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• What is ELOISE?
– Verifying Geant4 simulation in CaWO4 and Al2O3 at 

sub-keV energies
this talk: electron energy loss

• How to get reference data
– Electron Energy Loss Spectroscopy (EELS) of 

CaWO4 and Al2O3

• Comparing data and simulation
– Geant4 10.6.3 “out of the box”

• Connecting data and simulation
– Deduce electronic stopping powers as input to 

future simulations

• Summary & Outlook
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ELOISE is founded by the Austrian science

fund (FWF) under grant number P34778-N 

[HK, SciPost Phys. Proc., 12 (2023) 64, arXiv:2212.12634]
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Reliable Background Simulation at Sub-keV Energies

What is ELOISE?
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ELOISE: Motivation

• CaWO4 and Al2O3 are prominent targets 
for rare event searches:

• CRESST searching for Dark Matter 
induced nuclear recoils 

• NUCLEUS searching for Coherent Elastic 
Neutrino-Nucleus Scattering (CEvNS)

• In both cases the signal is rare compared to 
the background
→ a reliable background model is crucial
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ELOISE: Energy Scale
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CEvNSCEvNS

→ Physics at the sub-keV scale

[HK2023]
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ELOISE: Interactions of Interest
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➔No reference data below 1 keV

[HK2023]
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EELS of CaWO4 and Al2O3

How to get reference data
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Reference Data: EELS
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EELS conducted

by M. Stöger-Pollach, TU Wien, USTEM

E0

E’

• Samples of CaWO4, Al2O3 provided by 
NUCLEUS

• Only single e- interactions
→ thin target

• Disk with =3mm and h=

• 77 nm for CaWO4

• 57 nm for Al2O3

• Monochromatic e- (E0=200 keV)

• Well established method:
Electron Energy Loss Spectroscopy (EELS)
→Energy loss: E0-E’
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EELS of CaWO4 and Al2O3
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Qualitative comparison of the EELS measurement with “out of the box” Geant4 simulations

Comparing data and simulation
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Physics Setting

Used as „standard configuration“:

• Geant4 10.6.3

• Shielding physics list with
• G4EmStandardPhysics_option4

for EM physics

• Enable atomic de-excitation

• Track e- down to 1 eV

• Range cut of 500 nm

• No tuning on physics processes/models

/process/em/fluo true

/process/em/auger true

/process/em/augerCascade true

/process/em/pixe true

/process/em/deexcitationIgnoreCut true

/process/em/lowestElectronEnergy 1 eV

/run/setCut 500. nm

/run/setCutForAGivenParticle proton  0. nm

/cuts/setLowEdge 1. eV
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Implemented Setup
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Vacuum

„Ghost“ sphere to track

transmitted e-
→ get Ekin

Initial e-

E0=200keV

E‘ = ΣEkin of all transmitted e-

within a collection angle/2=14 mrad

→ΔE=E0-E‘

Target: disk of  =3mm and h=
77 nm for G4_CALCIUM_TUNGSTATE

57 nm for G4_ALUMINUM_OXIDE



Comparison Geant4 vs EELS for Al2O3

• Overall trend is 
roughly matching

• Not matching for 
edges (eIoni) and 
peaks (PIXE)

• Artefact E<15eV

14
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Comparison Geant4 vs EELS for CaWO4

• Same findings as for 
Al2O3

→ Needs further study

→ Check if improvement 
is possible with

• Different EM physics 
constructor

• Different EM process 
settings
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Impact of EM Physics Constructors (CaWO4)

• 2 groups of EM physics 
constructors, differ by ~10 
in absolute count yields
→ no consistent correlation 
with eIoni-models 
(Livermore vs Möller-
Bhabha)

• With the exception of 
G4EmPenelopePhyiscs, no 
strong differences in 
spectral features

→ No obvious improvment
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Impact of EM Process Settings (CaWO4)

• Systematic survey of the 
impact of the process 
settings on the spectrum

• Compared to standard 
configuration

• „Interesting” settings:

• PIXE – but no impact of 
used PIXE models

• PAI (Photo Absorption 
Ionisation) 
[Apostolakis2000]
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Comparison Geant4+PAI vs EELS for CaWO4

• ~better agreement
< 500 eV

• ~same deviation
> 500 eV

→ Improvement!?
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Comparison of PAI with CaWO4

• ~better agreement
< 500 eV

• ~same deviation
> 500 eV

→ Improvement!?

• Get even better with 
MicroElec [Gibaru2021]?

• CaWO4 and Al2O3 are not 
part of it 

• Possible to extend with 
tabulated cross sections?

→ Get cross sections from
EELS measurement
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Simulation normalized to measured counts in [0,2keV]



Deduce electronic stopping powers from EELS as input to future simulations

Connecting data and simulation
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• The complex dielectric function
𝜖 ℏ𝜔, ℏ𝑘 = 𝜖1 ℏ𝜔, ℏ𝑘 + 𝑖𝜖2 ℏ𝜔, ℏ𝑘

gives the response of a target to a swift electromagnetic distortion and it depends on transferred energy 
ℏ𝜔 and momentum ℏ𝑘

• The Energy Loss Function (ELF)

𝐸𝐿𝐹 = Im −
1

𝜖 ℏ𝜔,ℏ𝑘

is the electronic excitation spectrum due to inelastic scatterings like ionisation

• The Optical Energy Loss Function  (OELF)

𝑂𝐸𝐿𝐹 = Im −
1

𝜖 ℏ𝜔, 0
is the reduced ELF in the optical limit 𝑘 → 0

➔ EELS → OELF → ELF → differential cross section → stopping power

Dielectric Function Theory
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• Deconvolve measured EELS to obtain single-scattering contribution 𝑺(ℏ𝝎) as function of electron energy 
loss 𝐸 = ℏ𝜔

• It is directly related to OELF [Stöger-Pollach2008]:

𝑆 ℏ𝜔 = 𝐼0
𝑡

𝜋𝑎0𝑚0𝑣
2
⋅ 𝑂𝐸𝐿𝐹 ℏ𝜔 ⋅ ln 1 +

𝛽

𝜃 ℏ𝜔

2

𝜃 ℏ𝜔 =
ℏ𝜔

𝛾𝑚0𝑣
2

with incoming intensity 𝐼0, sample thickness 𝑡, collection semi-angle 𝛽, speed 𝑣 and mass 𝑚0 of incident 
electron, and the characteristic scattering angle 𝜃

• Normalization factors 𝐼0 and 𝑡 are determined via Kramers–Kronig analysis and the known optical 
refractive index 𝑛 [Stöger-Pollach2008]:

𝑅𝑒
1

𝜖 ℏ𝜔, 0
= 1 − 𝑃

2

𝜋
න
0

∞

𝑂𝐸𝐿𝐹 ℏ𝜔
d ℏ𝜔

ℏ𝜔
=

1

𝑛2

where 𝑃 represents the Cauchy principle part of the integral

EELS → OELF
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• Decompose the obtained OELF by fitting it with a sum of Drude oscillators [Ritchie1977]

𝑂𝐸𝐿𝐹 ℏ𝜔 =

𝑖

𝑎𝑖 ⋅
𝛾𝑖 ⋅ ℏ𝜔

ℏ𝜔 2 − ℏ𝜔𝑖
2 2

+ 𝛾𝑖 ⋅ ℏ𝜔
2

with the resonance frequency 𝜔𝑖, damping 𝛾𝑖, and strength 𝑎𝑖 of the 𝑖-th oscillator

• Allow arbitrary virtual oscillators, also with negative strength, to describe also non-free electron 
materials [Da2022]

OELF → ELF
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OELF of CaWO4 and Al2O3
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CaWO4 Al2O3
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OELF of CaWO4 and Al2O3
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CaWO4 Al2O3

➔Good fit down to ~20 eV
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• Decompose the obtained OELF by fitting it with a sum of Drude oscillators [Ritchie1977]

𝑂𝐸𝐿𝐹 ℏ𝜔 =

𝑖

𝑎𝑖 ⋅
𝛾𝑖 ⋅ ℏ𝜔

ℏ𝜔 2 − ℏ𝜔𝑖
2 2

+ 𝛾𝑖 ⋅ ℏ𝜔
2

with the resonance frequency 𝜔𝑖, damping 𝛾𝑖, and strength 𝑎𝑖 of the 𝑖-th oscillator

• Allow arbitrary virtual oscillators, also with negative strength, to describe also non-free electron 
materials [Da2022]

• Extend OELF to ELF at finite 𝑘-values by assuming a free-electron dispersion relation [Ritchie1977]:

𝜔𝑖 → 𝜔𝑖 +
ℏ𝑘 2

2𝑚𝑒

(impact of other extensions, e.g. based on Mermin‘s dielectric function [Abril1998], are currently 
investigated)

OELF → ELF

26Holger Kluck



• The differential cross section for an incident electron of energy 𝐸 to lose energy ℏ𝜔 is related to the ELF 
via [Raine2014]:

d𝜎(𝐸, ℏ𝜔)

dℏ𝜔
=

1

𝜋𝑁𝑎0𝐸
න
𝑘−

𝑘+

𝐸𝐿𝐹 ℏ𝜔, ℏ𝑘
d𝑘

𝑘
+ 𝑟. 𝑐.

with the atomic density if the target 𝑁

• To be applicable also to energies above ~10keV, relativist corrections (r.c.) have to be considered 
[Raine2014]:

𝑟. 𝑐. =
1

𝜋𝑁𝑎0𝛽
2𝑚𝑒𝑐

2
𝑂𝐸𝐿𝐹 ℏ𝜔 𝑙𝑛

1

1 − 𝛽
− 𝛽2

𝑘± =
1

𝑐
𝐸(𝐸 + 2𝑚𝑒𝑐

2) ± (𝐸 − ℏ𝜔)(𝐸 − ℏ𝜔 + 2𝑚𝑒𝑐
2)

E → 𝛽2𝑚𝑒𝑐
2 with 𝛽 = 1 − 1 +

𝐸

𝑚𝑒𝑐
2

−2

ELF → Differential Cross Section
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• Finally, the stopping power for an incident electron with energy 𝐸 is obtained via [Raine2014]:

𝑆 𝐸 = 𝑁න
𝜔−

𝜔+ d𝜎(𝐸, ℏ𝜔)

dℏ𝜔
dℏ𝜔

with integration boundaries for the energy loss of
𝜔− = 0
𝜔+ = 𝐸/(2ℏ)

Differential Cross Section → Stopping Power
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Stopping Power of CaWO4 and Al2O3
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CaWO4 Al2O3
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Stopping Power of CaWO4 and Al2O3
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CaWO4 Al2O3

→Very good agreement with ESTAR >1 keV

➔CaWO4 - first measured stopping power at sub-keV range
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Summary and Outlook

31Holger Kluck



Summary
• ELOISE obtained sub-keV reference data for e- ionisation in Al2O3 and CaWO4 via EELS measurements

• First qualitative comparison with Geant4 10.6.3

• Rough overall agreement but differences in spectral features

• Activation of PAI seems to improve agreement w.r.t default G4EmStandardPhysics_option4

• Obtained cross sections from EELS measurements for further studies

• Obtained Optical Energy Loss Functions (OELF) for Al2O3 and CaWO4

• Preliminary extension of OELFs to full Energy Loss Functions at finite momentum transfer

• First stopping power spectrum for CaWO4 at sub-keV energies

• Perfect agreement with ESTAR reference data above 1 keV

Outlook
• Publication of EELS data sets and results under preparation

• Established workflow usable also for further (solid) target materials

• Study possibility to extend Geant4/MicroElec with the sub-keV cross section data for Al2O3 and CaWO4
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