The Geant4-based simulation program for PandaX experiments

Tao Li

Sun Yat-sen University (SYSU)

04/26/2024

litao73@mail.sysu.edu.cn

Outline

- 1. PandaX experiments
- **2. Simulation framework BambooMC**
- 3. Background estimation
- 4. Biasing technology for acceleration
- 5. Summary

PandaX - Particle and Astrophysical Xenon

- Increasing the detector-sensitive target volume.
- Lowering radioactive background.

Dark matter WIMP Searches

PandaX-II: 580 kg LXe (2014 – 2019) ^{2024/4/26}

PandaX-III: HPXe 100 kg scale (R&D for the future)

High pressure Xe (90% ¹³⁶Xe)

Dual Phase Xenon TPC in PandaX-4T

Located at China Jinping Underground Laboratory \Box Water shielding: 10 m (D) ×13 m (H) Dual-phase Xe TPC: 1.2 m (D) ×1.2 m (H) □ Sensitive volume: 3.7-ton LXe □ Total volume: 5.6 ton LXe **3**-inch PMTs: 169 top / 199 bottom

nuclear recoil

Gamma

Status and prospect

2020/11 - 2021/04	Commissioning (Run 0) 95 days: ~0.6 tonne-year
2021/07 - 2021/10	Tritium removal xenon distillation, gas flushing, etc
2021/11 - 2022/05	Physics run (Run 1) 164 days: ~1.0 tonne-year
2022/09 - 2023/12	CJPL B2 hall construction xenon recuperation, detector upgrade

Resume physics data-taking.

ZUZ4

,	Sub-keV	1 keV	10 keV	100 keV	1 MeV	10 MeV
Xe-136 (~9%)					$2\nu\beta\beta$ / $0\nu\beta\beta$	
Xe-134 (~10%)				2νββ	/ 0νββ	
Xe-124 (~0.1%)			2vE	ECEC		Alphas muons
Xe all isotopes	⁸ B solar v and light DM	WIMP and mod	other DM els Sol	ar pp v		and other physics

Simulation framework - BambooMC

- 1. Calculation of the detection efficiency of the counting stations
- 2. Estimation of the background contribution from the detector materials
- 3. Study of event distributions of different calibration sources
- 4. The correlated production of high energy gammas and neutrons in detector materials.

BambooMC is a Geant4-based framework:

▷ C++;

5.

- > an input configuration file;
- \triangleright export the detector geometry to a GDML;
- Designed to be used as a simple framework for different experiments. (PandaX, RELICS, ...)
- Modular It is possible to combine different geometry, physics, generator, and analysis in one program.

Simulation framework - BambooMC

- > The BambooCore module provides general functionalities, which can be used in different experiments.
 - **Generic parameterization system** 1.
 - 2. Dynamic geometry construction

shares the same structure, so the geometrical construction codes can be used in different simulations directly.

Dynamical loading of modular physics list 3.

Open source: https://github.com/pandaxexperiments/BambooMC

git clone git@github.com:pandax-experiments/BambooMC.git cd BambooMC mkdir build cd build cmake -DCMAKE BUILD TYPE=Release \ -DENABLE DETECTOR SETS=example,optical example \ -DENABLE USER MC=pandax .. make

run: 2312 jeometry: material: name: SampleMaterial detectors: type: SampleWorld name: World parameters: half_x: 2*m half_v: 2*m half z: 2*m type: BoxBlock name: VacuumBox parent: World parameters: half_x: 1*m half_v: 1*m half_z: 1*m material: vacuum sensitive: 2 filter: neutron.gamma type: BoxBlock name: PTFEBlock parent: VacuumBox parameters: half_x: 0.15*mm half_v: 0.15*mm half_z: 0.15*mm material: ptfe sensitive: 0 physics: name: PandaXPhysicsMod parameters: cutlength: 0.1*mm generator: name: SimpleGPSGenerator analysis: name: PandaXAnalysis

Background estimation

- Radioactive Origins
 - 1. Radioactive isotopes in materials
 - ⁴⁰K, ²³²Th, ²³⁸U; ⁶⁰Co and ¹³⁷Cs for <u>ER</u>; ²³²Th, ²³⁵U, and ²³⁸U for <u>NR</u>.
 - 2. Xenon targets impurities
 - ⁸⁵Kr, ¹³³Xe, ²²²Rn, ²²⁰Rn (¹²⁵Xe, ¹²⁷Xe, ^{129m}Xe, and ^{131m}Xe).
 - 3. neutrino-related background.
 - ¹³⁶Xe, solar neutrinos
 - 4. *The muon-induced background is negligible. cosmic ray flux is 3.53×10⁻¹⁰ cm⁻²s⁻¹

ultra-low background platform

- 1. two high-purity germanium (HPGe) counting station
- 2. inductively coupled plasma mass spectrometry (ICP-MS)
- 3. neutron activation analysis (NAA)
- 4. radon emanation measurement systems
- 5. krypton assay station
- 6. alpha detection system

Detector

Manufacturer

JP-I

ORTEC

JHEP06(2022)14

JP-II

0.63

34%

0.3

2.7

2.8

Canberra

Broad energy

	he	VIEnna	Workshop	on Sim	ulations	2024
--	----	--------	----------	--------	----------	------

Detection efficiency of the counting station

For the samples with material names and geometric parameters <u>dynamically loaded from the configuration files</u>.
 Difference between simulation and measurement is <u>smaller</u> than 5% validated by ⁶⁰Co and ¹³⁷Cs.

The dynamic geometry construction of BambooMC simplified the simulation works!

2024/4/26

The VIEnna Workshop on Simulations 2024

Breaking up of long decay chain

- Geant4 will not stop the simulation of an event until the "stop" states.
- > PandaXMC module:
 - 1. EnableDecayChainSplitting
 - 2. ChainSplittingLifeTime

Improved neutron generator for dark matter search

- > The neutron background should be estimated carefully.
 - 1. the (α, n) reactions;
 - 2. spontaneous fission of radioactive nuclei.
- SOURCES-4A without correlated production of neutrons and gammas, leading to the

over-estimation of neutron background.

Biasing technology for simulation acceleration

- biasing techniques can enhance the efficiency and accuracy of simulations.
- > The key processes are layering and multiplication.

"bias hit": Energy deposition "bias source": The information of particles that touch the inner boundary, including particle type, energy, momentum, and position.

Type (1): The γ-ray loses some energy and continues to fly until reaching the boundary of the biasing layer; Type (2): The γ-ray undergoes deflection and exits the shield without touching the surface of the biasing layer; Type (3): The γ-ray does not interact and directly reaches the surface of the biasing layer.

Biasing for ER background spectrum

Background model of Analysis of ¹³⁴Xe DBD for example.

PRL, 2024, 132(15): 152502.

The <u>5-layer biasing structure</u> where all layers except the central biasing layer are hollow cylindrical shells.
Location
Isotope

			Location 1	Location 2	isotope
1 st run: 591.8 mm	5 th run:	6 th run:		Barrel	60 Co
			Inner	Dome Bottom	$^{40}\mathrm{K}$
			vossol	Dome Top	232 Th
			VESSEI	FlangeB	$^{238}\mathrm{U}$
				FlangeF	$^{137}\mathrm{Cs}$
8.2611	┩・・・・			Barrel	^{oo} Co
			Outer	Dome Bottom	40 K
			vossol	Dome Top	232 Th
			VCSSCI	FlangeB	$^{238}\mathrm{U}$
		Fidual volume		FlangeF	$^{137}\mathrm{Cs}$
	`	Gamma ray Biasing layer Energy deposition LXeSD		Body Bottom	60 Co
				Body Top	40 K
. Re-entering the FV car	be considered negligible.		PMT	Basa Bottom	232 Th
				Base Dottom	$^{238}\mathrm{U}$
. Events with complete e	energy deposition in a biasi	ng layer cannot enter the FV.		Dase Top	$^{137}\mathrm{Cs}$
0004/4/00				·	10

Biasing for ER background spectrum

<parameter name="EnableBiasing" value="1"/>
<parameter name="CurrentBias" value="IRIS_CURRENT"/> valid when using biasing
<parameter name="NBiasing" value="6"/> valid when using biasing
<parameter name="BiasHeights" value="1050,950,850,750,650"/> mm; valid when using biasing
<parameter name="BiasRadiuses" value="570,550,530,510,490"/> mm; valid when using biasing
<parameter name="BiasFactor" value="1,1,2,2,4,4,10"/> valid when using biasing
<parameter name="FilePrefix" value="IRIS_DIR"/> valid when using biasing
<parameter name="SourceFileName" value="IRIS_SOURCE_FILE"/> valid when using biasing
<parameter name="SourceFileName" value="IRIS_TARGET_FILE"/> valid when using biasing
<parameter name="TargetFileName" value="IRIS_TARGET_FILE"/> valid when using biasing
<parameter name="TargetFileName" value="IRIS_TARGET_FILE"/> valid when using biasing
<parameter name="TargetFileName" value="IRIS_TARGET_FILE"/> valid when using biasing

□ The performance gain is about 7000.

IV_Dome_Bottom_K40 ------ Ratio -----wBias Entries: 1.51037e+07 : 4.9937e-06 woBias Entries: 523 : 5.23e-06 ratio Difference[(w-wo)/wo]: 4.51818% ratio sigma: 1.03327 multiplier: 28879 ----- Time -----woBias time: 0.890 day wBias time: 3.764 day multiplier: 4.231

```
===> Gain: 6824.986
```


Biasing for ER background spectrum

2024/4/26

The VIEnna Workshop on Simulations 2024

Summary

1. PandaX experiments have multiple physical goals to search for rare signals.

2. A Geant4-based simulation framework, BambooMC, has been widely used for

background estimation, including several features:

1. Detection efficiency of the counting station;

2. Breaking up for long decay chain;

3. Improving neutron generator;

4. Biasing technology for simulation acceleration.

PandaX - Particle and Astrophysical Xenon

Collaboration meeting at April 19-22, 2024

The VIEnna Workshop on Simulations 2024

Tao Li

Sun Yat-sen University (SYSU)

04/20/2024

litao73@mail.sysu.edu.cn

Layout in CJPL-II hall

Input configuration file

<physics name="PandaXPhysics">
 <parameter name="cutlength" value="0.1*mm"/>
</physics>

<generator name="SimpleGPSGenerator"/>
<analysis name="PandaXAnalysis">

<parameter name="EnableEnergyDeposition" value="1"/>
<parameter name="EnableSurfaceFlux" value="1"/>
<parameter name="EnablePrimaryParticle" value="1"/>
<parameter name="SaveNullEvents" value="0"/>
<parameter name="UserSeed" value="0"/>
<parameter name="EnableDecayChainSplitting" value="1"/>
<parameter name="ChainSplittingLifeTime" value="0.1"/>
</analysis>

// EM Physics

RegisterPhysics(new G4EmLivermorePhysics(verbose));

// Synchroton Radiation & GN Physics
RegisterPhysics(new G4EmExtraPhysics(verbose));

// Decays
RegisterPhysics(new G4DecayPhysics(verbose));

RegisterPhysics(new G4RadioactiveDecayPhysics(verbose));

// hadron physics
RegisterPhysics(new G4HadronElasticPhysicsHP(verbose));

// shielding, changed api for different version of geant4.
RegisterPhysics(new G4HadronPhysicsShielding(verbose));

// stopping physics
RegisterPhysics(new G4StoppingPhysics(verbose));

// ion physics
RegisterPhysics(new G4IonQMDPhysics(verbose));

