

Results and studies in the curio CUPID-Mo and CUPID experiments based on GEANT4 simulations

Léonard IMBERT on behalf of the CUPID-Mo and CUPID collaborations VIEWS24 26/04/24

Léonard Imbert

Neutrinoless double beta decay

- 2νββ
	- o $2n \rightarrow 2p + 2e^+ + 2\overline{v}_e$
	- Standard Model process
	- Observed for 14 nuclei

- 0νββ
	- Hypothetical decay
	- \circ 2n \rightarrow 2p + 2e⁻
	- \circ Violates lepton number $\Delta L = 2$
	- \circ Majorana neutrino ν = \overline{v}

Léonard Imbert

Searching for 0νββ

- 0νββ signature:
	- \circ Peak at Q_{BB} in the sum-energy spectrum of the two electrons
	- \circ Typically Q₈₈ = 2 ~ 3 MeV

- How to do a good experiment?
	- Low background around the region of interest
	- Good energy resolution
	- High detection efficiency
	- Large mass
	- Long data taking

Bolometers

- Crystals cool down to \sim 10 20 mK
- Detector = Source \rightarrow High detection efficiency
- Very good energy resolution 5 - 10 keV FHWM

- **Scintillating bolometers**
	- Heat and Light signals
	- Discrimination between β/ɣ and α

CUPID-Mo

- Demonstrator for the next experiment CUPID
- Installed in Laboratoire Souterrain de Modane (France) in EDELWEISS cryostat
- Studied 0νββ of ¹⁰⁰Mo (Q_{8β} = 3034 keV)
- 20 Li_2 ¹⁰⁰MoO₄ scintillating bolometers
	- 0.2 kg cylindrical crystals (ø 44 x 45 mm)
	- \bigcap 100 Mo enrichment ~ 97 %
	- Ge wafers as Light Detectors
	- NTD Ge thermistors to read the signal
	- Reflecting foils to increase light collection

E.P.J.C 82 (2022) 11, 1033

Set a limit of : $T_{1/2}$ > 1.8 x 10²⁴ yr (90% C.I.)

on the 0νββ of 100Mo

PTFE clamp LMO **NTD** Cu Holder PTFE clamp NTD Ge Wafer Cu Holder

Corresponds to: **m**_{ββ} < (280 - 490) meV

Léonard Imbert

GEANT4 Geometry

- Based on the program developed by EDELWEISS dark matter experiment
- Detailed geometry of the CUPID-Mo towers
- Reproduced the size of each crystal
- **Geometry includes:**

GEANT4 Geometry

- Based on the program developed by EDELWEISS
- Detailed geometry of the CUPID-Mo towers
- Reproduced the size of each crystal
- **Geometry includes:**

Copper screens (10mK, 1K, 50K, 100K, 300K)

Internal Polyethylene shielding

Lead shielding

Dilution unit

300K electronics

Pumps

He Reservoir

GEANT4 simulations

- G4RadioactiveDecay
	- Used for close sources to generate decay chains considering break in secular equilibrium
		- 232 Th \bullet 228 Ra to 228 Th \bullet 228 Th to 208 Ph
		- 238 U to 234 U \bullet 234 U \bullet 230 Th \bullet 226 Ra to 210 Ph \bullet 210 Ph to 206 Ph
	- Allows to register the time of event needed for the modelisation of the detector response
- Decay₀
	- Used for all the other decays (not directly facing the crystals)
	- Read input files in the PrimaryGeneratorAction class to set particle type and momentum
- 2νββ
	- Sampled from theoretical two-dimensional single electron energy spectrum

GEANT4 simulations

- Surface contaminations
	- Used for the crystals and the reflecting foils
	- \circ Modelled with an exponential density profile $e^{-x/\lambda}$
	- \circ We did simulations with $\lambda = 10$ nm and 10 µm for crystals and reflectors
- Livermore Physics list
- Production cuts: 1 μ m for e⁻/e⁺ and 10 μ m for γ 's
	- \circ It corresponds to 1 keV for both e⁻/e⁺ and γ 's in the crystal
	- Using a production cut corresponding to 250 eV was giving comparable spectra

Background Model

- Describe the experimental data by a linear combination of the GEANT4 simulation spectra
- \bullet Simultaneous fit of M_{1,β/γ}, M₂ and M_{1,α} spectra
- Done with the JAGS software based on Monte-Carlo Markov Chains
- We used 67 sources in the fit

=

2νββ spectrum

Allows for:

- Precise measurement of the $2νββ$ half life
- Studies of the 2νββ spectral shape

Energy [keV]

2νββ half life

- Measurement comes directly from the background model fit
- Systematics evaluated by varying assumptions on the background model

 $T_{1/2}$ = 7.07 +/- 0.11 x 10¹⁸ yr PRL 131 (2023) 16, 162501

CUPID

- Next generation bolometric 0νββ experiment
- To be installed at LNGS in the CUORE cryostat
- Focus will be a search for 0νββ of 100 Mo with Li_2 ¹⁰⁰MoO₄ crystals
	- \circ Enriched at ~ 95 % in ¹⁰⁰Mo
	- \circ Cubic crystals: 45 x 45 x 45 mm
	- \circ 1596 crystals: 240 kg of 100 Mo
	- Ge Light Detectors with Neganov-Luke amplification for α's and pile-ups rejection
- Goals
	- \circ Background Index = 10⁻⁴ cts/keV/kg/yr
	- \circ Energy resolution = 5 keV FWHM @ 3034 keV

 \circ **T**_{1/2} = 10²⁷ yr **○ mββ = 12 - 20 meV** 0νββ 3σ discovery sensitivity

CUPID simulations

- CUPID detector geometry implemented in the geometry of the CUORE cryostat
- G4RadioactiveDecay
- Livermore Physics list
- The geometry includes:

Crystals Light Detectors

PTFE pieces CuPEN readout Copper holders

10mK Screen 10mK Tiles 10mK Plate

Cryostat screens (50mK, 600mK, 4K, 300K)

Lead shieldings

CUPID Background projections

Detector effects are convolved into MC spectra

We generated a total of 85 simulations of the various components of the set-up

We used input activities from the CUPID-Mo (crystals) and the CUORE background model

CUPID Background budget

CUPID background budget is based on results from precursor experiments (CUORE and CUPID-Mo) and on improved new design

- LMO ¹⁰⁰Mo pile-up:
	- Demonstrated performance on baseline NTL detectors
- Detector components:
	- Surface driven
- LMO contaminants:
	- Surface driven
- Cryostat & shields: **Bulk**
- Muons and neutrons

CUPID Background projections

Backgrounds come from:

- Pile-up
	- random coincidence between two 2νββ events
	- extrapolated from measured performances of NTL light detectors
- Detectors components
	- driven by surface of copper holders
- LMO crystal contaminants
	- surface driven
	- o includes bulk and cosmogenic
- Cryostat & shields
- Muons and neutrons
	- based on initial design and MC simulation

Total projected background:

BI = 0.97 +0.21 -0.11 x 10-4 cts/keV/kg/yr

Work continues on further improvements in the overall background level

PoS TAUP2023 (2024), 024

Importance Biasing

- Simulate the environmental background
	- External lead shield of 25 cm
- Simulate the internal contaminations of the lead shieldings
- Importance biasing is implemented in a separate code based on example extended/biasing/B01
- We then use the output of this code as an input in the main CUPID code
- Validation was done with 2 MeV γ going through 10 cm of Lead

Conclusion

- In CUPID-Mo, GEANT4 simulations permitted the construction of the Background Model, leading to:
	- Evaluation of the Background Index EPJC 83 (2023) 7, 675
	- \circ Evaluation of Crystal contaminations \rightarrow Important for CUPID EPJC 83 (2023) 7, 675
	- \circ Most precise measurement of the 2νββ half-life of ¹⁰⁰Mo PRL 131 (2023) 16, 162501
	- \degree First measurement of spectral shape theoretical parameters of the 2νββ of 100 Mo

PRL 131 (2023) 16, 162501

- In CUPID, GEANT4 simulations are used for background projections
	- We find that background estimations agree with CUPID goals

BACK-UP

Neutrinoless double beta decay

- 2νββ
	- o $2n \rightarrow 2p + 2e^+ + 2v_e$
	- Standard Model process
	- Observed for 14 nuclei

- 0νββ
	- Hypothetical decay
	- \circ 2n \rightarrow 2p + 2e⁻
	- \circ Violates lepton number $\Delta L = 2$
	- Majorana neutrino ν = ν

Phase space factor:

● Known and calculated to good accuracy

Nuclear Matrix Element:

Differences between various nuclear models

$$
\left(T_{1/2}^{0\nu}\right)^{-1} = G^{0\nu} \left(g_A^{0\nu}\right)^4 \left(M^{0\nu}\right)^2 \left|\frac{m_{\beta\beta}}{m_e}\right|^2
$$

Weak axial-vector coupling strength:

● Question of possible gA quenching under study

Effective Majorana mass:

• $m_{\beta\beta} = |U_{e1}|^2 m_1 + e^{i\alpha_1} |U_{e2}|^2 m_2 + e^{i\alpha_2} |U_{e3}|^2 m_3$

CUPID-Mo Detector Response Model

- We processed the MC simulations to account for:
	- Energy resolution
	- Energy threshold of 40 keV
	- Event Multiplicity
	- Scintillation Light and Light Detector (LD) resolution
		- We parameterised the scintillation light and the resolution measured by the LD as a function of the energy, the crystal, and the LD (which have different performances)
		- We then generated a random scintillation light for each event
	- Cut efficiencies
	- Inactive periods of detectors
	- Pile-up and delayed coincidences in decay chains

2νββ spectral shape measurement

- Measuring the $2νββ$ spectral shape constrains nuclear models for Nuclear Matrix Element calculations
- We implemented an improved description of the $2\nu\beta\beta$ in our fit: Phase space factors

PRC 97 (2018) 034315

Spectral shape parameters

 $\frac{d\Gamma}{dE}=\left(g_A^{\text{eff}}\right)^4|M_{GT-1}^{2\nu}|^2\left(\frac{dG_0^{2\nu}}{dE}+\xi_{31}\frac{dG_2^{2\nu}}{dE}+\frac{1}{3}\xi_{31}^2\frac{dG_{22}^{2\nu}}{dE}+\left(\frac{1}{3}\xi_{31}^2+\xi_{51}\right)\frac{dG_4^{2\nu}}{dE}\right)$

- We used a gaussian prior on ξ_{51}/ξ_{31} based on theory
- We obtained $\xi_{31} = 0.45 +1.006$ and g_A (pn-QRPA) = 1.0 +/- 0.2

PRL 131 (2023) 16, 162501

Léonard Imbert 25