Monte Carlo simulations for bubble chambers

Eric Vázquez Jáuregui Instituto de Física, UNAM

VIEnna Workshop on Simulations 2024 (VIEWS24) Vienna, Austria, April 26, 2024

Outline

• Experiment overview

- PICO bubble chambers at SNOLAB
- Monte Carlo simulations for PICO with GEANT4

• Final remarks

PICO: dark matter searches using bubble chambers

Physics with bubble chambers

- 1970s: Neutrino Beam Physics
- Sensitive to MIPs
- Particle tracks visible
- Threshold << 1 keV
- Multi-ton chambers, multiple fluids

2000-today: Nuclear Recoil Detectors

- Dark matter searches with fluorocarbon bubble chambers
- Electron recoil blind
- \bullet Nuclear recoil threshold $\sim 3 {\rm keV}$
- Scalable at modest cost

PICO bubble chambers

• Target material: superheated CF_3I , C_3F_8, C_4F_{10} spin-dependent/independent

Could make a dark matter bubble chamber with any liquid!

- Particles interacting evaporate a small amount of material: bubble nucleation
- Four Cameras record bubbles
- Eight piezo-electric acoustic sensors detect sound
- Recompression after each event

Bubble nucleation

Dependence of bubble nucleation on the total deposited energy and dE/dx

- Region of bubble nucleation at 15 psig
- Backgrounds: electrons, ²¹⁸Po, ²²²Rn
- Signal processes of Iodine, Fluorine and Carbon nuclear recoils

insensitive to electrons and gammas

Bubble chambers: signal

- Alpha decays: Nuclear recoil and 40 µm alpha track 1 bubble
- Neutrons: Nuclear recoils mean free path ~20 cm 3:1 multiple-single ratio in PICO-60
- Neutrinos or WIMPs: Nuclear recoil mean free path > 10¹⁰ cm 1 bubble

Bubble chambers: Acoustics

• Alphas are ~ 4 times louder than nuclear recoil bubbles

 $\bullet > 99.4\%$ discrimination against alpha events demonstrated

• Discovered by the PICASSO collaboration

PICO-60

PICO Collaboration

Monte Carlo simulations for PICO with GEANT4

Bubble chamber simulations and Seitz model

GEANT and MCNP simulations: a bit of history

• Compare predicted rates of single and multiple bubble events with observation in COUPP-4kg

Threshold is determined using Seitz 'Hot Spike' Model Phys. Fluids 1, 2 (1958).

Data showed a shortfall of events compared to Seitz model simulation

Bubble nucleation efficiency

Determining the bubble nucleation efficiency of low-energy nuclear recoils in superheated C3F8 dark matter detectors PRD 106, 122003 (2022)

- Neutron beams: 97, 61 , and 50 keV
- SbBe and AmBe sources

Electron recoil nucleation

- Nucleation model using calibration data
- Probability of nucleation (ER) given by exponential function
- Ionization nucleation model: probability per energy deposited
- Each δ -electron acts as a nucleation trial rather than each photon scattering vertex

PICO-40L and PICO-500 simulations

- External backgrounds (SNOLAB):
 - -Rock neutrons (SOURCES-4C, propagate through norite rock)
 - Muons and muon induced neutrons:
 - * Muon-induced background study for underground laboratories (D.-M. Mei and A. Hime Phys. Rev. D 73, 053004)
 - * MUTE: muon fluxes underground, convolution of the muon flux on surface with MCEq and the muon survival probability with the Monte Carlo code PROPOSAL
 - $^{-\left(\gamma,\mathrm{n}
 ight) }$ reactions
- Internal backgrounds:
 - U and Th: fission and (α, n) on light elements: SOURCES-4C and NeuCBOT (Neutron Calculator Based On TALYS)
 - $-^{238}$ U direct decay
 - * Materials: stainless steel, quartz, cabling, piezos, cameras, sensors, HDPE, other innner components
 - \ast Fluids: water, mineral oil, $CF_{3}I/C_{3}F_{8}$
 - * Radon (deposition, emanation)
 - \ast Mine dust, veto PMTs

Detectors in GEANT4 v11.1.3 using Shielding Physics List

PICO-40L: ~ 45 kg (fiducial mass) PICO-500: ~ 350 kg (fiducial mass)

16

~1 m

~2 m

Components and former detectors

Outer and lower Cu plates, Piezo

PICO-60: completed experiment, 52 kg (fiducial mass), 59.9 live days

Final remarks

- PICO bubble chambers are producing world leading direct detection limits using flourine targets:
 - Best limits for spin-dependent WIMP-proton couplings
 - Challenging nuclear and electron recoil nucleation efficiencies
 - Working GEANT4 framework for background simulations using external software

PICO-2L (thick purple), DarkSide-50 low-mass (gray), XENON1T (green), LUX (yellow), PandaX-II (cyan), CDMSlite (black), and CRESST-II (magenta)

Phys. Rev. Lett. 114, 231302 (2015)

Phys. Rev. D 93, 061101 (R) (2016) (Editor's choice)

Phys. Rev. D 93, 052014 (2016)

PICO-60 CF₃I (thick red), PICO-2L (thick purple), PICASSO (green band), SIMPLE (orange), XENON1T (gray), PandaX-II (cyan), IceCube (dashed and dotted pink), and SuperK (dashed and dotted black)