The Geant4 simulations applied to analysis of the Po-210 and Pb-210 content in the components of the DarkSide-20k dark matter detector

Milena Czubak

Vienna Workshop on Simulations 2024 26th April 2024

Outline

- The DarkSide experiment
- Detection of ²¹⁰Pb via ²¹⁰Po
- Alpha spectrometry
- Simulations methodology
- Conclusions

DARKSIDE experiment

- Direct detection of interaction between dark matter particles (WIMPs) and argon nuclei
- Laboratori Nazionali del Gran Sasso in Italy

Google Maps

https://www.appec.org/news/hands-onexperimental-underground-physics-at-Ings

Detection of ²¹⁰Pb via ²¹⁰Po

Samples are measured by the XIA UltraLo-1800

- Large-surface, low-background α-spectrometer XIA UltraLo-1800
- Ionization counter working with gasous argon (3.5 l/min)
- Sample's surface (i. e. foil): $0.43 \times 0.43 \text{ m}^2$
- PSD
- Construction with low-radioactivity materials
- Energy range: 1.0 10 MeV

Summarize spectrum consists of bulk and surface decays

Detector's and sample's geometries

Argon – Sensitive Detector $430 \times 430 \times 150 \text{ mm}^3$ Sample

Physical processes

- Particle (ion) ²¹⁰Po (E_{kin} = 0 keV, in rest)
- Radioactive decay
- Alpha particle production (E = 5.3 MeV)
 - Ionisation
- Particle ²⁰⁶Pb (E_{kin} = 0.103 MeV)
 - Ionisation

- Gamma
 - Photoelectric effect
 - Polarized photoelectric effect
 - Compton scattering
 - Polarized Compton scattering
 - Rayleigh scattering
 - Polarized Rayleigh scattering
 - Conversion
 - Polarized conversion
- Electron
 - Ionisation
 - Bremsstrahlung

Two Monte Carlo simulations are created

Implementation the detector's energy resolution

10

Detector's energy resolution and efficiency are implemented

Deconvolution the surface and bulk activity

Conclusions

- Thanks to the Monte Carlo simulations implemented in the Geant4 package the method which allows to deconvolute surface and bulk activities from an alpha spectrum was developed.
- The simplified geometry of the alpha spectrometer, samples and physical processes from the Livermore model were implemented.
- Surface and bulk activities were deconvoluted for samples intendent to use in the DarkSide-20k dark matter detector.

This work was performed in the framework of the NCN grant (Opus 17, UMO2019/33/B/ST2/02884).