
This course

Structure and logistics - 1

 This course is organized in a mixture of theoretical
lectures and practical hands-on sessions
 The hands-on sessions require real C++ coding to

build up a simplified Geant4 application
 Staged approach in tasks
 http://geant4.lns.infn.it/vienna2024
/introduction

 A pre-installed virtual machine and docker
container are provided for the hands-on sessions
 Includes Geant4 11.2.p01 on a Linux environment
 You should already have it downloaded and tested

 Please let us know ASAP if you have problems

Structure and logistics - 2

 You can try to install Geant4 on your (Linux/Mac)
laptop, if you wish
 The course is not meant to show that, though

 All lectures (pdf) will be uploaded on-the-fly on the
course indico page
 https://indico.cern.ch/event/1275551/

 Please feel free to ask any question, either during
the lectures , during the exercises or during the breaks

 Solutions of the exercises will be uploaded after the
end of each exercise session

Monte Carlo techniques and
concept

Luciano Pandola
INFN – Laboratori Nazionali del Sud

Geant4 Course
at the VIEnna Workshop on Simulations (VIEWS24)

Vienna, April 22nd- 25th, 2024

What Monte Carlo (MC)
techniques are for?

 Numerical solution of a (complex) macroscopic
problem, by simulating the microscopic
interactions among the components

 Uses random sampling, until convergence is
achieved
 Name after Monte Carlo's casino

 Applications not only in physics and science, but
also finances, traffic flow, social studies
 And not only problems that are intrisically

probabilistic (e.g. numerical integration)

MC in science

 In physics, elementary laws are (typically)
known MC is used to predict the outcome of
a (complex) experiment
 Exact calculation from the basic laws is unpractical
 Optimize an experimental setup, support data

analysis

 In this course: Monte Carlo for particle tracking
(interaction of radiation with matter)

 Usually the Monte Carlo wins over the exact
(mathematical) solution for complex problems

A bit of history

 Very concept of Monte Carlo
comes in the XVIII century
(Buffon, 1777, and then Laplace,
1786)
 Monte Carlo estimate of π

 Concept of MC is much older
than real computers
 one can also implement the

algorithms manually, with dice
(= Random Number Generator)

A bit of history

 Boost in the '50 (Ulam and Von
Neumann) for the development
of thermonuclear weapons

 Von Neumann invented the
name "Monte Carlo" and settled
a number of basic theorems

 First (proto)computers available
at that time
 MC mainly CPU load, minimal

I/O

A bit of history

The simplest MC application:
numerical estimate of π

 Shoot N couples (x,y)
randomly in [0,1]

 Count n: how many
couples satisfy (x2+y21)

[0,1]

[0,1]

 n/N = π/4 (ratio of areas)
 Convergence as 1/N

Most common application in
particle physics: particle tracking

 Problem: track a γ-ray in a
semi-infinite detector and
determine the energy
spectrum deposited
 Still, a model case

 All physics is known from
textbook (Compton
scattering, photoelectric
effect, etc.)

 Yet, the analytical calculation
is a nightmare (while still
possible)

γ-ray

Most common application in
particle physics: particle tracking

 Problem v2: track a γ-ray in a
finite detector (e.g. a NaI)
 Real-life (simplified) case

 Analytical computation nearly
impossible
 Monte Carlo clearly wins

 Now make the detector more
complicate, as in modern physics

γ-ray

What is
 Toolkit for the Monte Carlo simulation of the interaction of

particles with matter
 physics processes (EM, hadronic, optical) cover a

comprehensive set of particles, materials and over a wide
energy range

 offers a complete set of support functionalities (tracking,
geometry)

 Distributed software production and management: developed
by an international Collaboration
 Established in 1998
 Approximately 100 members, from Europe, America and Asia

 Written in C++ language
 Takes advantage from the Object Oriented software technology

 Open source
http://geant4.org

S. Agostinelli et al., Nucl. Instr. Meth. A 506 (2003) 250
J. Allison et al., IEEE Trans. Nucl. Scie. 53 (2006) 270
J. Allison et al., Nucl. Instr. Meth. A 835 (2016) 186

 Code and documentation available in the main
web page

 Regular tutorial courses held worldwide

https://geant4.org

versions and releases

 First release (Geant4 1.0) in December 1998
 Two releases per year since then
 Major releases (x.y) or minor releases (x.y) or beta

releases
 Patches regularly issued

 Last version: Geant4 11.2.p01
 Released February 16th, 2024
 This is the version installed in the VM/docker used for

this course
 Requires C++11 (gcc > 4.8.x)

 Native C+11 features in-place

Basic concept of Geant4

Toolkit and User Application

 Geant4 is a toolkit (= a collection of tools)
 i.e. you cannot “run” it out of the box
 You must write an application, which uses Geant4 tools

 Consequences:
 There are no such concepts as “Geant4 defaults”
 You must provide the necessary information to configure your

simulation
 You must deliberately choose which Geant4 tools to use

 Guidance: many examples are provided

Basic concepts

 What you MUST do:
 Describe your experimental set-up
 Provide the primary particles input to your simulation
 Decide which particles and physics models you want to use

out of those available in Geant4 and the precision of your
simulation (cuts to produce and track secondary particles)

 You may also want
 To interact with Geant4 kernel to control your simulation
 To visualise your simulation configuration or results
 To produce histograms, tuples etc. to be further analysed

Main Geant4 capabilities

 Transportation of a particle ‘step-by-step’ taking into
account all possible interactions with materials and fields

 The transport ends if the particle
 is slowed down to zero kinetic energy (and it doesn't have

any interaction at rest)
 disappears in some interaction
 reaches the end of the simulation volume

 Geant4 allows the User to access the transportation
process and retrieve the results (USER ACTIONS)
 at the beginning and end of the transport
 at the end of each step in transportation
 if a particle reaches a sensitive detector
 Others…

Multi-thread mode
 Geant4 supports multi-thread approach for multi-

core machines
 Simulation is automatically split on an event-by-

event basis
 different events are processed by different cores

 Can fully profit of all cores available on modern
machines substantial speed-up of simulations

 Unique copy (master) of geometry and physics
 All cores have them as read-only (saves memory)

 Backwards compatible with the sequential mode
 The MT programming requires some care: need to

avoid conflicts between threads
 Some modification and porting required

Concept for multi-thread …

Master

Workers

Geometry Physics RunAction

READONLY

Primary

RunAction

EvtAction

Primary

RunAction

EvtAction

Primary

RunAction

EvtAction

… vs. parallelisation

Geometry

Physics

Primary

RunAction

EvtAction

Primary

RunAction

EvtAction

Primary

RunAction

EvtAction

Geometry

Physics

Geometry

Physics

Nodes

 Each node
hosts a
complete
simulation

 Many copies
of geometry
and physics
tables

 More memory-
thristy

Interaction with the Geant4
kernel - 1

 Geant4 design provides tools for a user
application
 To tell the kernel about your simulation configuration
 To interact with Geant4 kernel itself

 Geant4 tools for user interaction are base
classes
 You create your own concrete class derived from

the base classes interface to the Geant4 kernel
 Geant4 kernel handles your own derived classes

transparently through their base class interface
(polymorphism)

Interaction with the Geant4
kernel - 2

 Abstract base classes for user interaction
(classes starting with G4V)
 User derived concrete classes are mandatory
 User to implement the purely virtual methods

 Concrete base classes (with virtual dummy
default methods) for user interaction
 User derived classes are optional

Two types of Geant4 base classes:

User Classes

Initialisation classes
Invoked at the initialization

 G4VUserDetectorConstruction
 G4VUserPhysicsList

Action classes
Invoked during the execution loop

 G4VUserActionInitialization
 G4VUserPrimaryGeneratorAction
 G4UserRunAction (*)
 G4UserEventAction
 G4UserTrackingAction
 G4UserStackingAction
 G4UserSteppingAction

Global: only one instance of
them exists in memory, shared
by all threads (readonly).
Managed only by the master
thread. Local: an instance of each action

class exists for each thread.
(*) Two RunAction's allowed: one for
master and one for threads

The mandatory user classes

Mandatory classes
in ANY Geant4 User

Application

G4VUserDetectorConstruction
describe the experimental set-up
G4VUserPhysicsList
select the physics you want to activate
G4VUserActionInitialization
takes care of the user initializations

G4VUserPrimaryGeneratorAction

Will be described in detail in the next lectures
(Mon-Wed)

Optional user classes
 Five concrete base classes whose virtual member functions

the user may override to gain control of the simulation at
various stages
 G4UserRunAction
 G4UserEventAction
 G4UserTrackingAction
 G4UserStackingAction
 G4UserSteppingAction

 Each member function of the base classes has a dummy
implementation (not purely virtual)
 Empty implementation: does nothing
 Override only the methods that you need

 User action classes must be registered to the Run Manager via
the G4VUserActionInizialization

e.g. actions to be done
at the beginning and
end of each event

The mandatory user classes

The geometry

 User class which describes the geometry must
inherit from G4VUserDetectorConstruction
and registered in the Run Manager

 Virtual base class: the purely virtual method must
be implemented
 G4VPhysicalVolume* Construct() = 0;

 Must return the pointer to the world volume: all other
volumes are contained in it

 Optionally, implement the virtual method
 void ConstructSDandField();

 Defines sensitive volumes and EM fields

Select physics processes

 Geant4 doesn’t have any default particles or processes
 Derive your own concrete class from the
G4VUserPhysicsList abstract base class
 define all necessary particles
 define all necessary processes and assign them to proper

particles
 define g/d production thresholds (in terms of range)

 Pure virtual methods of G4VUserPhysicsList

must be implemented by the user
in his/her concrete derived class

ConstructParticles()
ConstructProcesses()
SetCuts()

Physics Lists
 Geant4 doesn’t have any default particles or processes
 Partially true: there is no default, but there are a set of

"ready-for-use" physics lists released with Geant4,
tailored to different use cases. Mix and match:
 Different sets of hadronic models (depending on the

energy scale and modeling of the interactions)
 Different options for neutron tracking

 Do we need (CPU-intensive) description of thermal neutrons,
neutron capture, etc?

 Different options for EM physics
 Do you need (CPU-intensive) precise description at the low-

energy scale (< 1 MeV)? E.g. fluorescence, Doppler effects in the
Compton scattering, Auger emission, Rayleigh diffusion

 Only a waste of CPU time for LHC, critical for many low-
background experiments

Action Initialization
 User class must inherit from
G4VUserActionInitialization and registered
in the Run Manager

 Implement the purely virtual method
 void Build() = 0;
 Invoked in sequential mode and in MT mode by all

workers
 Must instantiate at least the primary generator

 Optional virtual method
 void BuildForMaster();
 Invoked by the master in MT mode. Applies only to

Run Action (all other user actions are thread-local)

Primary generator
 User class must inherit from
G4VUserPrimaryGeneratorAction
 Registered to the Run Manager via the

ActionInizialitation (MT mode)
 Register directly to the RunManager in seq-mode

 Implement the purely virtual method
 void GeneratePrimaries(G4Event*)=0;
 Called by the RunManager during the event loop, to

generate the primary vertices/particles
 Uses internally a concrete instance of
G4VPrimaryGenerator (e.g. G4ParticleGun) to
do the job

The main() program

The main() program - 1

 Geant4 does not provide the main()
 Geant4 is a toolkit!
 The main() is part of the user application

 In his/her main(), the user must
 construct G4RunManager (or his/her own derived class)
 notify the G4RunManager mandatory user classes derived

from
 G4VUserDetectorConstruction

 G4VUserPhysicsList

 G4VUserActionInitialization (takes care of Primary)

 The G4RunManagerFactory will pick the Sequential/MT
version of the G4RunManager

The main() program - 2

 The user may define in his/her main()
 optional user action classes
 VisManager, (G)UI session

 The user also has to take care of retrieving and
saving the relevant information from the simulation
(Geant4 will not do that by default)

 Don’t forget to delete the G4RunManager at the end

An example of main()
{
…

// Create the run manager (let the RunManagerFactory decide if MT, sequential or other).
//The flags from G4RunManagerType are: Default (default), Serial, MT, Tasking, TBB

auto* runManager =
G4RunManagerFactory::CreateRunManager(G4RunManagerType::Serial);

// Set mandatory user initialization classes
MyDetectorConstruction* detector = new MyDetectorConstruction;
runManager->SetUserInitialization(detector);
MyPhysicsList* physicsList = new MyPhysicsList;
runManager->SetUserInitialization(myPhysicsList);

// Set mandatory user action classes
runManager->SetUserAction(new MyActionInitialization);

// Set optional user action classes
runManager->SetUserAction(new MyEventAction());
runManager->SetUserAction(new MyRunAction(););
…

}

Documentation

 A few manuals available in the Geant4 webpage
 Application developer manual
 Physics manual

 Other tools available
 LXR code repository
 User forum
 Bugzilla
 GitHub code repo

http://geant4.org

https://github.com/Geant4

Examples

 Ready-for-the-use Geant4 applications
(examples) are distributed with Geant4
 Very good starting point for new users

 Three suites of examples:
 "basic": oriented to novice users and covering the

most typical use-cases of a Geant4 application with
keeping simplicity and ease of use.

 "extended": covers many specific use cases for
actual detector simulation.

 "advanced": where real-life complete applications
for different simulation studies are provided

Examples

 A webpage with doxygen documentation is
available for the basic/extended examples

https://geant4-userdoc.web.cern.ch/Doxygen/examples_doc/html/index.html

Who/why is using Geant4?

Experiments and MC

 In my knowledge, all experiments have a (more
or less detailed) full-scale Monte Carlo simulation

 Design phase
 Evaluation of background
 Optimization of setup to maximize scientific yield

 Minimize background, maximize signal efficiency

 Running/analysis phase
 Support of data analysis (e.g. provide efficiency for

signal, background, coincidences, tagging, …).
 Often, Monte Carlo is the only way to convert relative

rates (events/day) in absolute yields

Why Geant4 is a common
choice in the market

 Open source and object oriented/C++
 No black box
 Freely available on all platforms
 Can be easily extended and customized by using the

existing interfaces
 New processes, new primary generators, interface to ROOT

analysis, …
 Can handle complex geometries
 Regular development, updates, bug fixes and

validation
 Good physics, customizable per use-cases
 End-to-end simulation (all particles, including optical

photons)

LHC @ CERN
 All four big LHC

experiments have a
Geant4 simulation
 M of volumes
 Physics at the TeV scale

ATLAS

CMS

 Benchmark with
test-beam data

 Key role for the
Higgs searches

Space applications

 Satellites (g astrophysics, planetary sciences)
 Funding from ESA

AGILE

GLAST
Typical telescope:
Tracker
Calorimeter
Anticoincidence

Nuclear spectroscopy

47
SCEPTAR

TIGRESS

 Treatment planning for
hadrontherapy and proton-
therapy systems
 Goal: deliver dose to the tumor

while sparing the healthy tissues
 Alternative to less-precise (and

commercial) TP software
 Medical imaging
 Radiation fields from medical

accelerators and devices
 medical_linac
 gamma-knife
 brachytherapy

Proton-therapy beam line

GEANT4 simulation

Medical applications

Dosimetry with Geant4

Space science Radiotherapy
Effects on electronics

components

Geant4-based frameworks in
the medical physics

TOPAS

PTSim

GATE

