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Outline

• Static and dynamic allocations 

• Classes and inheritance 

• Some C++ features largely used in Geant4 

• An example of CMake usage
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   Plan…



Just an introduction

• This is not a C++ course 

• Just few information useful to understand the Geant4 
examples 

• For a complete course:  
http://www.roma1.infn.it/people/rahatlou/index.php?
link=Didattica&sublink=ppp
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Few things about C++

• A general-purpose programming language 

• Has imperative, object-oriented and generic 
programming features 

• Provides facilities for low-level memory manipulation 

• In 1983, "C with Classes" was renamed to "C++"  
(++ being the increment operator in C) 

• Initially standardised in 1998  
(current standard is C++23 but the most used is C++17)
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Memory management in C++

• Two ways of allocating memory 

• Static Allocation: 
• Allocated on the stack 
• Automatic handling (allocation and deallocation) 

• Dynamic Allocation: 
• Allocated on the heap using operators  

(new and delete) 
• Manual handling required
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Stack Memory in C++

• Automatically managed memory that stores local variables 
and function call details 

• Fast access 

• Memory is managed automatically (pushed and 
popped) 

• Limited in size, leading to potential stack overflow 

• Local variables only exist while the function that created 
them is running
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Stack allocation example
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https://pythontutor.com/render.html#mode=display

• Allocating on the stack is easy



Static allocation example

• Allocated on the stack 

• Stack deallocation is 
automatic when the 
variable goes out of 
scope 

• When the function 
returns then memory 
for m is freed
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Heap memory

• Dynamically allocated memory that must be manually 
managed 

• Accessed via pointers 

• Slower to access compared to stack memory 

• Size only limited by the system’s available memory 

• Requires explicit deallocation  
(using delete or delete[] in C++) to avoid memory leaks
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Dynamic allocation example

• Allocated on the heap 

• With the operator new 

• The result is a pointer to a location of memory 

• The pointer is allocated in the stack
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Stack and heap key differences

• automatic lifetime, 
allocated and deallocated 
automatically

• manual management

Stack Heap

Lifetime

Memory Management

• manual management to 
prevent leaks

• not need to be managed 
by the developer
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Dynamic allocation example

• The memory in the heap is not freed when the function ends 

• You have to delete
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Stack and heap use cases

• small data that won't exceed 
the stack's limit and has a 
short lifetime 

• Use where possible for 
simplicity and speed

• Ideal for large amounts of 
data or data that needs to 
persist beyond the execution 
of a function 

• Use for large, complex data 
structures or when dynamic 
allocation is needed 

• Always ensure that every 
new has a corresponding 
delete

Stack Heap
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Smart pointers

• Smart pointers are template classes in the C++ Standard 
Library that manage the lifetime of dynamically allocated 
objects 

• They ensure automatic and appropriate destruction of 
dynamically allocated objects, helping to prevent memory 
leaks and dangling pointers 

• Automatic Resource Management: Automatically deallocates 
memory when it's no longer needed. 

• Memory Leak Prevention: Reduces the risks of memory leaks 
by ensuring proper deallocation



Most used smart pointers

• std::unique_ptr: Owns and manages another object through 
a pointer and destroys that object when the unique_ptr goes 
out of scope. 
• Use for exclusive ownership of dynamically allocated 

resources 

• std::shared_ptr: Maintains reference counting for shared 
ownership of an object. 
• The object is destroyed when the last shared_ptr pointing 

to it is destroyed or reset 
• Use when you need multiple owners of the same resource
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Example of smart pointers usage

#include <memory> 

// Automatically deleted when ptr goes out of scope 
std::unique_ptr<int> ptr(new int(10));  

// Better implementation: 
auto ptrB = std::make_unique<int>(10); 

// Reference-counted, safe for shared use 
std::shared_ptr<int> shared1(new int(20));  

// Better implementation: 
auto sharedB1 = std::make_shared<int>(20);
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Classes

• Classes are an 
expanded concept of 
data structures: like 
data structures, they 
can contain data 
members, but they 
can also contain 
functions as members

 
class Apple { 
public: 
  void setColor(color); 
  color getColor(); 

private: 
  color fColor; 
  double fWeight; 
};
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Like Plato’s ideas (the idea 
of apple), classes have generic 

attributes (e.g. color). 
Each instance (this Golden Delicious 

apple) of the class have a specific 
attribute (e.g. yellow) 



Example of class usage

#include <iostream> 
using std::cout; 

class Rectangle { 
    int width, height; 
  public: 
    void set_values (int,int); 
    int area() {return width*height;} 
}; 

void Rectangle::set_values (int x, int y) 
{ 
  width = x; 
  height = y; 
} 

int main () { 
  Rectangle rect; 
  rect.set_values (3,4); 
  cout << "area: " << rect.area(); 
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Idea of rectangle

An instance  
of rectangle



Example of class usage

#include <iostream> 
using std::cout; 

class Rectangle { 
    int width, height; 
  public: 
    void set_values (int,int); 
    int area() {return width*height;} 
}; 

void Rectangle::set_values (int x, int y) 
{ 
  width = x; 
  height = y; 
} 

int main () { 
  Rectangle rect; 
  rect.set_values (3,4); 
  cout << "area: " << rect.area(); 
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Declaration

Usage of the 
methods

Implementation

Namespace



Example of class usage

#include <iostream> 
using std::cout; 

class Rectangle { 
    int width, height; 
  public: 
    void set_values (int,int); 
    int area() {return width*height;} 
}; 

void Rectangle::set_values (int x, int y) 
{ 
  width = x; 
  height = y; 
} 

int main () { 
  Rectangle rect; 
  rect.set_values (3,4); 
  cout << "area: " << rect.area(); 
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Hyperuranion 
(ὑπερουράνιος τόπος) 

literally: "place beyond heaven”

“Real” world



What if I want to protect the rectangle 
properties (the dimensions), once instantiated?
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Constructors

#include <iostream> 
using std::cout; 

class Rectangle { 
    int width, height; 
  public: 
   Rectangle(int x, int y); 

    int area() {return width*height;} 
}; 

Rectangle::Rectangle(int x, int y)  
{ 
  width = x; 
  height = y; 
} 

int main () { 
  Rectangle rect(3,4); 
  cout << "area: " << rect.area(); 
  return 0; 
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Using the 
constructor and 

removing the 
setting method



Constructors
#include <iostream> 
using std::cout; 

class Rectangle { 
    int width, height; 
  public: 
   Rectangle(int x, int y); 

    int area() {return width*height;} 
}; 

Rectangle::Rectangle (int x, int y) : 
width(x), height(y) { } 

int main () { 
  Rectangle rect(3,4); 
  cout << "area: " << rect.area(); 
  return 0; 
}
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Better 
implementation!



Inheritance

• Classes in C++ can be extended, creating new classes 
which retain characteristics of the base class 

• This process, known as inheritance, involves a base class 
and a derived class 

• The derived class inherits  
the members of the base class,  
on top of which it can  
add its own members
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Inheritance, an example

class Polygon { 
  protected: 
    int width, height; 
  public: 
    void set_values (int a, int b) 
      { width=a; height=b;} 
 };

class Rectangle: public Polygon  
{ 
 public: 
  int area () 
  {  
   return width*height;  
  } 
};

class Triangle: public Polygon  
{ 
 public: 
  int area() 
  {  
   return width*height/2;  
  } 
};
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Protected and not private!

• The protected access specifier used in class Polygon is similar 
to private. Its only difference occurs in fact with inheritance:  

• When a class inherits another one, the members of the derived 
class can access the protected members inherited from the 
base class, but not its private member 

• By declaring width and height as protected instead of private, 
these members are also accessible from the derived classes 
Rectangle and Triangle, instead of just from members of 
Polygon 

• If they were public, they could be accessed just from anywhere
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Public inheritance?

Mother class 

members access 

specifiers

Daughter class 
members access 

specifiers

Public inheritance
Public Public

Protected Protected

Protected 
inheritance

Public Protected

Protected Protected

Private inheritance
Public Private

Protected Private
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Let’s use the classes…

#include <iostream> 
using std::cout; 
using std::endl; 

int main () { 
  Rectangle rect; 
  Triangle trgl; 
  rect.set_values (4,5); 
  trgl.set_values (4,5); 
  cout << rect.area() << endl; 
  cout << trgl.area() << endl; 
  return 0; 
} 

have a look at the example 
https://github.com/carlomt/inheritance_example 

for more details
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CMake

• a cross-platform free and open-source software application for managing 
the build process of software using a compiler-independent method 

• supports directory hierarchies and multiple libraries 

• can locate executables, files, and libraries 

• https://cliutils.gitlab.io/modern-cmake/ 

• use a version of CMake that came out after your compiler 

• since CMake will dumb itself down to the minimum required version in 
your CMake file, installing a new CMake, even system wide, is pretty safe
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