Background modeling for the COSINE-100 dark matter experiment

Eunju Jeon **IBS CUP** April 25, 2024

VIEnna Workshop on Simulations 2024 @Vienna

COSINE project (since 2015)

- region of parameters singled out by DAMA/LIBRA

DAMA/LIBRA experiment is to search for the DM annual modulation signature with an array of Nal(TI) crystals -> They claimed an observation of the dark matter

Modulation amplitude

However, other experiments with different targets or techniques exclude the

• To be checked with independent measurements using the same Nal(TI) crystals

Global efforts and COSINE collaboration with Nal(TI) crystals

Eunju Jeon, IBS CUP

VIEnna workshop on Simulations 2024 @Vienna, 25-27 Apr 2024

Nature 564, 83-86 (2018) Phys. Rev. Lett. 123, 031302 (2019)

A joint collaboration between **KIMS** and **DM-Ice**

~50 members from 17 institutes in 5 countries

- Extremly pure crystal development -> we decided to do our own development for the entire process
- achieved 1keV energy threshold \rightarrow < 0.75keV

Eunju Jeon, IBS CUP

COSINE-100 (2016~2023)

- YangYang underground laboratory (Y2L)
- Started physics operation in September 2016
- Ended physics run March 2023
- Decommissioning for upgrade and moving to Yemilab

COSINE-100U -35°C operation arXiv:2404.03691 Astropart. Phys. 141, 102709 (2022)

- Light yield increased by more than 30% with the upgraded Nal(TI) encapsulation
- Alpha quenching increased by ~10%
- n/γ discrimination improved

Eunju Jeon, IBS CUP

VIEnna workshop on Simulations 2024 @Vienna, 25-27 Apr 2024

0.01

Warehouse freezer at Yemilab

Background of Nal(TI) crystal developed with Alpha Spectra

- Saint-Gobain has lost the technology for producing low-background Nal(TI) crystals
- ANAIS, DM-Ice, KIMS, and Alpha Spectra Company have been conducting R&D on NaI(TI) since 2013
- We modeled the background spectrum of Nal(TI) crystal used in the test arrangement

)

Background modeling for COSINE-100 using 59.5 days data

Eunju Jeon, IBS CUP

VIEnna workshop on Simulations 2024 @Vienna, 25-27 Apr 2024

Cosmogenic radioisotopes

- dependent decrease of peaks
- experimental data and calculations using ACTIVIA and MENDL-2

Astropart. Phys. 115 (2020) 102390

• We measured the activities of the cosmogenic isotope produced in Nal(TI) using the time-

• We estimated production rates for the cosmogenic isotopes and compared them with other

	Crystal-1	Crystal-2	2 Crysta	al-3 C	Crystal-4	Crystal-6	Crystal-
ar]	$\begin{array}{c} 0.38\pm0.04\\ 2.19\end{array}$	$0.20 \pm 0.1.11$.04 0.25 <u>-</u> 1.37	± 0.04 0 1	0.26 ± 0.04 1.44	0.11 ± 0.04 0.66	0.09 ± 0 0.52
	²² Na	10	⁰⁹ Cd	¹²⁵ I	^{121m} Te	^{127m} Te	¹¹³ Sn
t [31,32	132.0 ± 148.5 ± 114.5 ± 81.0 ± 144.0 ± 151.0 ± 66 2,34] 45.1 ±		$.7 \pm 1.1$ $.6 \pm 1.2$ $.7 \pm 0.6$ $.7 \pm 0.3$ $.8 \pm 0.8$ $.8 \pm 0.6$.8 $.38 \pm 0.20$	$280.1 \pm 29.$ 104.2 ± 3.7 184.7 ± 6.3 194.0 ± 6.3 221 208 220 ± 10 230	$\begin{array}{cccc} .3 & 31.1 \pm 5.5 \\ 24.9 \pm 1.6 \\ 23.5 \pm 3.5 \\ 22.3 \pm 3.5 \\ 93 \\ 102 \\ 23.5 \pm 0.8 \\ 25 \end{array}$	$26.9 \pm 4.8 \\13.5 \pm 0.7 \\16.3 \pm 1.5 \\15.0 \pm 1.5 \\93$ 10.2 ± 0.4	$5.1 \pm 1.$ $4.1 \pm 1.$ $7.1 \pm 0.$ $5.3 \pm 0.$ 9 $4.53 \pm 0.$ 16

- We used a model to estimate the depth profile of the surface contamination of ²¹⁰Pb by analyzing the low- and highenergy events spectra obtained from the beta decay of ²¹⁰Pb using a crystal-PMT detector module
- The module's crystal (B) was contaminated with ²²²Rn and attached to a clean crystal (A)

Astropart. Phys. 126 (2021) 102518

Background modeling using 1.7 years of COSINE-100 data with 1 keV energy threshold

VIEnna workshop on Simulations 2024 @Vienna, 25-27 Apr 2024

Nonproportionality

VIEnna workshop on Simulations 2024 @Vienna, 25-27 Apr 2024

Background modeling updates for 2.8 years of data with 0.7 keV th.

- 0.7 keV ~ 4000 keV

•

Nonproportionality (nPR) in the COSINE-100 simulation package

- We have measured nPR for gamma rays
- when e- and γ are emitted together, calibration becomes more challenging
- It would be ideal if nPR is included in the simulation package → we embedded nPR in Geant4 (very preliminary)
 - We assumed that electron light yield is like a dotted orange line

Comparison of simulation results applied by the empirical curve and using embedded in Geant4

Summary

- COSINE-100 is an experiment designed to test the validity of the DAMA/ LIBRA's claim for the WIMP dark matter with the standard halo model
- It is important to have a quantitative understanding of the backgrounds, even though they do not approach the level of DAMA/LIBRA
- We built the background modeling and enhanced it to accurately interpret the background spectrum while lowering the energy threshold
- We are implementing nPR in the Geant4 simulation for more accurate modeling of backgrounds, improving sensitivities for low-mass dark matter searches at Yemilab