A GEANT4-based simulation of cosmic ray's background and secondary beams analysis for nuBDX-mini experiment

PhD. Tetiana Nagorna INFN, Genova unit, Italy

Vienna, 2024

Jefferson Lab accelerator facility

- Thomas Jefferson National Accelerator Facility is a U.S. Department of Energy Office of Science national laboratory. Scientists worldwide utilize the lab's unique particle accelerator, known as the Continuous Electron Beam Accelerator Facility (CEBAF).
- Energy beam is up to 11 GeV (planning upgrade to 22 GeV)
- Current of 75 uA --> 10²² electron on target per year

GEMC application: secondary beams analysis

Beam dump geometry implemented in GEMC

Secondary neutrino beam

- Fission reactors and proton accelerators are currently the main source of neutrino beams. The reactors produce electron-type antineutrinos from fission fragment beta decay and are widely used in low-energy (~MeV) experiments. In accelerators, high-energy protons hit a target to generate short-lived hadrons (mainly $\pi \pm$ and K \pm) that successively either decay in flight (DIF) or decay at rest (DAR) into neutrinos. DAR neutrinos, mainly produced by spallation neutron sources [35], show an isotropic spatial distribution with an energy spectrum depending on the decay:
 - **Table 2.** Summary of JLab secondary neutrino beam features. Yields are obtained integrating the neutrino flux in the energy range 0–500 MeV.

Beam Energy	Off-Axis Flux [<i>v</i> /EOT/m ²]	On-Axis Flux [<i>v</i> /EOT/m ²]
11 GeV	$6.7 imes10^{-5}$	$2.9 imes10^{-5}$
22 GeV	$1.9 imes10^{-4}$	$6.3 imes10^{-5}$

 $\blacktriangleright \pi^+ \longrightarrow \mu^+ + \nu_{\mu}$

almost monochromatic;

 $\blacktriangleright \mu^+ \longrightarrow \bar{\nu}_{\mu} + \nu_e + e^+$

 $\blacktriangleright K^+ \longrightarrow \mu^+ + \nu_{\mu}$

 $E_{v} \sim 236$ MeV,

 E_v in the range 0–52.8 MeV;

 $E_{v} \sim 29.8$ MeV,

GEMC (GEant4 Monte Carlo)

What is gemc?

Gemc is a C++ program that simulates particles through matter using the GEANT4 libraries.

Gemc reads as "input":

Geometry Materials Magnetic fields Hit process, digitalization routines Bank definitions Input/output formats

stored in external database
can be "plugged in" without:
 knowing geant4 or C++
 touching the code
recompiling (i.e. only geometry file))

Gemc can import models from CAD and GDML

The upper gastrointestinal system is modelled in CAD. It can be <u>imported in GEMC and made it sensitive</u> so that radiation doses can be measured. *The mighty USS Enterprise NCC 1701-A (CAD) <u>can be used to shoot</u> <u>protons torpedos</u> at a dragon (CAD) while a GDML sphere is watching.*

Hit types Databases 3 kind of hits

- "Flux" type: every track has its own hit. useful for counting purposes (i.e. how many protons pass through the detector, etc.)
- 2. Time Window ADC: all hits (separate tracks too) in the same time window for a particular detector will be added to a single hit
- 3. Time Window TDC: the first signal within the detector time window will give the TDC

GEMC application: secondary beams analysis

FLUKA was used to simulate the interaction of the primary electron beam with the Hall-A beam dump and the propagation of muons and neutrinos through concrete and dirt to reach a hypothetical downstream detector.

The input parameters used to run the program include all physics processes and a tuned set of biasing weights. As a reference, we considered a run time of one-year corresponding to $\sim 10^{22}$ EOT.

Final beam features obtained with FLUKA simulations (particle ID, vertex and momentum) were fed to GEMC.

Cross section of the Jlab Hall-A beam dump geometry with the two fluxdetectors used in the simulations to evaluate the flux of secondary particles. A hypothetical neutrino detector (orange) located perpendicular to the beam dump. Aluminium disks of beam dump inner core are shown in yellow. A muon / neutrino detector (light blue) located just after concrete vault downstream of the beam dump.

Gemc application. Cosmic rays' radiation

Energy range	neutrons/ _{cm²s}	neutrons/m²day	neutrons generated	
1 meV-1 eV	$2 \cdot 10^{-3}$	1,64 · 10 ⁶	$2 \cdot 10^{6}$	
1 eV- 1keV	$1,43 \cdot 10^{-2}$	$1,17 \cdot 10^{7}$	$2 \cdot 10^{7}$	
1keV-1MeV	$1,43 \cdot 10^{-2}$	$1,17 \cdot 10^{7}$	$2 \cdot 10^{7}$	
1-2 MeV	$1,43 \cdot 10^{-3}$	1,18 · 10 ⁶	$2 \cdot 10^{6}$	
2MeV-100MeV	$3,06 \cdot 10^{-3}$	2,51 · 10 ⁶	$3 \cdot 10^{6}$	
100-1000MeV	$1,54 \cdot 10^{-3}$	1,27 · 10 ⁶	$2 \cdot 10^{6}$	
1GeV-10GeV	7,8 · 10 ⁻⁵	$6,4\cdot 10^4$	$7\cdot 10^4$	
Total	$3,67 \cdot 10^{-2}$	$3,01 \cdot 10^{7}$	$5 \cdot 10^{7}$	

Calculate hits from cosmic neutrons not distinguishable from neutrinos. Conditions: E_{dep} = 10-200 keV Coincidence between veto and crystal more than 5 µs

Tasks:

Reduce the number of nonremovable hits Minimize the thickness of layers (with preference to active shielding)

Shielding design

						30 am concrete wells (shield	a /	1∖ 3.	10 ⁷ neutrons / dav
	Neutron	Gamma	Neutrons	Gammas	hits not	So chi concrete wans (sine)	u /		
thr 1 MeV	single hit in	single hit in	outside 5 µs	outside 5 µs	removable	the low-energy neutrons,	× /		
	crystal	crystal	coincidence	coincidence	expected in a day	produce gammas)	\sim		
1cm Pb	1832	37	420	89	1510				
1cm Al	1816	38	401	92	1493			$ \searrow \gamma$	
10cmLead 50cmWater	832	166	165	98	804			n `	
50cmWater 10cmLead	1042	364	30	41	708	10 cm lead (shield big fraction of high energy _	<u> </u>	↓]	
1 cm of le	ead (alum all gamm	inium etc. as but incr) around o rease neut	crystal shi ron numb	elds almost er.	neutrons, stops all gammas) 50 cm water (slow down_			
	Com	position		To remo	otal hits not vable in a day	neutrons, produce gammas)			
6cm Veto 5	50 cm wate	er 10 cm le	ad		1722	6 am voto dotost			
6cm Veto 50 cm water 5 cm lead			1832	neutrons crossing hy	C	sI			
1mm lead, 6cm Veto, 5cm lead 50cm water93			936	neutrons crossing by			1 mm lead (shield		
1 mm lead	6cm Veto	55 cm lead	1		490				gammas scattered in
1 mm of le	mm of lead around crystal works well for shielding gammas						room & produced in the water)		

The minimum of not removable hits for now is 490 / day

Preparation for the experiment

Muon rates for crystal and paddle

Energy ranges	Events generated	Fraction of the spectrum, %	Flux, 1/cm ² •s	Events detected in paddle	Events detected in crystal	Rate in paddle, 1/s	Rate in crystal, 1/s
200MeV-2Gev	9,02E+06	44,5	0,4717	132270	139.264	1,530	1,61
2GeV-10GeV	8,31E+06	41	0,4346	119910	132.446	1,387	1,53
10-100 GeV	2,88E+06	14,2	0,15052	37744	45314	0,436	0,52
100-500 GeV	6,08E+04	0,4	0,00318	621	905	0,007	0,001
Total	2,03E+07	100	1,06	290'545	317'929	3,36	3,58

Theoretical rate = $\frac{1,06}{60}$ [muons/s cm²] · surface[cm²]

Theoretical rate					
Crystal	3,4				
Single paddle	4,1				

- $Flux \cdot cosmic \ surface = 234,49 \ Hz$
- Muon flux = 1,06 muons/min cm²
 Crystal surface = 32*6 = 192 cm²
- *Paddle surface = 31*7,5 = 232,5 cm*²

Energy	fraction of the spectrum (%)	Rate 169Hz * Rec/ Gen	Rate -50cm/0/+50cm	
0.2 - 2 GeV	44.5	7.3Hz	3.2Hz	
2- 10 GeV	41	7.1Hz	2.9Hz	
10- 100 GeV	14.2	6.8Hz	IHz	
100 - 500 GeV	0.3			
Tot	100		7.1Hz	

Energy deposited for crystal and one paddle in coincidence Energy deposited for both paddles and crystal in coincidence

Conclusions

- Gemc as a Geant4 framework can be used for detail experiment description.
- It has full geant4 capabilities
- Easy intuitive interface
- Application in high-intensity beam experiments as well as cosmic radiation shielding design

Thank you for attention