
C++ refresh and CMake

Vienna workshop on simulations 2024

22nd April

Carlo Mancini Terracciano

carlo.mancini-terracciano@uniroma1.it

mailto:carlo.mancini-terracciano@uniroma1.it

Outline

• Static and dynamic allocations

• Classes and inheritance

• Some C++ features largely used in Geant4

• An example of CMake usage

2

 Plan…

Just an introduction

• This is not a C++ course

• Just few information useful to understand the Geant4
examples

• For a complete course:
http://www.roma1.infn.it/people/rahatlou/index.php?
link=Didattica&sublink=ppp

3

http://www.roma1.infn.it/people/rahatlou/index.php?link=Didattica&sublink=ppp
http://www.roma1.infn.it/people/rahatlou/index.php?link=Didattica&sublink=ppp

Few things about C++

• A general-purpose programming language

• Has imperative, object-oriented and generic
programming features

• Provides facilities for low-level memory manipulation

• In 1983, "C with Classes" was renamed to "C++"
(++ being the increment operator in C)

• Initially standardised in 1998
(current standard is C++23 but the most used is C++17)

4

Memory management in C++

• Two ways of allocating memory

• Static Allocation:
• Allocated on the stack
• Automatic handling (allocation and deallocation)

• Dynamic Allocation:
• Allocated on the heap using operators

(new and delete)
• Manual handling required

5

Stack Memory in C++

• Automatically managed memory that stores local variables
and function call details

• Fast access

• Memory is managed automatically (pushed and
popped)

• Limited in size, leading to potential stack overflow

• Local variables only exist while the function that created
them is running

6

Stack allocation example

7
https://pythontutor.com/render.html#mode=display

• Allocating on the stack is easy

Static allocation example

• Allocated on the stack

• Stack deallocation is
automatic when the
variable goes out of
scope

• When the function
returns then memory
for m is freed

8

Heap memory

• Dynamically allocated memory that must be manually
managed

• Accessed via pointers

• Slower to access compared to stack memory

• Size only limited by the system’s available memory

• Requires explicit deallocation
(using delete or delete[] in C++) to avoid memory leaks

9

Dynamic allocation example

• Allocated on the heap

• With the operator new

• The result is a pointer to a location of memory

• The pointer is allocated in the stack

10

Stack and heap key differences

• automatic lifetime,
allocated and deallocated
automatically

• manual management

Stack Heap

Lifetime

Memory Management

• manual management to
prevent leaks

• not need to be managed
by the developer

11

Dynamic allocation example

• The memory in the heap is not freed when the function ends

• You have to delete

12

Stack and heap use cases

• small data that won't exceed
the stack's limit and has a
short lifetime

• Use where possible for
simplicity and speed

• Ideal for large amounts of
data or data that needs to
persist beyond the execution
of a function

• Use for large, complex data
structures or when dynamic
allocation is needed

• Always ensure that every
new has a corresponding
delete

Stack Heap

13

Smart pointers

• Smart pointers are template classes in the C++ Standard
Library that manage the lifetime of dynamically allocated
objects

• They ensure automatic and appropriate destruction of
dynamically allocated objects, helping to prevent memory
leaks and dangling pointers

• Automatic Resource Management: Automatically deallocates
memory when it's no longer needed.

• Memory Leak Prevention: Reduces the risks of memory leaks
by ensuring proper deallocation

Most used smart pointers

• std::unique_ptr: Owns and manages another object through
a pointer and destroys that object when the unique_ptr goes
out of scope.
• Use for exclusive ownership of dynamically allocated

resources

• std::shared_ptr: Maintains reference counting for shared
ownership of an object.
• The object is destroyed when the last shared_ptr pointing

to it is destroyed or reset
• Use when you need multiple owners of the same resource

15

Example of smart pointers usage

#include <memory>

// Automatically deleted when ptr goes out of scope
std::unique_ptr<int> ptr(new int(10));

// Better implementation:
auto ptrB = std::make_unique<int>(10);

// Reference-counted, safe for shared use
std::shared_ptr<int> shared1(new int(20));

// Better implementation:
auto sharedB1 = std::make_shared<int>(20);

16

Classes

• Classes are an
expanded concept of
data structures: like
data structures, they
can contain data
members, but they
can also contain
functions as members

 
class Apple {
public:
 void setColor(color);
 color getColor();

private:
 color fColor;
 double fWeight;
};

17

Like Plato’s ideas (the idea
of apple), classes have generic

attributes (e.g. color).
Each instance (this Golden Delicious

apple) of the class have a specific
attribute (e.g. yellow)

Example of class usage

#include <iostream>
using std::cout;

class Rectangle {
 int width, height;
 public:
 void set_values (int,int);
 int area() {return width*height;}
};

void Rectangle::set_values (int x, int y)
{
 width = x;
 height = y;
}

int main () {
 Rectangle rect;
 rect.set_values (3,4);
 cout << "area: " << rect.area();

18

Idea of rectangle

An instance
of rectangle

Example of class usage

#include <iostream>
using std::cout;

class Rectangle {
 int width, height;
 public:
 void set_values (int,int);
 int area() {return width*height;}
};

void Rectangle::set_values (int x, int y)
{
 width = x;
 height = y;
}

int main () {
 Rectangle rect;
 rect.set_values (3,4);
 cout << "area: " << rect.area();

19

Declaration

Usage of the
methods

Implementation

Namespace

Example of class usage

#include <iostream>
using std::cout;

class Rectangle {
 int width, height;
 public:
 void set_values (int,int);
 int area() {return width*height;}
};

void Rectangle::set_values (int x, int y)
{
 width = x;
 height = y;
}

int main () {
 Rectangle rect;
 rect.set_values (3,4);
 cout << "area: " << rect.area();

20

Hyperuranion
(ὑπερουράνιος τόπος)

literally: "place beyond heaven”

“Real” world

What if I want to protect the rectangle
properties (the dimensions), once instantiated?

21

Constructors

#include <iostream>
using std::cout;

class Rectangle {
 int width, height;
 public:
 Rectangle(int x, int y);

 int area() {return width*height;}
};

Rectangle::Rectangle(int x, int y)  
{
 width = x;
 height = y;
}

int main () {
 Rectangle rect(3,4);
 cout << "area: " << rect.area();
 return 0;

22

Using the
constructor and

removing the
setting method

Constructors
#include <iostream>
using std::cout;

class Rectangle {
 int width, height;
 public:
 Rectangle(int x, int y);

 int area() {return width*height;}
};

Rectangle::Rectangle (int x, int y) :
width(x), height(y) { }

int main () {
 Rectangle rect(3,4);
 cout << "area: " << rect.area();
 return 0;
}

23

Better
implementation!

Inheritance

• Classes in C++ can be extended, creating new classes
which retain characteristics of the base class

• This process, known as inheritance, involves a base class
and a derived class

• The derived class inherits
the members of the base class,
on top of which it can
add its own members

24

Inheritance, an example

class Polygon {
 protected:
 int width, height;
 public:
 void set_values (int a, int b)
 { width=a; height=b;}
 };

class Rectangle: public Polygon
{
 public:
 int area ()
 {
 return width*height;
 }
};

class Triangle: public Polygon
{
 public:
 int area()
 {
 return width*height/2;
 }
};

25

Protected and not private!

• The protected access specifier used in class Polygon is similar
to private. Its only difference occurs in fact with inheritance:

• When a class inherits another one, the members of the derived
class can access the protected members inherited from the
base class, but not its private member

• By declaring width and height as protected instead of private,
these members are also accessible from the derived classes
Rectangle and Triangle, instead of just from members of
Polygon

• If they were public, they could be accessed just from anywhere
26

Public inheritance?

Mother class

members access

specifiers

Daughter class
members access

specifiers

Public inheritance
Public Public

Protected Protected

Protected
inheritance

Public Protected

Protected Protected

Private inheritance
Public Private

Protected Private

27

Let’s use the classes…

#include <iostream>
using std::cout;
using std::endl;

int main () {
 Rectangle rect;
 Triangle trgl;
 rect.set_values (4,5);
 trgl.set_values (4,5);
 cout << rect.area() << endl;
 cout << trgl.area() << endl;
 return 0;
}

have a look at the example
https://github.com/carlomt/inheritance_example

for more details
28

https://github.com/carlomt/inheritance_example

CMake

• a cross-platform free and open-source software application for managing
the build process of software using a compiler-independent method

• supports directory hierarchies and multiple libraries

• can locate executables, files, and libraries

• https://cliutils.gitlab.io/modern-cmake/

• use a version of CMake that came out after your compiler

• since CMake will dumb itself down to the minimum required version in
your CMake file, installing a new CMake, even system wide, is pretty safe

29

https://cliutils.gitlab.io/modern-cmake/

