............. GE/&NT

Pablo Cirrone
INFN — Laboratori Nazionali del Sud

Pablo.cirrone@lns.infn.it

A lot of material by J. Pipek

Geant4 Course, Vienna (A), April 2024

Mandatory (and optional) user

i classes

At initialization At execution

G4VUserPrimaryGeneratorAction

G4UserRunAction

G4UserEventAction

G4UserTrackingAction

main ()
~ function /

G4UserSteppingAction

G4UserStackingAction i

Mandatory (and optional) user

i classes

At initialization

|G4VUserDetectorConstruction I

G4VUserPhysicsList

At execution

G4VUserPrimaryGeneratorAction

G4UserRunAction

G4UserEventAction

G4VUserActionInitialization

G4UserTrackingAction

main ()
function

G4UserSteppingAction

e b |

G4UserStackingAction i

The Detector Construction

= User class which describes the geometry must inherit
from G4VUserDetectorConstruction and registered

in the Run Manager

= Define the geometry of
your model

= All materials

= All volumes &
hlacements

= (Optionally) add fields

= (Optionally) define
volumes for read-out
(sensitive detectors)

/] ...

class G4VUserDetectorConstruction

{
public:
G4VUserDetectorConstruction () ;
virtual ~G4VUserDetectorConstruction() ;

public:
virtual G4VPhysicalVolume* Construct() = O0;
virtual void ConstructSDandField() ;

//

} ©

Rewmewmbev!

4

!'_ Part I: Units

i Note: Geant4 basic types

= Aliases for the primitive data types to provide cross-
platform compatibility:

» G4double, G4float, G4int, G4bool, G4long

= Enhanced version of string called G4String
= inherits from std::string = all methods and operators
= Sseveral additional methods

= G4ThreeVector is a three-component class corresponding to
a real physics vector (examples later)

G4ThreeVector dimensions {1.0, 2.0, 3.0 };

Please, use these types for best compatibility (e.g. G4int instead
of int, etc., G4ThreeVector when it makes sense etc.)

i Units in Geant4

= Don’t use default units!
= When specifying dimensions, always multiply by an appropriate unit:

G4double width = 12.5 * m;
G4double density = 2.7 * g/cm3;

= Most common units are defined in CLHEP library (included in Geant4):
» G4SystemOfUnits.hh

» CLHEP/SystemOfUnits.hh

= You can define new units

= Output data in terms of a specific unit:
= divide a value by the unit:

G4dcout << dE / MeV << " (MeV)" << G4endl;

iSystem of units in Geant4

megaelectronvolt (MeV)

kelvin millimeter (mm) candela steradian

= All other units derived from the basic ones.

o 1Ejseful feature: Geant4 can select the most appropriate unit
0 use

= specify the category for the data (Length, Time, Energy, €tc...):

G4cout << G4BestUnit (StepSize, "Length");

StepSize will be printed in km, m, mm or ... fermi, depending on
its actual value

Defining new units

= New units can be defined directly as constants, or (suggested
way) via G4UnitDefinition

= G4UnitDefinition (“name”, “symbol”,
“category”, value)
= Example (mass thickness):

= G4UnitDefinition (“grammpercm2”, “g/cm2”,
“MassThickness”, g/cm2);

= The new category “MassThickness” will be registered in the
kernel in G4UnitsTable

= To print the list of units:

= From the code
G4UnitDefinition: :PrintUnitsTable() ;

= At run-time, as UI command:
Idle> /units/list

!’_ Part II: Materials

i Materials

= Different levels of material description:
= ISotopes -2 G4Isotope

= elements 2> G4Element
= molecules > G4Material
= compounds and mixtures 2> G4Material

= Attributes associated:
=« Density (mandatory)
= Temperature, Pressure, State (gas, liquid, ...)

i Materials

s G4Isotope and G4Element describe properties of
the atoms:

= Atomic number, number of nucleons, mass of a mole,
shell energies, cross-sections per atoms, etc...

= G4Material describes the macroscopic
properties of the matter:

» temperature, pressure, state, density
« Radiation length, absorption length, etc...

= G4Material is used by tracking, geometry and
physics in Geant4

= Material properties computed from elemental
properties - assuption of linear combination

i Elements and isotopes

= If you need an element made by a non-natural
isotopic composition (e.g. e"Ge)
= Build isotopes

G4Isotope (const G4Stringé& name,
G4int z, // atomic number
G4int n, // number of nucleons
G4double a); // mass of mole

= ... and assemble into elements

G4Element (const G4Stringé& name,

const G4String& symbol, // element symbol
G4int nIso); // n. of isotopes

G4Element: :AddIsotope (G4Isotope* iso, // isotope
G4double relAbund) ; // fraction of nuclei

... for instance

Do not forget unit (g/mole)

= Build e"U

G4Isotope* U5 = new G4Isotop me="U235", iz=92, n=235,
a=235.01*g/mole); k//gena/’

G4Isotope* U8 = new G4Isotope(name="U238", iz=92, n=238,
a=238.03*g/mole);

G4Element* elU = new G4Element(name="enriched Uranium", symbol="U",
ncomponents=2);

elU->AddIsotope(U5, abundance= 90.*perCent);
elU->AddIsotope(U8, abundance= 10.*perCent);

= For element with natural isotopic composition,

definition is easier Do not forget unit (g/mole)

a = 16.00*g/mole; <
G4Element* elO = new G4Element("Oxygen", symbol="0", z=8., a);
G4cout << elO << G4endl; //printout of element info

i Elements and molecules

= Single-element materials

G4double z, a, density;

density = 1.390*g/cm3;

a = 39.95%g/mole;

G4Material* 1Ar = new G4Material("liquidAr", z=18, a, density);

= Molecule (composition by number of atoms)

a = 1.01*g/mole;
G4Element* elH = new G4Element("Hydrogen", symbol="H", z=1., a);

a = 16.00*g/mole;
G4Element* el0 = new G4Element("Oxygen", symbol="0", z=8., a);

density = 1.000*g/cm3;

G4Material* H20 = new G4Material("Water", density, ncomponents=2);
H20->AddElement(elH, natoms=2);

H20->AddElement(elO, natoms=1);

i Materials: compounds

= Composition by fraction of mass

a = 14.01*%g/mole;

G4Element* elN = new G4Element(name="Nitrogen",symbol="N", z= 7., a);
a = 16.00*g/mole;
G4Element* el0 = new G4Element(name="Oxygen",symbol="0", z= 8., a);

density = 1.290*mg/cm3;

G4Material* Air = new G4Material(name="Air", density, ncomponents=2);
Air->AddElement(elN, 70.0*perCent);

Air->AddElement(elO, 30.0*perCent);

i Materials: mixtures

= Composition of mixtures

G4Element* elC = ..; // define “carbon” element
G4Material* Si02 = ..; // define “quartz” material
G4Material* H20 = ..; // define “water” material

density = 0.200*g/cm3;

G4Material* aerogel = new G4Material("Aerogel",

density, ncomponents=3);
aerogel->AddMaterial (Si02,fractionmass=62.5*perCent);
aerogel->AddMaterial (H20, fractionmass=37.4*perCent);
aerogel->AddElement (elC, fractionmass= 0.1*perCent);

i Example: a gas

= It may be necessary to specify temperature and
pressure

« (dE/dx computation affected)

G4double density = 27. * mg/cm3;
G4double temperature = 325. * kelvin;
G4double pressure = 50. * atmosphere;

G4Material* CO2 = new G4Material("CO2Gas", density,
ncomponents=2, kStateGas, temperature, pressure);

C02->AddElement(C, natoms

C02->AddElement (0, natoms

1);
2);

"Vacuum”

= Absolute vacuum does not exist:
= Model it as a gas at very low density!

= Cannot define materials composed of multiple
elements through Z or A, or with p=0

G4double atomicNumber = 1.;
G4double massOfMole = 1.008*g/mole;
G4double density = 1.e-25*%g/cm3;
G4double temperature = 2.73*kelvin;
G4double pressure = 3.e-18%*pascal;

G4Material* Vacuum = new G4Material("interGalactic",
atomicNumber, massOfMole, density,
kStateGas, temperature, pressure);

i The NIST database

= All elements and many commonly-used materials
available in Geant4 through the NIST database

= No need to predefine elements and materials
= Retrieve materials from NIST manager:

G4NistManager* manager = G4NistManager::Instance();
G4Material* H20 = manager->FindOrBuildMaterial ("G4_WATER");
G4Material* vacuum = manager->FindOrBuildMaterial("G4 Galactic");

= Ul commands

/material/nist/printElement < print defined elements

/material/nist/listMaterials < print defined materials

* The NIST database: elements

NIST database for elements and
materials is imported in Geant4

= http://physics.nist.gov/Phys
RefData

= UI commands specific for handling
materials

= The best accuracy for the most
relevant parameters guaranteed:

= Density
= Mean excitation potential
= Element composition

= Isotope composition e Natural isotope compositions
= Various corrections e More than 3000 isotope masses

http://geant4.cern.ch/UserDocumentation/UsersGuides/ForApplicationDeveloper/html/apas08.html

i NIST materials

Elementary Materialsfrom the NIST Data

Z Name ChFormula density(g/cm"3) I(eV)

1 G4 H H2 8.3748e-05 19.2
2 G4_He 0.000166322 41.8
3 G4_Li 0.534 40

4 G4 _Be 1.848 63.7
5 G4 B 2.37 76

6 G4 C 2 81

7 G4 N N_2 0.0011652 82
8 G4 0 02 0.00133151 95
9 G4 F 0.00158029 115
10 G4_Ne 0.000838505 137
11 G4_Na 0.971 149

NIST Elements:
= H>Cf(Z=1->98)
NIST compounds:

e.g. “G4_ADIPOSE_TISSUE_IRCP”

HEP and Nuclear materials:
= e.g. Liquid Ar, PbWO

Possible to build mixtures of NIST and

user-defined materials

13 G4_Adipose_Tissue 0.92 63.2
1 0119477
6 0.63724
7 0.00797
8 0.232333
11 0.0005
12 2e-05
15 0.00016
16 0.00073
17 0.00119
19 0.00032
20 2e-05
26 2e-05
30 2e-05
4 G4_Air
6 0.000124
7 0.755268
8 0231781
18 0.012827
2 G4_Csl 4.51 553.1
53 0.47692
55 0.52308

0.00120479 85.7

!'_ Part III: Geometry

i Describe your detector

A detector geometry is made of a number of volumes

The largest volume is called World volume
= It must contain all other volumes

Derive your own concrete class from G4vUserDetectorConstruction
abstract base class

Implementing the virtual methods Construct () (pure virtual) and
ConstructSDandFields():

= Define shapes/solids required to describe the geometry

= Construct all necessary materials

= Construct and place volumes of your detector geometry

= (Define "sensitivity" properties associated to volumes)

= (Associate magnetic field to detector regions)

= (Define visualization attributes for the detector elements)

Geometry: implementation

i basics

= Implement a class inheriting from the abstract
base class G4vUserDetectorConstruction:

class MyDetector : public G4VUserDetectorConstruction {

public:
virtual G4VPhysicalVolume* Construct(); // required
virtual void ConstructSDAndField(); // optional
[l ...

}s

= Create an instance in the main program:

MyDetector* detector = new MyDetector();
runManager->SetUserInitialization(detector);

Note: Split the implementation into more classes and methods! (good

programming practice)
Note2: you should not delete the MyDetector instance! Run manager does

that automatically.

i G4VUserDetectorConstruction

s Method Construct ()

Define materials

Define solids and volumes of the geometry
Build the tree hierarchy of volumes

Define visualization attributes

= Return the world physical volume! -

= Method ConstructSDAndField ()
= Assign magnetic field to volumes / regions

= Define sensitive detectors and assign them to
volumes

» G4VUserDetectorConstruction.hh

i Three conceptual layers

m G4VSolid
= Shape, size

m G4LogicalVolume
= Hierarchy of volumes, material, sensitivity, magnetic field
m G4VPhysicalVolume

= Position, rotation. The same logical volume can be placed many times
(repeated modules)

G4VSolid

/d

G4Box

G4Tubs

G4logicalVolume

7T

G4Material

G4VPhysicalVolume

G4VisAttributes

I

G4\SensitiveDetector

G4PVPlacement

G4PVParameterised

Define detector geometry

Solid: shape and size.
= Basic strategy (U -
G4VSolid* pBoxSolid =

new G4Box (“aBoxSolid”,
l1.*m, 2.*m, 3.%*m);

G4LogicalVolume* pBoxLog =

new G4LogicalVolume (pBoxSolid,
pBoxMaterial, “aBoxLog”, 0, 0, 0);
G4VPhysicalVolume* aBoxPhys =
new G4PVPlacement (pRotation,

G4ThreeVector (posX, posY, posZ),
pBoxLog, “aBoxPhys”, pMotherLog, 0, copyNo) ;

Define detector geometry

Logical volume : + material, sensitivity, etc.

= Basic strategy
G4VSolid* pBoxSolid = ‘ ’
N

new G4Box (“aBoxSolid”,
l.*m, 2.*m, 3.*m);

G4LogicalVolume* pBoxLog =
new G4LogicalVolume (pBoxSolid,

pBoxMaterial, “aBoxLog”, 0, 0, 0);

G4VPhysicalVolume* aBoxPhys =

new G4PVPlacement (pRotation,

G4ThreeVector (posX, posY, posZ),
pBoxLog, “aBoxPhys”, pMotherLog, 0, copyNo) ;

Define detector geometry

m BaS|c strateg'y

G4VSol it pBoxXSotid-mesrems
new G4Box (“aBoxSolid”, :
1.*m, 2.*m, 3. *m),

G4LoglcalVolume* pBoxLog =

pBoxMaterlal “aBoqug” o, 0, 0);

G4VPhy51ca1Volume* aBoxPhxs =
E new G4PVPlacement(pRotatlon,

§ G4ThreeVectpr(posx posY posZ) ,
pBoxLogg‘aBoxPhys”, pMotherLog, 0, copyNo) ;

i Solids

= CSG (Constructed Solid Geometry)
solids

= G4Box, G4Tubs, G4Cons, G4Trd, ...

= Analogous to simple GEANT3 CSG solids
= Specific solids (CSG like)

= G4Polycone, G4Polyhedra, G4Hype, ...

= G4TwistedTubs, G4TwistedTrap, ...
= BREP (Boundary REPresented) solids

= G4BREPSolidPolycone,
G4BSplineSurface, ...

= Any order surface
= Boolean solids
= G4UnionSolid, G4SubtractionSolid, ...

‘L CGS: G4Box

G4Box(const G4String& pname, // name
G4double pX, // half-length in X
G4double pY, // half-length in Y
G4double pzZ, // half-length in Z);

Note the half-length!

20

—-50

CGS: G4Tubs & G4Cons

G4Tubs(const G4String& pname, // name
G4double pRmin, // inner radius (0)
G4double pRmax, // outer radius
G4double pDz, // Z half! length
G4double pSphi, // starting Phi (0)
G4double pDphi); // segment angle (twopi)

G4Cons(const G4String& pname, // name
G4double pRminl, // inner radius -pDz
G4double pRmaxl, // outer radius -pDz
G4double pRmin2, // inner radius +pDz
G4double pRmax2, // outer radius +pDz
G4double pDz, // Z half length =9
G4double pSphi, // starting Phi 20
G4double pDphi); // segment angle

fi
P
!

CGS solids

‘L Other

40-20 g

z 0
G4Torus —s0l £
G4Trd -
G4Sphere G4Para
08100 (parallelepiped)
0 100 Py
G40rb
9 (full solid *° _
T Sphere) ZFO CheCk SECtIOn 4.1.2 Of
i 0z i Geant4 Application
~100 ~100 Developers Guide for all

x 50 available shapes

G4UnionSolid

i Boolean solids

= Solids can be combined using boolean . :
operations: :

m G4UnionSolid, G4SubtractionSolid,
G4IntersectionSolid

= Requires: 2 solids, 1 boolean operation, and an
(optional) transformation for the 2" solid

= 2" solid is positioned relative to the coordinate —
system of the 1st solid :

= Result of boolean operation becomes a solid >
re-usable in a boolean operation

= Solids to be combined can be either CSG or G4IntersectionSolid
other Boolean solids :
= Note: tracking cost for the navigation in a e

complex Boolean solid is proportional to the
number of constituent CSG solids - :

i Boolean solids — an example

G4VSolid* box = new G4Box("Box",50*cm,60*cm,40*cm);
G4VSolid* cylinder =
new G4Tubs("Cylinder",0.,50.*cm,50.*cm,0.,twopi);

G4VSolid* union =
new G4UnionSolid("Box+Cylinder", box, cylinder);

G4VSolid* subtract =
new G4SubtractionSolid("Box-Cylinder", box, cylinder,
@, G4ThreeVector(30.*cm,0.,0.));

G4RotationMatrix* rm = new G4RotationMatrix();
rm->RotateX(30.*deg);
G4VSolid* intersect =
new G4IntersectionSolid("Box&&Cylinder",
box, cylinder, rm, G4ThreeVector(0.,0.,0.));

i Boolean solid - example

Logical volumes

= Contains all information of volume except position:

= Shape and dimension (G4VSolid)

= Material, sensitivity, visualization attributes
= Hierarchy of daughter volumes

=« Magnetic field, User limits

= Physical volumes of same type can share a logical volume.
= The pointers to solid and material must be not nullptr

G4LogicalVolume(G4VSolid* pSolid,
G4Material* pMaterial,
const G4String& name,
G4FieldManager* pFieldMgr=0,
G4VSensitiveDetector* pSDetector=0,
G4UserLimits* pULimits=0,
G4bool optimise=true);

optional

i Physical volumes

= A physical volume is a positioned
instance of a logical volume inside another H
logical volume (the mother volume)

= Placement (G4PVPlacement)
= it is one positioned volume placement

= Repeated: a volume placed many times

= Can represent any number of volumes

= reduces use of memory

= G4PVReplica (= simple repetition)

= G4PVParameterised (= more complex
pattern)

= GAPVDivision

repeated

Geometry hierarchy

= A volume is placed in its mother volume

= Position and rotation of the daughter volume is described with
respect to the local coordinate system of the mother volume

= The origin of the mother's local coordinate system is at the
center of the mother volume

= Daughter volumes cannot protrude from the mother volume
= Daughter volumes cannot overlap

= The logical volume of mother knows the daughter volumes it
contains

= It is uniquely defined to be their mother volume

A

ha

v

i Geometry hierarchy ...

® One logical volume can be placed more than /
once. One or more volumes can be placed ina :
mother volume

® The mother-daughter relationship is an -
information of G4LogicalVolume 4

® If the mother volume is placed more than once, :

all daughters by definition appear in each placed: 5)
physical volume :

® The world volume must be a unique physical :

volume which fully contains all other volumes ' /

(root volume of the hierarchy) :

" The world volume defines the global coordinate : ﬁ .) ﬁ

system. The origin of the global coordinate
system is at the center of the world volume

® Position of a track is given with respect to the
global coordinate system

lllllllllllllllllllllllllllllll

G4PVPlacement

= Single volume positioned relatively to the mother volume

= In a frame rotated and translated relative to the coordinate
system of the mother volume

= A few variants available:

= Using G4Transform3D to represent the direct rotation and
translation of the solid instead of the frame (alternative
constructor)

= specifying the mother volume as a pointer to its physical
volume instead of its logical volume

s Four constructors available

= logical OR physical volume as mother

= active OR passive transformation of the coordinate
system

G4PVPlacement
Rotation of mother frame ...

Single volume positioned relatively to the mother volume
(passive transformation)

G4PVPlacement (G4RotationMatrix* pRot, // rotation of mother frame
const G4ThreeVector& tlate, // position in mother frame
G4LogicalVolume* pCurrentLogical,
const G4String& pName,

G4lLogicalVolume* pMotherLogical,

G4bool pMany, // not used. Set it to false..
G4int pCopyNo, // unique arbitrary index

G4bool pSurfChk=false); // optional overlap check

Mother volume

G4PVPlacement
Rotation in mother frame ...

Single volume positioned relatively to the mother
volume (active transformation)

G4PVPlacement(G4Transform3D(
G4RotationMatrix &pRot, // rotation in daughter frame
const G4ThreeVector &tlate), // position in mother frame
G4LogicalVolume *pDaughterLogical,
const G4String &pName,
G4lLogicalVolume *pMotherLogical,

G4bool pMany, // not used, set it to false..

G4int pCopyNo, // unique arbitrary integer

G4bool pSurfChk=false); // optional overlap check
Mother volume A

rotation

translat!
frame

i Geometry problems

= Geant4 does not allow for malformed geometries, neither
protruding (daughter/mother) not overlapping (sisters)
= The behavior of navigation is unpredictable for such cases

= The problem of detecting overlaps between volumes is
bounded by the complexity of the solid models description

= Utilities are provided for detecting wrong positioning
= Optional checks at construction

= Kernel run-time commands Mothet Volume
= Graphical tools (DAVID) ,_,4-.---'""‘T""-f{.__,Tl'ﬂ, c | o
.""' III -..,_..'I |Il —__._:'___,_—0—'—._'__'
—a— T 1] |

i Tools for geometry check

" Constructors of G4PVPlacement and G4PVParameterised have an optional
argument “pSurfChk”

G4PVPlacement (G4RotationMatrix* pRot,
const G4ThreeVector &tlate,
G4LogicalVolume *pDaughterLogical,
const G4String &pName,
G4LogicalVolume *pMotherLogical,
G4bool pMany, G4int pCopyNo,
G4bool pSurfChk=false);

" If this flag is true, overlap check is done at the construction

® Some number of points are randomly sampled on the surface of creating
volume

" This check requires lots of CPU time, but it is worth to try at least once
" Built-in run-time commands to activate verification tests for the user geometry:
® /geometry/test/run Or /geometry/test/grid test

" start verification of geometry for overlapping regions based on a standard
grid setup, limited to the first depth level

" /geometry/test/recursive test for all depth levels (CPU intesive!)

i Regions

= A region is a sub-set of the geometry
= It may have its specific

= Production thresholds (cuts)

= User limits

= Artificial limits affecting to the tracking, e.g. max step
length, max number of steps, min kinetic energy left, etc.

= Field manager

= World logical volume is recognized as the default

region. User is not allowed to define a region to
the world logical volume

