
Geant4 physics: particles,
processes and physics list

Luciano Pandola
INFN – Laboratori Nazionali del Sud

A lot of material by G.A.P. Cirrone and J. Pipek

Geant4 Course
at the VIEnna Workshop on Simulations (VIEWS24)

Vienna, April 22nd- 25th, 2024

Mandatory (and optional) user
classes

At initialization At execution

G4VUserDetectorConstruction

G4VUserActionInitialization

G4UserSteppingAction

G4VUserPrimaryGeneratorAction

G4UserRunAction

G4UserTrackingAction

G4UserStackingAction

G4UserEventAction

G4VUserPhysicsList

main()
function

Mandatory (and optional) user
classes

At initialization At execution

G4VUserDetectorConstructionG4VUserDetectorConstruction

G4VUserActionInitialization

G4UserSteppingAction

G4VUserPrimaryGeneratorAction

G4UserRunAction

G4UserTrackingAction

G4UserStackingAction

G4UserEventAction

G4VUserPhysicsList

main()
function

Outlook

 Physics in Geant4 – motivation
 Particles
 Processes
 Physics lists

...Part 2:
 Production cuts
 Electromagnetic / hadronic physics

“Shouldn’t there be just one
universal and complete physics

description?”

No.

Physics – the challenge

 Huge amount of different processes for various
purposes (only a handful relevant)

 Competing descriptions of the same physics
phenomena (necessary to choose)
 fundamentally different approaches
 balance between speed and precision
 different parameterizations

 Hypothetical processes & exotic physics

Solution: Atomistic approach with modular physics lists

Part I: Particles and Processes

Particles: basic concepts

 There are three levels of class to describe particles in
Geant4:

 G4ParticleDefinition
 Particle static properties: name, mass, spin, PDG number,

etc.
 G4DynamicParticle

 Particle dynamic state: energy, momentum, polarization,
etc.

 G4Track
 Information for tracking in a detector simulation: position,

step, current volume, track ID, parent ID, etc.

Particles in Geant4

 Particle Data Group (PDG) particles
 Optical photons (different from gammas!)
 Special particles: geantino and charged geantino

 Only transported in the geometry (no interactions)
 Charged geantino also feels the EM fields

 Short-lived particles (τ < 10-14 s) are not
transported by Geant4 (decay applied)

 Light ions (as deuterons, tritons, alphas)
 Heavier ions represented by a single class: G4Ions

PDGName (in GPS...)Class nameParticle name

11e-G4Electronelectron

-11e+G4Positronpositron

-13
13

mu+
mu-

G4MuonPlus
G4MuonMinus

muon +/-

-15
15

tau+
tau-

G4TauPlus
G4TauMinus

tauon +/-

12
-12

nu_e
anti_nu_e

G4NeutrinoE
G4AntiNeutrinoE

electron (anti)neutrino

14
-14

nu_mu
anti_nu_mu

G4NeutrinoMu
G4AntiNeutrinoMu

muon (anti)neutrino

16
-16

nu_tau
anti_nu_tau

G4NeutrinoTau
G4AntiNeutrinoTau

tau (anti)neutrino

22gammaG4Gammaphoton (γ, X)

(0)opticalphotonG4OpticalPhotonphoton (optical)

(0)geantinoG4Geantinogeantino

(0)chargedgeantinoG4ChargedGeantinocharged geantino

Processes

 Responsibilities:
 decide when and where an interaction occurs

 GetPhysicalInteractionLength...() limit the step
 this requires a cross section
 for the transportation process, the distance to the

nearest object
 generate the final state of the interaction

 changes momentum, generates secondaries, etc.
 method: DoIt...()
 this requires a model of the physics

How do particles interact with materials?

The G4VProcess
 Physics processes are derived from the G4VProcess base class
 Abstract class defining the common interface of all processes in

Geant4, used by all physics processes

AlongStep

PostStep

+
- + +

+
+

-
- - -

 Three kinds of "actions":
 AtRest actions

 Decays, e+ annihilation
 AlongStep actions

 To describe continuous (inter)actions,
occurring along the path of the particle,
i.e. "soft" interactions

 PostStep actions
 To describe the point-like (inter)actions,

like decay in flight, hadronic interactions,
i.e. "hard" interactions

A process can implement a combination of them (decay = AtRest + PostStep)

Example processes
• Discrete process: Compton Scattering, hadronic inelastic, ...

– step determined by cross section, interaction at end of step
• PostStepGPIL(), PostStepDoIt()

• Continuous process: Čerenkov effect
– photons created along step, roughly proportional to step length

• AlongStepGPIL(), AlongStepDoIt()
• At rest process: muon capture at rest

– interaction at rest
• AtRestGPIL(), AtRestDoIt()

• Rest + discrete: positron annihilation, decay, ...
– both in flight and at rest

• Continuous + discrete: ionization
– energy loss is continuous
– knock-on electrons (δ-ray) are discrete

pure

combined

Geant4 transportation in one
slide

1. a particle is shot and “transported”
2. all processes associated to the particle propose a geometrical step length

(depends on process cross-section)
3. the process proposing the shortest step “wins” and the particle is moved to

destination (if shorter than “Safety”)
4. all processes along the step are executed (e.g. ionization)
5. post step phase of the process that limited the step is executed

 New tracks are “pushed” to the stack
 Dynamic properties are updated

6. if Ekin=0 all at rest processes are executed; if particle is stable the track is
killed

Else
7. new step starts and sequence repeats...

+++++++++++

Geant4 transportation in one
slide – P.S.

 Processes return a “true path length”. The
multiple scattering “virtually folds up” this true
path length into a shorter ”geometrical” path
length

 Transportation process can limit the step to
geometrical boundaries

Geant4 way of tracking
 Force step at

geometry boundaries
 All AlongStep

processes co-work,
the PostStep
compete (= only one
selected)

 Call AtRest actions for
particles at rest

 Secondaries saved at the top of the stack:
tracking order follows ‘last in first out’ rule:
T1 T3 T5 T7 T4 T6 T2

Tracking verbosity

**

* G4Track Information: Particle = gamma, Track ID = 1, Parent ID = 0

**

Step# X(mm) Y(mm) Z(mm) KinE(MeV) dE(MeV) StepLeng TrackLeng NextVolume ProcName

0 47.4 -53 -150 6 0 0 0 Envelope initStep

1 47.4 -53 -58 0.844 0 92 92 Envelope compt

2 -46 15.9 5.55 0.47 0 132 224 Envelope compt

3 -100 6.37 -3.62 0.47 0 55.6 280 World
Transportation

4 -120 2.84 -7.02 0.47 0 20.6 301 OutOfWorld
Transportation

**
* G4Track Information: Particle = e-, Track ID = 3, Parent ID = 1

**

Step# X(mm) Y(mm) Z(mm) KinE(MeV) dE(MeV) StepLeng TrackLeng NextVolume ProcName

0 -46 15.9 5.55 0.375 0 0 0 Envelope initStep

1 -46.1 16.4 5.98 0.0482 0.327 1.16 1.16 Envelope eIoni

2 -46.1 16.3 5.98 0 0.0482 0.0408 1.2 Envelope eIoni

Primary γ

Compton e-

UI command: /tracking/verbose 1UI command: /tracking/verbose 1

Part II: Physics lists & Co.

A physics list: what it is, what
it does

 One instance per application
 registered to run manager in main()
 inheriting from G4VUserPhysicsList

 Responsibilities
 all particle types (electron, proton, gamma, ...)

 all processes (photoeffect, bremsstrahlung, ...)

 all process parameters (...)
 production cuts (e.g. 1 mm for electrons, ...)

 All physics lists must derive from this class
 And then be registered to the G4(MT)RunManager
 Mandatory class in Geant4

 User must implement the following (purely virtual) methods:
 ConstructParticle(), ConstructProcess()

 Optional Virtual method:
 SetCuts() (used to be purely virtual up to 10.2)

G4VUserPhysicsList

class MyPhysicsList: public G4VUserPhysicsList {
public:
MyPhysicsList();
~MyPhysicsList();
void ConstructParticle();
void ConstructProcess();
void SetCuts();
}

Three ways to get a physics
list

 Manual: Write your own class, to specify all
particles & processes that may occur in the
simulation (very flexible, but difficult)

 Physics constructors: Combine your physics
from pre-defined sets of particles and processes.
Still you define your own class – modular physics
list (easier)

 Reference physics lists: Take one of the pre-
defined physics lists. You don't create any class
(easy)

Derived class from
G4VUserPhysicsList

 Implement 3 methods:

Advantage: most flexible
Disadvantages:

 most verbose
 most difficult to get right

Way 1

class MyPhysicsList : public G4VUserPhysicsList {
public:

// ...
void ConstructParticle(); // pure virtual
void ConstructProcess(); // pure virtual
void SetCuts();
// ...

}

G4VUserPhysicsList:
implementation

 ConstructParticle()

 choose the particles you need in your
simulation, define all of them here

 ConstructProcess()

 for each particle, assign all the physics
processes relevant to your simulation

 SetCuts()

 set the range cuts for secondary production for
processes with infrared divergence

MORE ON THIS LATER

1) ConstructParticle()
void MyPhysicsList::ConstructParticle()
{

G4Electron::ElectronDefinition();

G4Proton::ProtonDefinition();

G4Neutron::NeutronDefinition();

G4Gamma::GammaDefinition();

....

}

Due to the large number of particles
can be necessary to instantiate, this
method sometimes can be not so

comfortable

It is possible to define all the
particles belonging to a

Geant4 category:

• G4LeptonConstructor
• G4MesonContructor
• G4BaryonConstructor
• G4BosonConstructor
• G4ShortlivedConstructor
• G4IonConstructor

void MyPhysicsList::ConstructParticle()
{

// Construct all baryons

G4BaryonConstructor bConstructor;

bConstructor.ConstructParticle();

// Construct all leptons

G4LeptonConstructor lConstructor;

lConstructor.ConstructParticle();

}

2) ConstructProcess()

1. For each particle, get its process manager.

2. Construct all processes and register them.

3. Don’t forget transportation.
AddTransportation();

G4ProcessManager *elManager = G4Electron::ElectronDefinition()

->GetProcessManager();

elManager->AddProcess(new G4eMultipleScattering, -1, 1, 1);

elManager->AddProcess(new G4eIonisation, -1, 2, 2);

elManager->AddProcess(new G4eBremsstrahlung, -1, -1, 3);

elManager->AddDiscreteProcess(new G4StepLimiter);

3) SetCuts()

 Define all production cuts for gamma,
electrons and positrons
 Recently also for protons

 Notice: this is a production cut, not a
tracking cut

G4VModularPhysicsList

Way 2

 Similar structure as G4VUserPhysicsList (same
methods to override – though not necessary):

Differences to “manual” way:
 Particles and processes typically handled by physics

constructors (still customizable)
 Transportation automatically included

class MyPhysicsList : public G4VModularPhysicsList {
public:

MyPhysicsList(); // define physics constructors
void ConstructParticle(); // optional
void ConstructProcess(); // optional
void SetCuts(); // optional

}

Physics constructors (1)

 "Building blocks" of a modular physics list
 Inherit from G4VPhysicsConstructor
 Defines ConstructParticle() and
ConstructProcess()

 to be fully imported in modular list (behaving in
the same way)

 GetPhysicsType()

 enables switching physics of the same type, if
possible (see next slide)

Physics constructors (2)

 Huge set of pre-defined ones
 EM: Standard, Livermore, Penelope
 Hadronic inelastic: QGSP_BIC, FTFP_Bert, ...
 Hadronic elastic: G4HadronElasticPhysics, ...
 ... (decay, optical physics, EM extras, ...)

 You can implement your own (of course) by
inheriting from the G4VPhysicsConstructor
class

Code: $G4INSTALL/source/physics_lists/constructors

How to use physics
constructors

Add physics constructor in the class
constructor:

This already works and no further method
overriding is necessary

To be continued (if you want to customize)...

MyModularList::MyModularList() {

// Hadronic physics

RegisterPhysics(new G4HadronElasticPhysics());

RegisterPhysics(new G4HadronPhysicsFTFP_BERT_TRV());

// EM physics

RegisterPhysics(new G4EmStandardPhysics());

}

Customizing a
G4ModularPhysicsList

 You can override the CreateParticle(),
CreateProcess(), and SetCuts()
methods:

void MyModularList::ConstructProcess() {

// Call the default implementation, otherwise you break the behaviour

G4VModularPhysicsList::ConstructProcess();

// Add your customization

G4ProcessManager *elManager = G4Electron::Definition()->GetProcessManager();

elManager->AddDiscreteProcess(new MyElectronProcess);

}

Don’t
forget!

Replace physics constructors

You can add or remove the physics constructors
after the list instance is created:
 e.g. in response to UI command
 only before initialization
 physics of the same type can be replaced

void MyModularList::SelectAlternativePhysics() {

AddPhysics(new G4OpticalPhysics);

RemovePhysics(fDecayPhysics);

ReplacePhysics(new G4EmLivermorePhysics);

}

Reference physics lists

Way 3

 Pre-defined ("plug-and-play") physics lists
 already containing a complete set of particles

& processes (that work together)
 targeted at specific area of interest (HEP,

medical physics, ...)
 constructed as modular physics lists, built on

top of physics constructors
 customizable (by calling appropriate methods

before initialization)

Using a reference physics list

 Super-easy: in the main() function, just
register an instance of the physics list to the
G4(MT)RunManager:

#include "QGSP_BERT.hh"

int main() {
// Run manager
G4RunManager * runManager = new G4RunManager();
// ...
G4VUserPhysicsList* physics = new QGSP_BERT();
// Here, you can customize the “physics” object
runManager->SetUserInitialization(physics);
// ...

}

Alternative: Reference by
name

 If you want to get reference physics lists by
name (e.g. from environment variable), you
can use the G4PhysListFactory class:

#include "G4PhysListFactory.hh"
int main() {

// Run manager
G4RunManager* runManager = new G4RunManager();
// E.g. get the list name from environment varible
G4String listName{ getenv("PHYSICS_LIST") };
auto factory = new G4PhysListFactory();
auto physics = factory->GetReferencePhysList(listName);
runManager->SetUserInitialization(physics);
// ...

}

The complete lists of
Reference Physics List
$G4INSTALL/source/physics_lists/lists

Where to find
information?

https://geant4.web.cern.ch/support

Summary – three kinds of
physics lists for Geant4

 Old-style flat physics list
 You code what you want, particle by particle and process

by process
 Very much flexible, but not really encouraged

 User-custom modular physics list
 Blocks (constructors) provided by Geant4
 Can register user-custom constructors
 Usually the optimal compromise between flexibility and

user-friendliness
 Ready-for-the-use Geant4 physics list

 Plug and play (directly registered in the main!)
 Can still register extra constructors

Hands-on session

 Task3
 Task3a: Particles and processes
 Task3b: Physics lists

 http://geant4.lns.infn.it/vienna2024/task3

