

Background simulation and control schemes in the CDEX-50 experiment

Junzheng Wang CDEX collaboration, Tsinghua University

wangjz22@mails.Tsinghua.edu.cn

Outline

Introduction of CDEX experiment

•CDEX-50 experiment construction

•Background simulation and control schemes^[1]

•CDEX-50 background model^[1]

Introduction of CDEX experiment

- CDEX: China Dark matter Experiment.
- Physics target: direct searches for dark matter using germanium detectors.
- Laboratory: CJPL, China Jinping Underground Laboratory.
 - Deepest rock overburden
 - Largest available space
 - Lowest muon flux

• CDEX-1: Development of PPC Ge detector, bkg understanding, since 2011; • CDEX-10: Performances of Ge detector array immersed in LN₂, since 2016; • CDEX-50: ~50 kg Ge detector array immersed in LN₂, under preparing. CDEX-10 **CDEX-1** CDEX-50 CJPL-I CJPL-II 20cm Pb vacuum N₂ gas Liquid N₂ signal OFHC Cu N₂ gas C10B-Ge3 NaI(T) 30 L Dewar Pn C10B-Ge2 C10B-Ge1 20 cm coppe

CDEX-50 experiment construction

Background sources

 Detector components
 Cosmogenic

Ambient

• Solar neutrino

Cosmic rays Cosmogenic radioactivity, such as ⁶⁰Co and ⁶⁸Ge. Ambient radioactivity, including ²³⁸U, ²³²Th and ⁴⁰K. U, Th series in rocks and concrete progeny in LN₂

•Muon-induced background

- CJPL 2400 m rock overburden.
- ~1 cm⁻²min⁻¹ at sea level \rightarrow 2.1 × 10⁻⁸ cm⁻²min⁻¹ in CJPL^[2].
- •U, Th series in rocks and concrete
 - Neutron related effects: spontaneous fission; (α, n) .
 - γ arise from long-lived radionuclides.

•6.5 m thick LN_2 can lower the sources above to a negligible level.

• The ^{222}Rn in LN $_2$ is expected to be $0.4~\mu Bq/kg$ after purification.

- CRY (Cosmic-ray Shower Library) is used to generate spectra of cosmic-rays.
- Geant4 is used to simulate particle interactions between cosmic-ray and target&shield with *Shielding* physics list.
- Background control methods during different processes of detector.

Cosmogenic radioactivity

 Specific activities of the cosmogenic radionuclides of the germanium crystal as well as copper.

[Copper			
Radionucl	ide Ac	tivities	μBq/kg)	
⁵⁴ Mn		2.38×	10 ⁻²	
⁵⁷ Co		5.32 ×	10 ⁻³	
⁶⁰ Co		3.2	27	
Germanium crystal				
Radionucl	ide Ac	tivities	μBq/kg)	
³ Н		9.93 ×	10 ⁻¹	
⁶⁵ Zn		3.26 ×	10 ⁻¹	
⁶⁸ Ge		1.0)6	

- Primordial radionuclides with long half-lives (²³⁸U, ²³²Th and ⁴⁰K) introduced in the material during manufacturing.
- Components of detector and their radionuclides activities:
 - Data of copper comes from purity copper samples used in CDEX-50.
 - Upper limits are given at 90% C.L.

Signal-Cable	Components	Activities (µBq/kg)		
Silicon-Base — Front-Electronics		238U	²³² Th	⁴⁰ K
Signal Bin	HV-Cable	$< 2.4 imes 10^2$	< 12	$< 3.2 imes 10^3$
Crystal —	Signal-Cable	< 51	< 19	$< 2.9 \times 10^3$
Support Pole	Electronics	$< 1.3 imes 10^5$	$< 3.0 imes 10^3$	$(5.2\pm0.1)\times10^4$
Crystal Support — IV-Electronics	Copper	< 1.3	< 0.58	< 5.8
Isolation Pole	PTFE	$< 1.7 imes 10^3$	< 60	$< 3.7 imes 10^2$
Crystal Fix	Silicon	< 38	< 19	$< 3.0 imes 10^3$

SAGE package

• SAGE^[4] package (Simulation and Analysis for Germanium Experiments).

- CDEX-50 geometry.
- Generate 10⁹ radionuclides for each radionuclide in each component.
- Decay chains are assumed to be in secular equilibrium.
- Time window representing the response time of Ge detector: 10 μs.
 - Decay chains breaking.
 - Cascade radiations.
 - Self-anticoincidence.

Conversion from simulation result to background model:

Count rate
$$R\left[\frac{\text{counts}}{\text{kg} \cdot \text{keV} \cdot \text{day}}\right] = A\left[\frac{Bq}{kg}\right] \times M[\text{kg}] \times \frac{\text{counts}}{\text{primaries}} \times \text{units}$$

Geant4 simulation of radionuclides

• Survival probability in ROI (2-2.5 keV) of each radionuclide in each component.

Radionuclides in crystal

Radionuclide	Survival Probability[%]
³ Н	100.0
⁴⁹ V	100.0
⁵⁴ Mn	82.57
⁵⁵ Fe	100.0
⁵⁷ Co	89.20
⁶⁰ Co	64.62
⁶³ Ni	100.0
⁶⁵ Zn	93.91
⁶⁸ Ge	100.0
⁶⁸ Ga	78.32

Geant4 simulation of radionuclides

• Survival probability in ROI (2-2.5 keV) of each radionuclide in each component.

Radionuclides in outer components

Radionuclide	Components	Survival Probability[%]
⁶⁰ Co	Crystal Support	68.23
	Support Pole	71.01
238U	Silicon-Base	71.03
	Crystal Support	71.49
	Support Pole	74.73
²²⁸ Th	Silicon-Base	71.27
	Crystal Support	74.23
	Support Pole	75.52

- Solar neutrino induced background above energy threshold (O(100) eV) within SM mainly comes from CEvNS.
- Scattering rate of CEvNS is calculated based on theoretical formula.
- Rate in ROI: 1.32×10^{-8} cpkkd.
- Mainly from ⁸B and hep neutrino.
- Drop steeply below 2.5 keV.

- Total spectrum in 0-20 keVee and 0-3000 keVee.
 - 0-20 keV: dominated by ³H β^- decay.
 - >1.5 MeV: dominated by ⁶⁸Ga and ⁶⁰Co in Ge crystal.

- CDEX-50 is the next generation dark matter project using a 50-kg Ge detector array.
- Different background sources are analyzed:
 - Environment.
 - Detector components.
 - Solar neutrino.
- Several schemes are performed to control the background:
 - Background control in detector fabrication and transportation; cooling time.
 - Purified LN₂ and copper.
 - Self-anticoincidence.
 - • • • •
- Background model of CDEX-50 is obtained through SAGE.
 - Total background level in ROI is calculated to be ~0.01 cpkkd, dominated by 3 H.

- [1] X. P. Geng *et al.* arXiv:2309.01843
- [2] Z. Y. Guo et al. Chinese Phys. C., 45, 025001 (2021)
- [3] Q. Y. Nie *et al.* JINST, 19, P03002 (2024)
- [4] Z. She *et al.* JINST, 16, T09005 (2021)

Thank you for listening!

VIEWS2024, Junzheng Wang

B

Appendix1: ³H in SAGE

• ³H is treated as a stable isotope in Geant4.

• SAGE make it decay automatically with *SAGETritiumPhysics*.

```
void SAGETritiumPhys::ConstructProcess()
// Make tritium unstable
G4ParticleDefinition *H3 = G4Triton::Definition();
H3->SetPDGStable(false);
// Remove G4Decay process, which requires a registered decay table
G4VProcess *decay = 0;
G4ProcessManager *processMan = H3->GetProcessManager();
                                                                    // Radio active decay physics and add user defined data base
G4ProcessVector *processVec = processMan->GetAtRestProcessVector();
                                                                    auto radioactiveDecayContainer = new G4RadioactiveDecay();
for (G4int i = 0; i < processVec -> size() && decay == 0; i++)
                                                                   G4int Z = 1;
                                                                   G4int A = 3;
    if ((*processVec)[i]->GetProcessName() == "Decay")
                                                                   G4String file name = "../userData/Z1.A3";
        decay = (*processVec)[i];
                                                                    // const char* nv = (const char*)file name;
                                                                    radioactiveDecayContainer->AddUserDecayDataFile(Z,A,file name);
if (decay)
                                                                    RegisterPhysics(new G4RadioactiveDecayPhysics());
    processMan->RemoveProcess(decay);
                                                                    RegisterPhysics(new SAGETritiumPhys());
// Attach RDM, which is a rest-discrete process
H3->GetProcessManager()->AddProcess(new G4RadioactiveDecay(), 1000, -1, 1000);
```


• Calculation formula:

$$\frac{d\sigma(E_r, E_\nu)}{dE_r} = \frac{G_f^2}{4\pi} Q_\omega^2 \left(1 - \frac{m_N E_r}{2E_\nu^2}\right) F^2(E_r)$$
$$\frac{dR}{dE_r} = N_T \int_{E_\nu^{min}}^{\infty} \frac{d\Phi}{dE_\nu} \frac{d\sigma(E_r, E_\nu)}{dE_r} dE_\nu$$

• $\frac{d\Phi}{dE_{\nu}}$ comes from the B16-GS98 solar model (high-metallicity or HZ mode).

Appendix3: Calculation of expect spectrum

• Differential event rate of ³H decay:

$$N(E_e) = \sqrt{E_e^2 + 2E_e m_e (Q - E_e)^2 (E_e + m_e) f(E_e)}$$

Appendix4: Spectrum of cosmogenic radionuclides

Spectrum of cosmogenic radionuclides in 0–20 keVee and 0–3000 keVee.
 0–20 keVee: β⁻ decay and x-rays.

• >20 keVee: γ rays, β and EC decay.

8