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The Simulation Chains

LZ has two simulations chains

Fast

< 0.3 s / event

Signal and background PDF generation

Full

4‒50 s / event with photon tracing

Least used, for full detector response

All deployed via gitlab CI/CD

Easily support multiple computing environments

Uses containers

No installing of any software or dependencies

User friendly for analysers
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Full Chain

Uses Geant4 to simulate energy deposits

Ray tracing or map for photon detection

Tracing is a bottleneck

Exploring GPU tools for this (OPTICKS)

Detector electronics response (DER) model

Pulse and PMT level simulations

Creates DAQ-like file

Treated just like real data

Used to generate mock data challenges (MDC)

prior to detector construction and commissioning

XLZD have been using BACCARAT for some

studies
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Fast Chain

Uses Geant4 to simulate energy deposits

Allows us to use a very flexible detector model

(LZLAMA)

Generates data similar to LZ data

TPC only has scatter info

No pulses or PMTs

Used to make PDFs / templates for statistical tests
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Geant4

Options Value

G4 Version 10.3

Threading Single only

CXX C++17

g++ 8.2.0

All deployed via gitlab CI/CD

Allows us to build, deploy and

test our codebase against

multiple Geant4 versions

Physics Lists Notes

G4EmLivermorePhysics

G4EmExtraPhysics

G4RadioactiveDecayPhysics

QGSP_BIC_HP

Modified Gd neutron capture using DICEBOX

Updated thermal neutrons scattering on H in water/GdLS

G4Cherenkov

G4OpAbsorbtion Updated absorbtion lengths of LXe/GdLS

G4OpRayleigh Updated scattering lengths of LXe/GdLS

G4OpBoundaryProcess

G4OpWLS

Custom LXe list Built on NEST
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Thermal Neutron Scattering

Using procedure from presentationpresentation indicoindico

Default G4 overestimates detection eff. from neutrons in

the OD

Wrong neutron (maxwellian) temperature

Incorrect interpolation points

auto H_PE = new G4Element(
  "TS_H_of_Polyethylene", "h_polyethylene", 1., 1.0079 * g / mole
);
auto H_W = new G4Element(
  "TS_H_of_Water", "h_water", 1., 1.0079 * g / mole
);

auto hel = mainElasticBuilder->GetNeutronProcess();
hel->RegisterMe(hp);
hel->AddDataSet(new G4NeutronHPElasticData());

auto hp = new G4NeutronHPElastic();
hp->SetMinEnergy(4. * eV);

auto thermal = new G4NeutronHPThermalScattering();
            hel->RegisterMe(thermal);
            hel->AddDataSet(new G4NeutronHPThermalScatteringData);
            thermal->SetMaxEnergy(4.0 * eV);
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Gd neutron capture using DICEBOX

LZ's outer detector (OD) it too small to capture

all the deposited energy

Sensitive to specifics de-excitation processes

Larger detectors capture all the energy so

do not care how the de-excitation happens

DICEBOX ( NIM-ANIM-A 417 (2–3) pg. 434-449417 (2–3) pg. 434-449 )

Statistical approach to model the γ-cascade

Correctly conserves energy

Better agreement with data

Increased simulated veto efficiency from<n 95.1%

→ 96.2%
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Neutron Inelastic Scattering

Observed discrepancy in inelastic neutron

scattering off xenon

Inelastic scatters can be easily tagged by the

high-energy γ-ray

We are seeing about 1/10th of the rate

expected from Geant4

Origin of this is unknown
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NEST

Noble Element Simulation Technique

We are wholly reliant on our xenon yield model

Geant4 does not get this right

Semi-empirical collection of yield models

Based on calibration and "science" data from current and previous experiments

C++ package for generating ER and NR light and charge yields in xenon (& recently argon)

Open source ( NESTNEST latestlatest , DOIDOI 10.5281/zenodo.821592710.5281/zenodo.8215927 )

Support from multiple experiments

Python bindings available ( NESTpyNESTpy latestlatest , DOIDOI 10.5281/zenodo.1058236310.5281/zenodo.10582363 )

Inbuilt Geant4 interface

LZ has written a custom one by subclassing G4VRestDiscreteProcess

Can simulate S1 and S2 observables given a detector model

LZ detector model is public: LZLZ detector modeldetector model

Can even perform basic sensitivity studies
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NEST Yields
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Geometry and validation

LZ geometry built "by hand"

Direct creation of G4Solids, very time-consuming

Can validate geometry by exporting to .obj file via

GDML using pyg4ometry
pyg4ometrypyg4ometry latestlatest , DOIDOI 10.5281/zenodo.1047187810.5281/zenodo.10471878

Can compare G4 model to CAD and as-built designs

Should be useful for outreach materials

XLZD have used pyg4ometry to directly

design/control geometry for some Skin/OD models
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Detector Electronics

Response (DER)

Detector Electronic Response

Converts PMT hits into waveforms

Accounts for several PMT detection mechanisms

SPE

DPE

Outputs raw-data format

Can be processed like real data

Used to produce large mock data challenge

(MDC) datasets
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LZLAMA

A customisable NEST interface

Very flexible to tune detector modeling

Correction maps

E-field maps

Clustering

NEST parameters

Produces a subset of the detected variables:

limited to scatter level quantities

S1, S2, (x, y, z) etc.

Used to generate S1‒S2 PDFs for PLR analysis
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Calibration
LZ SR1 paperLZ SR1 paper Phys. Rev. Lett. 131, 041002Phys. Rev. Lett. 131, 041002

CH3T 
(ER)

DD (NR)
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Background Model
LZ simulation paperLZ simulation paper Phys. Rev. D 108 012010Phys. Rev. D 108 012010
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Shielded Detectors

These shielded detectors minimise external

backgrounds

Particularly γ-rays

Makes it much harder to simulate the

central volume

In LZ this is already a problem

 of events reach TPC (post-cuts)

Will be lower in XLZD's proposed O(60 t)

detector

 of events reach TPC (post-cuts)

Current method:

Resample good tracks at detector boundaries

Jemima TranterJemima Tranter IOP Joint APP HEPP and NP Conference 2024IOP Joint APP HEPP and NP Conference 2024
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Conclusion

LZ can simulate at parametric and full detector electronics (PMT) levels

Parametric uses a NEST interface and used to produce PDFs for statistical analysis

Full detector creates DAQ-like files compatible with full LZ data processing

This was used to create mock datasets prior to commissioning

We use a custom set of xenon yield functions using NEST

We use a custom Gd neutron capture model using the DICEBOX algorithm

Increased simulated veto efficiency: 95.1% → 96.2%

Have been making use of pyg4ometry to validate and build geometry

Simulating such shielded detectors can be difficult

1 in a billion simulated γ-ray events are interesting
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