

Results and studies in the **CUPID** CUPID-Mo and CUPID experiments based on GEANT4 simulations

Léonard IMBERT on behalf of the CUPID-Mo and CUPID collaborations VIEWS24

26/04/24

Léonard Imbert

Neutrinoless double beta decay

- 2νββ
 - \circ 2n \rightarrow 2p + 2e⁻ + 2 \overline{v}_{e}
 - Standard Model process
 - Observed for 14 nuclei

- 0νββ
 - Hypothetical decay
 - \circ 2n \rightarrow 2p + 2e⁻
 - Violates lepton number $\Delta L = 2$
 - Majorana neutrino v = \overline{v}

Searching for 0vßß

- 0vββ signature:
 - \circ Peak at $\mathsf{Q}_{\beta\beta}$ in the sum-energy spectrum of the two electrons
 - \circ Typically Q_{ββ} = 2 ~ 3 MeV

- How to do a good experiment?
 - Low background around the region of interest
 - Good energy resolution
 - High detection efficiency
 - Large mass
 - Long data taking

Bolometers

- Crystals cool down to ~ 10 20 mK
- Detector = Source
 → High detection efficiency
- Very good energy resolution
 5 10 keV FHWM

- Scintillating bolometers
 - Heat and Light signals
 - \circ ~ Discrimination between β/γ and α

CUPID-Mo

- Demonstrator for the next experiment CUPID
- Installed in Laboratoire Souterrain de Modane (France) in EDELWEISS cryostat
- Studied $0\nu\beta\beta$ of ¹⁰⁰Mo ($Q_{\beta\beta}$ = 3034 keV)
- 20 Li₂¹⁰⁰MoO₄ scintillating bolometers
 - 0.2 kg cylindrical crystals (ø 44 x 45 mm)
 - \circ ¹⁰⁰Mo enrichment ~ 97 %
 - Ge wafers as Light Detectors
 - NTD Ge thermistors to read the signal
 - Reflecting foils to increase light collection

E.P.J.C 82 (2022) 11, 1033

• Set a limit of : $T_{1/2} > 1.8 \times 10^{24} \text{ yr} (90\% \text{ C.I.})$

on the $0\nu\beta\beta$ of ¹⁰⁰Mo

PTFE clamp LMO NTD Cu Holder Cu Holder

Corresponds to: m_{ββ} < (280 - 490) meV

Léonard Imbert

GEANT4 Geometry

- Based on the program developed by EDELWEISS dark matter experiment
- Detailed geometry of the CUPID-Mo towers
- Reproduced the size of each crystal
- Geometry includes:

GEANT4 Geometry

- Based on the program developed by EDELWEISS
- Detailed geometry of the CUPID-Mo towers
- Reproduced the size of each crystal
- Geometry includes:

Copper screens (10mK, 1K, 50K, 100K, 300K)

Internal Polyethylene shielding

Lead shielding

Dilution unit

300K electronics

Pumps

He Reservoir

GEANT4 simulations

- G4RadioactiveDecay
 - Used for close sources to generate decay chains considering break in secular equilibrium
 - ²³²Th ²²⁸Ra to ²²⁸Th ²²⁸Th to ²⁰⁸Pb
 - ²³⁸U to ²³⁴U ²³⁴U ²³⁰Th ²²⁶Ra to ²¹⁰Pb ²¹⁰Pb to ²⁰⁶Pb
 - Allows to register the time of event needed for the modelisation of the detector response
- Decay0
 - Used for all the other decays (not directly facing the crystals)
 - Read input files in the PrimaryGeneratorAction class to set particle type and momentum
- 2νββ
 - Sampled from theoretical two-dimensional single electron energy spectrum

GEANT4 simulations

- Surface contaminations
 - Used for the crystals and the reflecting foils
 - Modelled with an exponential density profile $e^{-x/\lambda}$
 - We did simulations with λ = 10 nm and 10 µm for crystals and reflectors
- Livermore Physics list
- Production cuts: 1 μ m for e⁻/e⁺ and 10 μ m for γ 's
 - It corresponds to 1 keV for both e^{-}/e^{+} and γ 's in the crystal
 - Using a production cut corresponding to 250 eV was giving comparable spectra

Background Model

- Describe the experimental data by a linear combination of the GEANT4 simulation spectra
- Simultaneous fit of $M_{1,\beta/y}$, M_2 and $M_{1,\alpha}$ spectra
- Done with the JAGS software based on Monte-Carlo Markov Chains
- We used 67 sources in the fit

2vββ spectrum

Allows for:

- Precise measurement of the $2\nu\beta\beta$ half life
- Studies of the $2\nu\beta\beta$ spectral shape

Energy [keV]

$2\nu\beta\beta$ half life

- Measurement comes directly from the background model fit
- Systematics evaluated by varying assumptions on the background model

	Systematic test	Uncertainty T _{1/2} [%]
Related to the background model We vary in GEANT4 the bremsstrahlung cross section by +/- 10 %	Binning	+/- 0.37
	Energy Bias	+0.11 -0.16
	Bremsstrahlung	+0.13 -0.22
	MC statistic	+/- 0.11
	Source location	+/- 0.83
	Minimal model	+/- 0.24
	⁹⁰ Sr + ⁹⁰ Y	+ 1.0 (uniform distribution)
	Efficiency	+/- 1.2
	Isotope abundance	+/- 0.2
	PRI 131 (2023) 16 162501	

T_{1/2} = 7.07 +/- 0.11 x 10¹⁸ yr

CUPID

- Next generation bolometric 0vββ experiment
- To be installed at LNGS in the CUORE cryostat
- Focus will be a search for $0\nu\beta\beta$ of ¹⁰⁰Mo with Li₂¹⁰⁰MoO₄ crystals
 - \circ Enriched at ~ 95 % in ¹⁰⁰Mo
 - Cubic crystals: 45 x 45 x 45 mm
 - \circ 1596 crystals: 240 kg of ¹⁰⁰Mo
 - Ge Light Detectors with Neganov-Luke amplification for α's and pile-ups rejection
- Goals
 - Background Index = 10⁻⁴ cts/keV/kg/yr
 - Energy resolution = 5 keV FWHM @ 3034 keV

0vββ 3σ discovery sensitivity • $T_{1/2} = 10^{27} \text{ yr}$ • $m_{\beta\beta} = 12 - 20 \text{ meV}$

CUPID simulations

- CUPID detector geometry implemented in the geometry of the CUORE cryostat
- G4RadioactiveDecay
- Livermore Physics list
- The geometry includes:

Crystals Light Detectors

PTFE pieces CuPEN readout Copper holders 10mK Screen 10mK Tiles 10mK Plate

Cryostat screens (50mK, 600mK, 4K, 300K)

Lead shieldings

CUPID Background projections

• Detector effects are convolved into MC spectra

 We generated a total of 85 simulations of the various components of the set-up

 We used input activities from the CUPID-Mo (crystals) and the CUORE background model

CUPID Background budget

CUPID background budget is based on results from precursor experiments (CUORE and CUPID-Mo) and on improved new design

- LMO ¹⁰⁰Mo pile-up:
 - Demonstrated performance on baseline NTL detectors
- Detector components:
 - Surface driven
- LMO contaminants:
 - Surface driven
- Cryostat & shields:
 Bulk
- Muons and neutrons

CUPID Background projections

Backgrounds come from:

- Pile-up
 - random coincidence between two 2vββ events
 - extrapolated from measured performances of NTL light detectors
- Detectors components
 - driven by surface of copper holders
- LMO crystal contaminants
 - surface driven
 - \circ \qquad includes bulk and cosmogenic
- Cryostat & shields
- Muons and neutrons
 - based on initial design and MC simulation

Total projected background:

BI = $0.97^{+0.21}_{-0.11} \times 10^{-4}$ cts/keV/kg/yr Work continues on further improvements in the overall background level

PoS TAUP2023 (2024), 024

Importance Biasing

- Simulate the environmental background
 - External lead shield of 25 cm
- Simulate the internal contaminations of the lead shieldings
- Importance biasing is implemented in a separate code based on example extended/biasing/B01
- We then use the output of this code as an input in the main CUPID code
- Validation was done with 2 MeV γ going through 10 cm of Lead

Conclusion

- In CUPID-Mo, GEANT4 simulations permitted the construction of the Background Model, leading to:
 - Evaluation of the Background Index EPJC 83 (2023) 7, 675
 - \circ Evaluation of Crystal contaminations \rightarrow Important for CUPID EPJC 83 (2023) 7, 675
 - Most precise measurement of the $2\nu\beta\beta$ half-life of ¹⁰⁰Mo PRL 131 (2023) 16, 162501
 - \circ First measurement of spectral shape theoretical parameters of the 2v $\beta\beta$ of ¹⁰⁰Mo

PRL 131 (2023) 16, 162501

- In CUPID, GEANT4 simulations are used for background projections
 - We find that background estimations agree with CUPID goals

BACK-UP

Neutrinoless double beta decay

- 2νββ
 - \circ 2n \rightarrow 2p + 2e⁻ + 2v_e
 - Standard Model process
 - Observed for 14 nuclei

- 0νββ
 - Hypothetical decay
 - \circ 2n \rightarrow 2p + 2e⁻
 - Violates lepton number $\Delta L = 2$
 - Majorana neutrino v = v

Phase space factor:

 Known and calculated to good accuracy

Nuclear Matrix Element:

 Differences between various nuclear models

$$\left(T_{1/2}^{0\nu}\right)^{-1} = G^{0\nu} \left(g_A^{0\nu}\right)^4 \left(M^{0\nu}\right)^2 \left|\frac{m_{\beta\beta}}{m_e}\right|^2$$

Weak axial-vector coupling strength:

• Question of possible gA quenching under study

Effective Majorana mass:

• $\mathbf{m}_{\beta\beta} = ||U_{e1}|^2 m_1 + e^{i\alpha_1} |U_{e2}|^2 m_2 + e^{i\alpha_2} |U_{e3}|^2 m_3|$

W-

CUPID-Mo Detector Response Model

- We processed the MC simulations to account for:
 - Energy resolution
 - Energy threshold of 40 keV
 - Event Multiplicity
 - Scintillation Light and Light Detector (LD) resolution
 - We parameterised the scintillation light and the resolution measured by the LD as a function of the energy, the crystal, and the LD (which have different performances)
 - We then generated a random scintillation light for each event
 - Cut efficiencies
 - Inactive periods of detectors
 - Pile-up and delayed coincidences in decay chains

2vββ spectral shape measurement

- Measuring the 2vββ spectral shape constrains nuclear models for Nuclear Matrix Element calculations
- We implemented an improved description of the 2vββ in our fit: Phase space factors

PRC 97 (2018) 034315

Spectral shape parameters

 $\frac{d\Gamma}{dE} = \left(g_A^{\text{eff}}\right)^4 |M_{GT-1}^{2\nu}|^2 \left(\frac{dG_0^{2\nu}}{dE} + \xi_{31}\frac{dG_2^{2\nu}}{dE} + \frac{1}{3}\xi_{31}^2\frac{dG_{22}^{2\nu}}{dE} + \left(\frac{1}{3}\xi_{31}^2 + \xi_{51}\right)\frac{dG_4^{2\nu}}{dE}\right)$

- We used a gaussian prior on ξ_{51}/ξ_{31} based on theory
- We obtained $\xi_{31} = 0.45 + -0.06$ and $g_A(pn-QRPA) = 1.0 + -0.2$

PRL 131 (2023) 16, 162501

Léonard Imbert