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The CRESST experiment

CRESST is a direct detection dark matter experiment, probing the

parameter space for low mass (≲ 1 GeV/c2) WIMPs [1].

Figure 1: Sketch of experimental setup and

photo of a detector module.

Placed at LNGS (Italy),

∼1400 meter below the Gran

Sasso mountains.

Two channel approach:

- Phonons with cryogenic

crystals (∼15 mK)

- Scintillation light with a

light detector

Various detector modules

with different crystal

materials are used [2–4].

Here focused on CaWO4.

For more information see previous talk by Samir Banik, Thursday 15:20 1



Simulation

Measured EM-background is investigated with simulations.

ImpCRESST is a Geant4/Root

based simulation tool, developed

for rare-event experiments and

used by CRESST [5].

With CresstDS the detector

resolution (time-, energie

resolution) is applied to the data.

With a Gaussian fit method or a

recently developed Likelihood

Normalization method [6] the

generated templates are fitted to

the measured data.
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Background spectrum

Total coverage of 99.6%, but

some details are missing.

(e.g.: there are gaps in the

high energy range.)

This is a hint for:

– isotopes/contaminants

are missing in the

simulation

– effects are

underestimated/not

included

Figure 2: Simulated bulk contamination fitted to experimental data

using a Likelihood fit method [6]. For fitting the program BLISS is used. 3



Background spectrum: Contamination

Surface could be contaminated with
210Pb, because of 222Rn.

210Pb decays to 206Pb.

210Po is a bottleneck:

- Halflife 138 days

- α-dacay

- Q-value 5.408MeV

Surface 210Po is measured by

CRESST [7].
Figure 3: 222Rn →206Pb

decay chain
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Background spectrum: Surface roughness

Figure 4: Surface profile of a diffused and polished crystal, grown at

TUM [2]. Surfaces were examined by V. Mokina, using a LEICA DCM8

microscope. 5



Surface Roughness Module

Development of a new Module

for Geant4 to simulate surface

roughness and its contamination.

Module contains two main parts:

Surface Generator

Builds a patch of rough surface

based on spikes.

Particle Generator

Samples vertices from the

surface which are uniformly

distributed to place nuclei.

Figure 5: Patch of 3x3 spikes

Figure 6: Other spike forms
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Module: Surface Generator

Rough surface is represented by

a G4Multiunion which contains

spikes.

Up to 1000x1000 spikes possible.

Spikes can have different form

and height.

Can calculate surface parameters

to compare the generated

surface to a real surface.

Figure 5: Patch of 3x3 spikes

Figure 6: Other spike forms
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Module: Surface Generator

Problem: G4Multiunion.Voxelize()

Voxelization is an optimisation routine to reduce the runtime with the

tradeoff of an increased memory usage.

If spikes have different heights, the memory usage increases by

O((nx · ny )2). At 100x100 spikes, the memory consumption is in the

range of GB.

Solution: Change the number of allowed Voxels

Change the class G4Voxelizer and implement a limit to the number of

generated voxels in a certain direction.

Only one Layer of voxels in direction of spike height. Only a small

change in runtime.
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Module: Particle Generator

The Particle Generator places nuclei uniformly distributed on the

generated rough surface.

Main part is the Facetstore, a singleton class which stores the rough

surface as G4TriangularFacets.

The store is filled by the Surface Generator.

Downside: Currently a uniform placement of nuclei below the surface is

not possible (but under development)
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Used Physics

A slightly modified version of the physics list G4EmStandard-

Physics Option4 was used for the following simulations. For Generic

Ions the class G4ScreenedNuclearRecoil is implemented.

It handles screened Coulomb collisions between nuclei.

Figure 7: Changes of physics list for Generic Ions.

The physics list is not part of the developed surface roughness module!
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Used Physics

Figure 8: Penetration depth of 206Pb nuclei with a kinetic energy of

103.08 keV inside a CaWO4-crystal. Two different physics for Generic

Ions are used. Simulated data is compared with data generated with the

SRIM simulation tool [8].
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Simulation: 210Po decay

Figure 9: Sanity check of surface roughness implementation.The

simulated energy deposition spectrum of a rough surface should approach

the spectrum of a flat surface with decreasing spike height.
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Simulation: 210Po decay

Figure 10: Energy deposition spectrum of 210Po decay for different spike

heights. A pyramid-like spike form is used.
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Simulation: 210Po decay

Raw energy deposition data Detector resolution applied to data

Figure 11: Energy deposition spectrum of 210Po decay for different spike

heights. A pyramid-like spike form is used.
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Simulation: 210Po decay

Figure 12: Energy deposition spectrum of 210Po decay for different spike

forms.
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Fit of simulated templates

? ? ? ?

238U 234U

231Pa
210Po

Figure 13: Simulated spectra caused by

α-decaying bulk- and surface-contaminants

(colored, filled histograms) fitted [5, 6] with BLISS to experimental data

(black, open histogram) of CRESST’s TUM40 detector [9]. The surface

contaminants 210Po, 231Pa, 234U and 238U are placed on a rough surface

[10]. 16



Summary and Outlook

• Geant4 based module for the simulation of surface roughness and

surface contamination developed

• Capable of explaining some of the gaps between simulated and

measured data (tails of alpha peaks, surface 210Po)

• Module is still under development and will be improved further

(nuclei placement below surface, more options to control surface)

• Prepare module for publication
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Thank you!

Questions?

Wanted! Have you seen this ring?

6 6

All nuclei enter the volume with the same kinetic energy at the position and the direction of the arrow.
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Exponential depth distribution vs Surface roughness

Flat surface, exponential distribution rough surface

Figure 14: Comparison of energy deposition spectrum of nuclei placed

following a distribution P(x ;λ) ∝ exp(x/λ) normal to the surface (left)

and a rough surface using a pyramid spike form (right).
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