoil Even

Appl. Phys. Lett. 124, 032601 (2024)

- Best resolving power to date for x-rays ΔE_{FWHM} = 1.25(18) eV @ 5.9 keV (⁵⁵Fe source)
- MMC-based wafer calorimeters for DELight
 - $\Delta E_{FWHM} = 5-6 \text{ eV} \Rightarrow \sim 20 \text{ eV}$ threshold
 - ~50 sensors with O(5 cm) diameter
 - Sapphire or silicon substrate
 - Athermal phonon detection (R&D)

GEANT4 implementation

- Using GEANT4 v11.0.3 with multithread
- Simplified and flexible geometry for design studies
 - First shielding studies suggest an inner lead shielding
 - MMCs and Helium sensitive detectors
- Using suggested physics lists
 - G4EmStandardPhysics_option4
 - G4HadronPhysicsQGSP_BERT_HP
- SaG4n implemented for (α, n) reactions

Nucl. Instrum. Methods Phys. Res. 960 (2020) 163659

Quasiparticle propagation

- Unique and characteristic dispersion relation
- G4CMP requires lattice structure information Nucl. Instrum. Methods A 1055 (2023) 168473
- Developed custom solution based on G4CMP
 - G4VUserTrackInformation storing momentum information
 - Phonons with energy below evaporation threshold are killed
 - "Acoustic" surface implemented for reflection at surfaces

Quasiparticle propagation: reflection

Phys. Rev. B 77, 174510

Quasiparticle propagation: reflection

XY view

Quasiparticle propagation: reflection

XY view

Quasiparticle propagation

Institut für Astroteilchenphysik (IAP)

Signal partitioning

Derived from "interaction-by-interaction" simulation using literature cross sections (e⁻-He, He-He)

Signal partitioning

Derived from "interaction-by-interaction" simulation using literature cross sections (e⁻-He, He-He)

Helium cell @ Heidelberg University

- Operating in the ECHo experiment cryostat
- Planned/ongoing tests:
 - operation of MMC in superfluid helium,
 - direct quasiparticle measurement,
 - detection of UV photons and triplets,
 - and much more!

UNIVERSITÄT HEIDELBERG ZUKUNFT SEIT 1386

Cosmic muon simulations

- Primary muon spectrum from:
 - PARMA at low energies (< 10 GeV)</p>
 - Modified Gassier at high energies
- PARMA code used also for other cosmics (neutron, protons, ...) PLoS ONE 11(8): e0160390
- Simulations above- and underground ongoing

Vue-des-Alpes underground laboratory

- Shallow underground lab close to Neuchâtel, Switzerland
- Rock overburden of 620 m.w.e. \Rightarrow muon flux reduced by 1/2000
- Gamma and radon background measurements
- Operated by University of Freiburg (hosting GeMSE gamma spectrometer)

18 26.04.2024 Francesco Toschi – The simulation framework of the DELight experiment

Institut für Astroteilchenphysik (IAP)

Conclusion

- First physics and detector models are implemented for DELight
- Starting taking first data for validation by the end of the year

Backup slides

DELight detection principle

- Noise-free gain \gtrsim 10 in the MMC as binding energy He-He is smaller than He-absorber
- MMCs in vacuum need to be ⁴He film-free \rightarrow film burner (already tested by HERON)

Magnetic microcalorimeters (MMC)

-379 (2018)

(2024)

32601

Phys

Appl

- Previous best MMC resolution: $\Delta E_{FWHM} = 1.58 \text{ eV} \otimes 5.9 \text{ keV} (x-rays from {}^{55}Fe)$ ⁽¹⁾
- Achieved best resolution to date with optimum-filter based analysis^(2,3):
 - ΔE_{FWHM} = **1.25(18) eV** @ 5.9 keV;
 - **a**mplitude fit to K_{α} data, validation reconstruction K_{β} .

HERON

First waveform expectations

First preliminary expectations using (x-ray) MMC response

MMC-based wafer calorimeters might likely have different time response

The future of DELight

First phase

- Above ground and/or shallow lab (e.g., VdA)
- 10 L target volume (≳1 kg)
- Threshold of 20 eV
- Probing new physics with exposure of 1 kg·d

and beyond

- Underground lab
- Larger cell + long exposure
- Threshold <10 eV</p>

DELight phase-I: threshold impact

Institut für Astroteilchenphysik (IAP)

UV signal

From interactions to signal quanta (ER)

