

Particle physics

Nuclear physics

1

Solid state physics

Accurate simulations for the CRAB project: from thermal neutron production to low energy nuclear recoils

L. Thulliez on behalf of the CRAB collaboration

CEA-Saclay/DRF/Irfu/DPhN

loic.thulliez@cea.fr

25-27 April 2024 - VIEWS24 workshop

DARK MATTER and CEvNS

DARK MATTER

Direct Detection of Dark Matter APPEC Committee Report (2021)

- Moving to lower mass range
- Sensitivity in large mass range approaching the neutrino-floor limit

- test SM (θ_{W} , etc)
- test BSM physics (neutrino magnetic moment, non-standard interaction, etc)
- Measure nuclear form factor (neutron skin)
- Nuclear reactor monitoring

Need to detect sub-keV nuclear recoil energy

WHAT HAPPEN AFTER A PRIMARY RECOIL (> keV) IN THE DETECTOR ?

Complex solid state physics to understand for precise measurements

Quenching factor k (= $E_{nr}^{ioni}/E_{e-}^{ioni}$) below 1 keV ?

A. Bonhomme et al. Eur. Phys. J. C (2022) 82:815

WHAT HAPPEN AFTER A PRIMARY RECOIL (<keV) IN THE DETECTOR

Complex solid state physics to understand for precise measurements

 \rightarrow Impact of energy stored in lattice defect when reaching 100 eV scale ? \Rightarrow linearity study

CRAB METHOD [1]

Absolute calibration method with thermal (~25meV) neutron radiative capture

The high-energy gamma leaves the cm scale detector without energy deposition

Advantages

- Pure nuclear recoil ⇒ mimic the neutrino/DM signal
- Allows to probe the whole bolometer
- Accuracy ⇒ well defined peak

However non-trivial nucleus de-excitation to simulate

- transition probability from \boldsymbol{S}_n to GS ?
 - \Rightarrow signal intensity
- multi-gamma/electron cascade ?
 - \Rightarrow background evaluation in the ROI
 - \Rightarrow dead-time (response time of ~ms for cryo-detectors)

FIFRELIN SIMULATION [1]

Fission fragment de-excitation code developed at CEA-Cadarache [1]

- All experimental (evaluated) data from EGAF, ENSDF, RIPL3 databases are taken into account
 - \Rightarrow for light nuclei, *e.g.* Al or Si the nuclear level scheme is known
- For heavy nuclei too many levels
 - \Rightarrow every levels cannot be experimentally determined
 - \Rightarrow need theoretical models
 - → level density (CGCM, HFB)
 - \rightarrow radiative strength function (EGLO, QRPA)
 - \rightarrow electron conversion coefficient (BrICC)

N. B.: FIFRELIN executable will be released in 2024 *via* the NEA website: https://www.oecd-nea.org/

STUDIED CRYO-DETECTOR MATERIALS

Detector	Target nucleus	Ε _γ [keV]	FOM = $Y_{abunance} \times \sigma_{(n,\gamma)} \times I_{decay}$	Nuclear recoil [eV]
CaWO ₄	186W	~5300 + 150	~4400	~80
CRESST	182W	6191	7506	112.5
NUCLEUS	183W	7411	823	160.3

PREDICTED NUCLEAR RECOIL SPECTRA – CaWO4

- Geant4 simulation based on TOUCANS [1] + FIFRELIN
- Mono-directionnal thermal neutron beam

Nuclear recoil spectrum in $CaWO_4 - 5 eV$ energy resolution

HOW TO ACCURATELY OPTIMIZE A THERMAL NEUTRON SOURCE ?

Neutron phyics in Geant4 Neutron-HP package is now on-par with reference neutron transport codes such as MCNP, Tripoli-4, etc

Before 2021 : T. Koi (original developper) then E. Mendoza et D. Cano-Ott E. Mendoza, D. Cano-Ott, T. Koi and C. Guerrero, IEEE Trans. Nucl. Science 61 (2014) 2357

2022 : L. Thulliez, C. Jouanne, and E. Dumonteil. Improvement of Geant4 Neutron-HP package: From methodology to evaluated nuclear data library. Nuclear Inst. and Methods Phys. Res., A 1027 (2022) 166187, doi: 10.1016/j.nima.2021.166187

2023 : M. Zmeskal, L. Thulliez, and E. Dumonteil. Improvement of Geant4 Neutron-HP package: **Doppler broadening of the neutron elastic scattering kernel**. Annals of Nuclear Energy, 192, 11 2023, doi: 10.1016/j.anucene.2023.109949

2024 : M. Zmeskal, L. Thulliez, P. Tamagno, E. Dumonteil, Improvement of Geant4 Neutron-HP package: **Unresolved Resonance Region description with Probability Tables**, already on arXiv:2404.16389 submit to Ann.of Nucl. Energy (2024),

On-going : Geant4 speed improvements

Marek ZMESKAL PhD thesis at CTU-Praha

IMPROVEMENTS OF GEANT4 NEUTRON-HP PACKAGE – STATUS BEFORE 2021

Neutron-HP package used to transport low energy neutrons En<20 MeV

 \Rightarrow What are the different «models» used to describe the neutron/target interaction?

TSL not updated since ENDF-BVII.1 \Rightarrow How to use updated and new materials from ENDF-BVIII.0 and JEFF-3.3?

→ New TSL processing code ?
 → Discrepancies between reference neutron codes (MCNP, Tripoli-4) of ~20%

 → Free gas approximation implemented in Geant4 has trouble to reproduce MCNP below 1 eV
 → Problem in the algorithm?

10

IMPROVEMENTS OF GEANT4 NEUTRON-HP PACKAGE – ALGORITHMS

Geant4 agrees with reference neutron transport codes such as MCNP or Tripoli4 to better than 1 %

IMPROVEMENTS OF GEANT4 NEUTRON-HP PACKAGE – NEW TSL DATABASES

Up-to-date databases available in GEANT4 and validated with TRIPOLI4 to better than 1 % – since 2022

ENDF/BVII-1:

TSL_ENDFB71_HighPrecision TSL_ENDFB71_LowPrecision (only database before 2022)

ENDF/BVIII-0:

TSL_ENDFB80_HighPrecision TSL_ENDFB80_LowPrecision

JEFF-3.3: TSL_JEFF33_HighPrecision TSL_JEFF33_LowPrecision

Mix JEFF-3.3 and ENDF/BVIII-0, take all TSL data from JEFF-3.3 and the ENDF/BVIII-0 materials not in JEFF-3.3: TSL_mix_JEFF33_ENDFB80_HighPrecision TSL_mix_JEFF33_ENDFB80_LowPrecision

TOUCANS : a versatile Geant4 based Monte Carlo neutron (not only) transport code [1]

All the possibilities offered by Geant4 are leveraged

- Simulation of a setup *via* an input file
- \Rightarrow based on key / value
- \Rightarrow Easy coupling to other codes
 - \rightarrow multi-objective optimisation code FUNZ
- \Rightarrow Import CAD files
- \Rightarrow New variance reduction technics: AMS

Validated with the reference neutron transport codes Tripoli4 and MCNP

Experimentally qualified (2019 [2]/2022 [3])

\$ STRING	Moderator/Type	BOX			\$
\$ STRING	Moderator/Material	GRAPHIT	E		\$
\$ STRING	Moderator/MotherVolume	experime	experimentalRoom		\$
\$ DOUBLELIST	Moderator/Dimensions	64	250	219	\$
\$ DOUBLELIST	Moderator/Position	147.25	-107.2	69.2	\$

Soon will be open-source

[3] J. Schwindling et al., Journal Of Neutron Research vol. 24, no. 3-4, pp. 289-298, 2022

CRAB PORTABLE THERMAL NEUTRON SOURCE

Thermal neutrons produced with a 3.7 MBq ²⁵²Cf in a polyethylene and graphite moderator

FIRST MEASUREMENT CRAB / NUCLEUS COLLABORATIONS

NUCLEUS CaWO₄ cryo-detector $E_{th} = 50 \text{ eV}$ $\sigma(E) = 6 \text{ eV}$

Detector in a copper box spring decoupled from cryostat vibration

More copper to thermalize the detector below 100 mK **TES transition ~10 mK**

Thermal neutrons produced with a 3.7 MBq 252 Cf in a polyethylene and graphite moderator $\Rightarrow 0.25 \text{ n}_{th}/\text{s}$ on the cryo-detector 15

FIRST MEASUREMENT – RESULTS

Blind search peak

Test the presence of a peak

Background = 2 exponentials Signal = gaussian

Presence of a peak \Rightarrow 3.1 σ significance (2-sided)

 \rightarrow Background data lifetime = 18.9 h \rightarrow Source data lifetime = 40.2 h

Background = exponential fit to bkgd data Signal = GEANT4 + FIFRELIN

 \Rightarrow 6σ significance (2-sided) \Rightarrow χ²/NDF = 58.09/59 ¹⁶

FIRST MEASUREMENT CONFIRMED BY OTHERS !

CRESST = dark matter with $CaWO_4$ cryo-detector

 \rightarrow confirmation of our first CRAB signal with 3 detectors

G. Angloher et al. (CRESST collaboration) Phys. Rev. D 108, 022005 (2023)

CRAB has already a big impact in the dark matter and neutrino communities !

WHAT IS NEXT ?

STUDIED OTHER CRYO-DETECTOR MATERIALS

Detector	Target nucleus	Ε _γ [keV]	FOM = $Y_{abunance} \times \sigma_{(n,\gamma)} \times I_{decay}$	Nuclear recoil [eV]
Al ₂ O ₃ MINER NUCLEUS	²⁷ Al ²⁷ Al	7693 + 30.6 7724	79 616	1135.7 1144.8
Si SuperCDMS DAMIC SENSEI Skipper-CCD CONNIE	²⁸ Si ²⁸ Si	7200 + 1273 8474	116 36	990.4 1330.1
Ge EDELWEISS RICOCHET	⁷⁴ Ge ⁷⁴ Ge ⁷³ Ge ⁷⁰ Ge ⁷⁰ Ge	6253 + 253 6506 8733 + 868+ 596 6708 + 708 6117 + 1299 7416	220 54 117 287 261 122	280.6 303.2 561.8 344.3 296 416.2
CaWO ₄ CRESST NUCLEUS	¹⁸⁶ W ¹⁸³ W ¹⁸² W	~5300 + ~200 7411 6191	~4400 823 7506	~80 160.3 112.5

FIFRADINA datasets available : https://doi.org/10.5281/zenodo.7936552 Fifrelin4Geant4 classes is open-source : https://doi.org/10.5281/zenodo.7933381 https://gitlab.com/lthullie/fifrelin4geant4

cea

CRAB Phase 2 – HIGH PRECISION MEASUREMENTS (in 2024)

TRIGA Mark-II nuclear reactor (250 kW)

Oxford kelvinox 400 TU-Wien – Atominstitut Thermal neutron beam line 100 nth 10 000 n_{th}/cm²/s Monochromator Graphite crystal

Array of 28 hexagonal BaF2 gamma detectors (2" x 6")

Wet cryostat

STUDY OF THE DETECTOR LINEARITY

Single spectrum with high statistics

Gamma tagging is a powerful tool

 γ -tagging is a powerful tool to get a **3**rd **peak at 80 eV** for CaWO4 \Rightarrow **study of the detector linearity** !

CRAB SENSITIVE TO CRYSTAL DEFECT CREATIONS

Gabrielle Soum-Sidikov PhD thesis J.-P. Crocombette (CEA/DES)

How to quantify the energy stored in the crystal lattice ?

TIMING EFFECT – EXTREME HYPOTHESES

Fast hypothesis

$$au_{recoil} \gg au_{cascade} \qquad E_{recoil} = \left(\sum_{i} \vec{p}_{i}\right)^{2} / 2M$$

Slow hypothesis

$$\tau_{recoil} \ll \tau_{cascade} \qquad E_{recoil} = \sum_{i} E_{recoil,i} = \sum_{i} p_i^2 / 2M$$

[1] G. Soum-Sidikov et al., Study of collision and y-cascade times following neutroncapture processes in cryogenic detectors, Phys. Rev. D 108, 072009 (2023)

cea

etc

TIMING EFFECT – EXTREME HYPOTHESES

Slow hypothesis

FIFRELIN + IRADINA = FIFRADINA [1]

FIFRELIN : Fission fragment de-excitation code

Gabrielle SOUM PhD thesis at CEA

IRADINA (similar to SRIM): Binary Collision Approximation code Ingredients: \rightarrow amorphous structure \rightarrow atoms described as a free gas

Sample a target (and collision parameters)

[1] G. Soum-Sidikov et al., Study of collision and γ-cascade times following neutroncapture processes in cryogenic detectors, Phys. Rev. D 108, 072009 (2023)

TIMING EFFECTS – SILICON

Most of the half-live are in the databases (collective effects taken into account)

cea

Two-y cascade robust against poorer energy resolution

In-flight gamma emission \Rightarrow probe nucleus de-excitation time \Rightarrow sensitive to directionnality effects

[1] G. Soum-Sidikov et al., Study of collision and γ -cascade times following neutron-capture processes in cryogenic detectors, Phys. Rev. D 108, 072009 (2023)

TIMING EFFECTS – GERMANIUM

In-flight γ emission \Rightarrow more calibration peaks

Recoil energy spectrum sensitive to nuclear models ! \Rightarrow could help set constraints on models

- With timing effects, more calibration peaks !
- Timing modelling sensitive to the underlying nuclear physics
 ⇒ test of nuclear models
- Resolution is a critical parameter

[1] G. Soum-Sidikov et al., Study of collision and γ-cascade times following neutroncapture processes in cryogenic detectors, Phys. Rev. D 108, 072009 (2023)

TIMING EFFECTS – GERMANIUM

Resolution is a critical parameter BUT gamma coincidence allows to overcome this limitation !

[1] G. Soum-Sidikov et al., Study of collision and γ -cascade times following neutron-capture processes in cryogenic detectors, Phys. Rev. D 108, 072009 (2023) 29

CONCLUSIONS

- CRAB method promising for a sub-kev calibration of the majority of cryo-detector materials in DM/CEvNS communities currently used (CaWO₄, Ge, Si, Al₂O₃)
- Successfull first measurement with a NUCLEUS CaWO₄ and a portable neutron source
 - \Rightarrow presence of a peak at ~112 eV with 3.1 σ significance (confirmation by the CRESST collaboration)
 - \Rightarrow presence of nuclear recoils with 6 σ significance : agreement between data and GEANT4-FIFRELIN
- CRAB with gamma tagging is a powerul tool to increase S/B and access lower energy recoils, study the linearity of the bolometer response and tag the direction of the recoil (directionality)

CODES / DATA TO TAKE AWAY

- Liquid scintillator experiments (STEREO collaboration) : Gadolinium thermal neutron capture FIFRELIN dataset : https://doi.org/10.5281/zenodo.6861341
- Cryo-detectros experiments (CRAB collaboration):
 W / Ge / AI / Si thermal neutron capture FIFRADINA datasets : https://doi.org/10.5281/zenodo.7936552
- Fifrelin4Geant4 classes is open-source (STEREO/CRAB): https://doi.org/10.5281/zenodo.7933381 https://gitlab.com/lthullie/fifrelin4geant4
- All the improvements of the Neutron-HP package are in the latest Geant4 release !
 ⇒ stay tune for the incoming speed improvements
- FIFRELIN executable will be released in 2024 via the NEA website: https://www.oecd-nea.org/

Do not hesitate to contact us if you want to study specific isotopes !

PERSPECTIVES

- CRAB High Precision measurements at the TRIGA-Mark II reactor at TU-Wien in 2024 with CaWO4
- Promissing case of Ge detectors. Impact of crystal defects to be calculated soon.
- On the long term, it will be a facility available to the community to characterise their detectors

Wet cryostat @TUM

Gamma tagging development @CEA-Saclay

THANK YOU

The CRAB collaboration

NEED SUB-keV CALIBRATION METHODS

State-of-the-art calibration techniques :

- mainly electron recoils for *in-situ* calibration with LED [1], XRF source BUT surface calibration
- alphas BUT surface calibration
- epithermal/fast neutrons produced at accelerator are limited by TOF and angular precisions

What about thermal neutrons ?

gammas from (n,y) reaction

First indirect measurement by Jones and Kramer [2]

[1] L. Cardini et al., Eur. Phys. J. C 81 (2021) 7, 6364 [2] K.W. Jones and H.W. Kraner, Phys. Rev. A, 11 4, 1975