

Projected Backgrounds in the RELICS Experiment

Kaihang Li Tsinghua University On behalf of the RELICS Collaboration likh23@mails.tsinghua.edu.cn

> VIEWS24, Vienna, Austria Apr 25–27, 2024

The **RELICS** Experiment

REactor neutrino Llquid xenon Coherent Scattering experiment

$$\frac{d\sigma}{dT} = \frac{G_F^2}{4\pi} Q_W^2 M \left(1 - \frac{MT}{2E_\nu^2}\right) F(Q^2)^2.$$

$$Q_W = N - (1 - 4\sin^2\theta_W)Z$$
$$\frac{d\sigma}{dT} \propto N^2$$
$$Q_W \propto N \implies \frac{d\sigma}{dT} \propto N^2$$

Z-exchange of a neutrino with nucleus:

- Z_boson wavelength larger than size of nucleus
- nucleus recoils as whole
- coherent up to $E_{\nu} \sim 50 MeV$
- The reaction cross section $\sigma \sim N^2$

The **RELICS** Experiment

Reactor parameters

- Power ~ 3GW
- Distance to Core ~ 25m
- Expected ν flux ~ $10^{13}\nu/cm^2/s$

Credit: Google Map

Principle of detection

Liquid xenon Time Projection Chamber (LXeTPC)

For reactor neutrino, Energy ~ MeV

- Recoil Energy ~0.3 1keV
- S1 single too small to observe
- S2-only analysis

- High reaction cross section
- Low threshold
- Low background
- Signal screening function
- Location reconstruction

- All particles need to go through the veto to reach the detector.
- Black part: Teflon can reflect photons.

Background

Cosmic ray

Cosmic muon

•

...

- Cosmic ray neutron
- Cosmic ray proton

Reactor

- Neutron
- Gamma
- ...

Detector itself

- Steel
- PMT
- Material...
- LXe

Shield overview

- Water shield. Length, width and height 7 meters.
- Considered the source of background at the bottom. The detector is located 1.5 meters below the center.
- 4π PS Muon veto detector.Assuming
 99% muon veto efficiency.
- The detector materials were screened and required to have low radioactivity.

Event Selection

The event selection will be applied on all background

I. LXe-veto: Remove events that deposit energy in both LXe detector and LXe veto.

II. Fiducial Volume: A cylinder with a height of 24.2cm and a radius of 12cm.

III. Single-scatter: Remove events that scatter multiple times in sensitive LXe.

Simulation Framework

Geant4,BambooMC,RelicsSim,Relicsapt,Gitlab,Wiki

physics list

- EM Physics --- G4EmLivermorePhysics
- Decays --- G4DecayPhysics

G4RadioactiveDecayPhysics

- hadron physics --- G4HadronElasticPhysicsHP
- shielding --- G4HadronPhysicsShielding
- stopping physics ---- G4StoppingPhysics
- ion physics----- G4IonQMDPhysics

Cosmic muon

The energy and angular distributions of muons follow the Shukla model

- Energy is related to angle
- Muon generator
 - Emission plane: 5m*5m
 - Muon energy range: 0.5 1000GeV
 - Muon type: μ^+ and μ^-
 -
- Too much computational pressure
- Filter energy deposition message
 - Message in LXe-veto and LXe detector
 - Nuclear recoil(NR) and Electronic recoil(ER)

Cosmic muon

Cosmic muon makes it easier to knock neutrons out of heavy nucleus

 10^{1}

Copper shield exist

No copper shield

CEvNS ROI

Cosmic muon

μ

Assuming 99% muon veto efficiency with PS muon veto detector

- Taking into account the Muon veto effect
- LXe-veto cut works very well

Muon veto (Veto efficiency > 99%)

Cosmic ray neutrons

The energy and angular distributions of cosmic neutorn comes from the Cosmic-Ray Shower Generator (CRY)

Total rate: 85.91 · cm⁻² · day⁻¹

$$E'_{Xe} = E_{n} \frac{4m_{n}M}{(m_{n} + M)^{2}} cos^{2} \varphi$$
$$\approx 0.03E_{n} cos^{2} \varphi$$

- Neutron's energy greater than 30keV can deposit NR energy similar to CEvNS events.
- Need to design shield for cosmic ray neutron.

Cosmic ray neutrons

Add water shield to shield cosmic ray neutrons

- Water shield has better shielding effect;
- NR background caused by cosmic ray neutron has reached a level we can accept;

Neutrons and gamma from reactor

Neutron NR

Gamma ER

- Black: Energy spectrum of reactor neutron;
- Blue: Energy spectrum of cosmic neutron;
- Red: Cosmic neutron that deposits energy;

(0.5±0.2)×10⁻³·keV⁻¹·kg⁻¹·day⁻¹ [0,100]keV_{ER}

Detector materials

FV cut works very well

- Event locations are concentrated at the top
- Different drift times will have different S2 widths

S2 width selection

- Drifting time threshold of 0.22us
- Background rejection power: ~96%
- CEvNS signal acceptance: >80%

Summary

- Background simulation of RELICS Experiment.
 - RelicsSim framework.
 - · Cosmic ray neutron is the dominant NR background.
 - Detector material is the dominant ER background.
 - Single-to-background ratio of 4:1 in CEvNS ROI.
- · Shield and events cut method are designed to suppress background.
 - Water shield with length, width and height of 7 meters.
 - Muon veto with 99% veto efficiency.
 - Low-background detector material and S2-width selection.

The **RELICS** Collaboration

Thanks

Kaihang Li Tsinghua University likh23@mails.tsinghua.edu.cn

Reactor neutrino

Figure 6. The $\overline{\nu}_e$ energy spectra of ^{235}U , ^{238}U , ^{239}Pu , and ^{241}Pu with a 3 GW reactor core at 25 m distance.

Figure 7. The expected $CE\nu NS$ event rate in xenon medium from reactor neutrino with a flux of $10^{13} cm^{-2} s^{-1}$.

Simulation Framework (Appletree, RelicsAPT)

Simulation Framework (Appletree, RelicsAPT)

 Table 1. The detector related parameters.

Optical parameters				
PTFE reflectivity (LXe & GXe)	99%	(Aprile et al. 2020)		
LXe Rayleigh scattering length	$30\mathrm{cm}$	(Aprile et al. 2020)		
LXe absorption length	$10\mathrm{m}$	$50\mathrm{m}$ in (Aprile et al. 2020)		
Signal generation				
PMT quantum efficiency ($\epsilon_{\rm QE}$)	30%	3% in (Aprile et al. 2020)		
PMT collection efficiency ($\epsilon_{\rm CE}$)	70%	90% in (Aprile et al. 2020)		
Double PE probability (p_{DPE})	20%	21.9% in (Aprile et al. 2020)		
g_1	$0.099\mathrm{PE/ph}$	0		
g_2	$30 \mathrm{PE/e^{-}}$	()		
Detector operation				
Drift field	$500\mathrm{V/cm}$			
Electron lifetime	$12m{ m s}$	(Plante et al. 2022)		

Gamma from reactor and environment

Total rate: 18.45 · cm⁻² · s⁻¹

ER

(0.5±0.2)×10⁻³⋅keV⁻¹⋅kg⁻¹⋅day⁻¹ [0,100]keV_{ER}

Xe127 and Ar37

- I. Xe127: (36.4days)
 - Muon bombard
 - Neutron capture

- II. Ar37: (35days)
 - Proton bombard
 - Neutron bombard
 - Neutron capture

Decay mode	Energy release (keV)	Branching ratio (%)
K-capture	2.8224	90.2
L-capture	0.2702	8.9
M-capture	0.0175	0.9

		Events	Amplitude	Expected (%)	Observed (%)
K	33.2 keV	2067	18200 ± 400	83.37	82.7 ± 2.4
L	5.2 keV	542	3090 ± 130	13.09	14.1 ± 0.7
Μ	1.1 keV	164	580 ± 50	2.88	2.6 ± 0.2
N	186 eV	31	133 ± 23	0.66	0.6 ± 0.1

Tatal ER background < 10-4·kg-1·day-1

Intrinsic Rn222 and Kr85

- Rn222 and Kr85 are intrinsic in LXe
- Cannot be removed by recycling purification

	LXe	Comment
⁸⁵ Kr	10 ppt ^{nat} Kr/Xe	85 Kr/ ^{nat} Kr=1.7×10 ⁻¹¹ ,T _{1/2} =10.76y
²²² Rn	40 µBq/kg	

	ER background (10 ⁻³ ·keV ⁻¹ ·kg ⁻¹ ·day ⁻¹)		
⁸⁵ Kr	0.39 ± 0.01		
²²² Rn	1.02 ± 0.01		

Subdominant!

Delayed electrons

• This background has been observed by large LXeTPC searching for dark matter particles ;

- After a larger signal, such as muon, there will be some electrons inside LXe that gradually escape from the gas-liquid interface after a time delay.
 - 1. The waveform of the delayed electrons will differ from the real signal;
 - 2. The signal distribution of delayed electrons may be related to the muon track;

Delayed electrons

1. Waveform Classifier

Sensitivity

Weak mixing angle θ_W

Nonstandard neutrino interaction (NSI)

