<u>Simulations of the LUX-ZEPLIN</u> (LZ) experiment using Geant4

Albert Baker

VIEWS

April 2024

LZ simulation paper Astropart. Phys.125

LUX-ZEPLIN

Simulations of the LUX-ZEPLIN (LZ) experiment using Geant4 (Albert - KCL)

LUX-ZEPLIN

Simulations of the LUX-ZEPLIN (LZ) experiment using Geant4 (Albert - KCL)

Pg. 2 / 18

The Simulation Chains

LZ has two simulations chains

• Fast

- < 0.3 s / event</pre>
- Signal and background PDF generation
- \circ Full
 - 4—50 s / event with photon tracing
 - Least used, for full detector response
- All deployed via gitlab CI/CD
 - Easily support multiple computing environments
 - Uses containers
 - No installing of any software or dependencies
 - User friendly for analysers

Full Chain

- Uses Geant4 to simulate energy deposits
- Ray tracing or map for photon detection
 - Tracing is a bottleneck
 - Exploring GPU tools for this (OPTICKS)
- Detector electronics response (DER) model
 Pulse and PMT level simulations
- Creates DAQ-like file
 Treated just like real data
- Used to generate mock data challenges (MDC) prior to detector construction and commissioning
- XLZD have been using BACCARAT for some studies

Fast Chain

- Uses Geant4 to simulate energy deposits
- Allows us to use a very flexible detector model (LZLAMA)
 - Generates data similar to LZ data
 - TPC only has scatter info
 - No pulses or PMTs
- Used to make PDFs / templates for statistical tests

<u>Geant4</u>

Options	Value
G4 Version	10.3
Threading	Single only
схх	C++17
g++	8.2.0

- All deployed via gitlab CI/CD
 - Allows us to build, deploy and test our codebase against multiple Geant4 versions

Physics Lists	Notes
G4EmLivermorePhysics	
G4EmExtraPhysics	
G4RadioactiveDecayPhysics	
QGSP_BIC_HP	Modified Gd neutron capture using DICEBOX
	Updated thermal neutrons scattering on H in water/GdLS
G4Cherenkov	
G4OpAbsorbtion	Updated absorbtion lengths of LXe/GdLS
G4OpRayleigh	Updated scattering lengths of LXe/GdLS
G4OpBoundaryProcess	
G4OpWLS	
Custom LXe list	Built on NEST

Thermal Neutron Scattering

- Using procedure from ^{O presentation} indico
- Default G4 overestimates detection eff. from neutrons in the OD
 - Wrong neutron (maxwellian) temperature
 - Incorrect interpolation points

```
auto H_PE = new G4Element(
    "TS_H_of_Polyethylene", "h_polyethylene", 1., 1.0079 * g / mole
);
auto H_W = new G4Element(
    "TS_H_of_Water", "h_water", 1., 1.0079 * g / mole
);
auto hel = mainElasticBuilder->GetNeutronProcess();
hel->RegisterMe(hp);
hel->AddDataSet(new G4NeutronHPElasticData());
auto hp = new G4NeutronHPElastic();
hp->SetMinEnergy(4. * eV);
auto thermal = new G4NeutronHPThermalScattering();
    hel->RegisterMe(thermal);
hel->AddDataSet(new G4NeutronHPThermalScatteringData);
thermal->SetMaxEnergy(4.0 * eV);
```


Gd neutron capture using **DICEBOX**

- LZ's outer detector (OD) it too small to capture all the deposited energy
 - Sensitive to specifics de-excitation processes
 - Larger detectors capture all the energy so
 do not care how the de-excitation happens
- DICEBOX (NIM-A 417 (2-3) pg. 434-449)
 - Statistical approach to model the γ-cascade
 - Correctly conserves energy
 - Better agreement with data
- Increased simulated veto efficiency from<n 95.1%
 → 96.2%

Neutron Inelastic Scattering

- Observed discrepancy in inelastic neutron scattering off xenon
- Inelastic scatters can be easily tagged by the high-energy γ-ray
- We are seeing about 1/10th of the rate expected from Geant4
 - Origin of this is unknown

<u>NEST</u>

- Noble Element Simulation Technique
- We are wholly reliant on our xenon yield model
 Geant4 does not get this right
- Semi-empirical collection of yield models
 Based on calibration and "science" data from current and previous experiments
- C++ package for generating ER and NR light and charge yields in xenon (& recently argon)
 - Open source (NEST latest , DOI 10.5281/zenodo.8215927
 - Support from multiple experiments
 - Python bindings available (ONESTRY latest, DOI 10.5281/zenodo.10582363
 - Inbuilt Geant4 interface
 - LZ has written a custom one by subclassing G4VRestDiscreteProcess
- Can simulate S1 and S2 observables given a detector model
 - LZ detector model is public: OLZ detector model
 - Can even perform basic sensitivity studies

NEST Yields

Pg. 11 / 18

Geometry and validation

- LZ geometry built "by hand"
 Direct creation of G4Solids, very time-consuming
- Can validate geometry by exporting to .obj file via GDML using pyg4ometry

O pyg4ometry latest DOI 10.5281/zenodo.10471878

- Can compare G4 model to CAD and as-built designs
 Should be useful for outreach materials
- XLZD have used pyg4ometry to directly design/control geometry for some Skin/OD models

<u>Detector Electronics</u> <u>Response (DER)</u>

- Detector Electronic Response
 - Converts PMT hits into waveforms
 - Accounts for several PMT detection mechanisms
 - SPE
 - DPE
- Outputs raw-data format
 - Can be processed like real data
 - Used to produce large mock data challenge (MDC) datasets

LZLAMA

- A customisable NEST interface
- Very flexible to tune detector modeling
 - Correction maps
 - E-field maps
 - Clustering
 - NEST parameters
- Produces a subset of the detected variables:
 - limited to scatter level quantities
 - S1, S2, (x, y, z) etc.
- Used to generate S1—S2 PDFs for PLR analysis

Calibration

LZ SR1 paper Phys. Rev. Lett. 131, 041002

Pg. 15 / 18

Background Model

LZ simulation paper Phys. Rev. D 108 012010

Pg. 16 / 18

Shielded Detectors

- These shielded detectors minimise external backgrounds
 - Particularly γ-rays
 - Makes it much harder to simulate the central volume
- In LZ this is already a problem $\circ~\sim 10^{-9}$ of events reach TPC (post-cuts)
- Will be lower in XLZD's proposed O(60 t) detector
 - $\circ~\sim 10^{-12}$ of events reach TPC (post-cuts)
- Current method:
 - Resample good tracks at detector boundaries

Pg. 17 / 18

Conclusion

- LZ can simulate at parametric and full detector electronics (PMT) levels
- Parametric uses a NEST interface and used to produce PDFs for statistical analysis
- Full detector creates DAQ-like files compatible with full LZ data processing
 - This was used to create mock datasets prior to commissioning
- We use a custom set of xenon yield functions using NEST
- We use a custom Gd neutron capture model using the DICEBOX algorithm
 Increased simulated veto efficiency: 95.1% → 96.2%
- Have been making use of pyg4ometry to validate and build geometry
- Simulating such shielded detectors can be difficult
 - $\,\circ\,$ 1 in a billion simulated $\gamma\text{-ray}$ events are interesting

<u>Acknowledgements</u>

Shilo Xia, the simulations coordinator, for advise during the creation of these slides

38 Institutions, 250 scientists, engineers, and technical staff

- Black Hills State University
- Brookhaven National Laboratory
- Brown University
- Center for Underground Physics
- Edinburgh University
- Fermi National Accelerator Lab.
- Imperial College London
- King's College London
- Lawrence Berkeley National Lab.
- Lawrence Livermore National Lab.
- LIP Coimbra
- Northwestern University
- Pennsylvania State University
- Royal Holloway University of London
- SLAC National Accelerator Lab.
- South Dakota School of Mines & Tech
- South Dakota Science & Technology Authority

- STFC Rutherford Appleton Lab.
- Texas A&M University
- University of Albany, SUNY
- University of Alabama
- University of Bristol
- University College London
- University of California Berkeley
- University of California Davis
- University of California Los Angeles
- University of California Santa Barbara
- University of Liverpool
- University of Maryland
- University of Massachusetts, Amherst
- University of Michigan
- University of Oxford
- University of Rochester
- University of Sheffield
- University of Sydney
- University of Texas at Austin
- University of Wisconsin, Madison
- University of Zürich

