
Interaction with the Geant4
kernel – part 1

Luciano Pandola
INFN – Laboratori Nazionali del Sud

A lot of material by G.A.P. Cirrone and J. Pipek

Geant4 Course
at the VIEnna Workshop on Simulations (VIEWS24)

Vienna, April 22nd- 25th, 2024

… User classes (cont'ed)
At initialization At execution
G4VUserDetectorConstruction

G4VUserActionInitialization

G4UserSteppingAction

G4VUserPrimaryGeneratorAction

G4UserRunAction*

G4UserTrackingAction

G4UserStackingAction

G4UserEventAction

G4VUserPhysicsList

Global: only one instance exists in
memory, shared by all threads.

Local: an instance of each action
class exists for each thread.
(*) Two RunAction's allowed: one for master
and one for threads

Outlook

 Run, Event, Track, ...
 a word about multi-threading

 Optional user action classes
 Command-based scoring
 Analysis tools (detached slides)

Part I: The main ingredients

Geant4 terminology: an
overview

 The following keywords are often used in
Geant4
 Run, Event, Track, Step
 Processes: At Rest, Along Step, Post Step
 Cut (or production threshold)
 Worker/master thread (for MT)

Run, Event and Tracks

• One Run consists of
– Event #1 (track #1, track #2,)
– Event #2 (track #1, track #2,)
–
– Event #N (track #1, track #2,)

Run
Event 0

Event 1

Event 2

Event 3

track 1 track 3track 2 track 4

track 1 track 3track 2

track 1

track 1 track 3track 2 track 4

The Event (G4Event)
 An Event is the basic unit of simulation in Geant4
 At the beginning of processing, primary tracks are generated

and they are pushed into a stack
 A track is popped up from the stack one-by-one and ‘tracked’

 Secondary tracks are also pushed into the stack
 When the stack gets empty, the processing of the event is

completed
 G4Event class represents an event. At the end of a successful

event it has:
 List of primary vertices and particles (as input)
 Hits and Trajectory collections (as outputs)

 G4EventManager class manages the event
 G4UserEventAction is the optional User hook

The Run (G4Run)
 As an analogy with a real experiment, a run of Geant4

starts with ‘Beam On’
 Within a run, the User cannot change

 The detector setup
 The physics setting (processes, models)

 A Run is a collection of events with the same detector
and physics conditions

 At the beginning of a Run, geometry is optimised for
navigation and cross section tables are (re)calculated

 The G4RunManager class manages the processing of
each Run, represented by:
 G4Run class
 G4UserRunAction for an optional User hook

The Track (G4Track)
 The Track is a snapshot of a particle and it is represented

by the G4Track class
 It keeps ‘current’ information of the particle (i.e. energy,

momentum, position, polarization, ..)
 It is updated after every step

 The track object is deleted when
 It goes outside the world volume
 It disappears in an interaction (decay, inelastic scattering)
 It is slowed down to zero kinetic energy and there are no

'AtRest' processes
 It is manually killed by the user

 No track object persists at the end of the event
 G4TrackingManager class manages the tracking
 G4UserTrackingAction is the optional User hook

The Step (G4Step)
 G4Step represents a step in the particle propagation, i.e. the

“flight” of the particle between two subsequent interactions
 A G4Step object stores transient information of the step

 Has the information about the two points (pre-step and
post-step) and the ‘delta’ information of a particle (energy
loss on the step,)

 It is updated each time a process is invoked
 A step can never cross a boundary

 Steps can be limited by geometry
 You can extract information from a step after the step is

completed, in the UserSteppingAction()of your step action
class file
 User class derived by G4UserSteppingAction

The G4Step object
 A G4Step object contains

 The two endpoints (pre and post step) so one has
access to the volumes containing these endpoints

 Changes in particle properties between the points
 Difference of particle energy, momentum,
 Energy deposition on step, step length, time-of-flight, ...

 A pointer to the associated G4Track object
 Volume hierarchy information

 G4Step provides many Get… methods to access
information or object istances
 G4StepPoint* GetPreStepPoint(),

Step concept and boundaries

 In case a step is limited by a volume boundary, the end point physically
stands on the boundary and it belongs to the next volume [this is a
convention]

 To check if a step ends on a boundary, one may compare if the
physical volume of pre and post-step points are equal
 One can also use the step status  fGeometryBoundary when the

step ends on a volume boundary (does not apply to world volume)

Example: parent track and
process

if (track->GetTrackID() != l)
{

G4cout << "Particle is a secondary" << G4endl;

if (track->GetParentID() == l)
{

G4cout << "But parent was a primary" << G4endl;
}

// Get process information
G4VProcess* creatorProcess = track->GetCreatorProcess();
G4String processName = creatorProcess->GetProcessName();
G4cout << "Particle was created by " << processName << G4endl;
}

}

Example: boundaries

G4StepPoint* preStepPoint = step -> GetPreStepPoint();
G4StepPoint* postStepPoint = step -> GetPostStepPoint();

// Use the GetStepStatus() method of G4StepPoint to get the status of the
// current step (contained in post-step point) or the previous step
// (contained in pre-step point):
if(preStepPoint -> GetStepStatus() == fGeomBoundary) {

G4cout << "Step starts on geometry boundary" << G4endl;
}
if(postStepPoint -> GetStepStatus() == fGeomBoundary) {

G4cout << "Step ends on geometry boundary" << G4endl;
}

// You can retrieve the material of the next volume through the
// post-step point:
G4Material* nextMaterial = step->GetPostStepPoint()->GetMaterial();

Example: step "deltas"

UserSteppingAction::UserSteppingAction(const G4Step* step) {
// Total energy deposition on the step (= energy deposited by energy loss
// process and energy of secondaries that were not created since their
// process and energy of secondaries that were not created since their
// energy was < Cut):
G4double energyDeposit = step -> GetTotalEnergyDeposit();

// Difference of energy, position and momentum of particle between pre-
// and post-step point
G4double deltaEnergy = step -> GetDeltaEnergy();
G4ThreeVector deltaPosition = step -> GetDeltaPosition();
G4double deltaMomentum = step -> GetDeltaMomentum();

// Step length
G4double stepLength = step -> GetStepLength();

}

Example: particle info
// Retrieve from the current step the track (after PostStepDolt of
// step is completed):
G4Track* track = step -> GetTrack();

// From the track you can obtain the pointer to the dynamic particle:
const G4DynamicParticle* dynParticle = track -> GetDynamicParticle();

// From the dynamic particle, retrieve the particle definition:
G4ParticleDefinition* particle = dynParticle -> GetDefinition();

// The dynamic particle class contains e.g. the kinetic energy after the step:
G4double kinEnergy = dynParticle -> GetKineticEnergy();

// From the particle definition class you can retrieve static
// information like the particle name:
G4String particleName = particle -> GetParticleName();

G4cout << particleName << ": kinetic energy of "
<< (kinEnergy / MeV) << " MeV" << G4endl;

Part II: Optional User Action
classes

Optional user classes

 Five base classes with virtual methods the user may
override to step during the execution of the application
("user hooks“)
 G4UserRunAction
 G4UserEventAction
 G4UserTrackingAction
 G4UserStackingAction
 G4UserSteppingAction

 Default implementation (not purely virtual): do
nothing

 Therefore, override only the methods you need.

e.g. actions to be done
at the beginning and
end of each event

Multi-threaded processing of
events

Master thread Worker 1 Worker 2 Worker 3

G4Run (100 evts)

G4Run (33 evts) G4Run (33 evts)G4Run (34 evts)

G4Run::Merge()

Event 0 Event 33 Event 67

Event 32 Event 66 Event 99

...

Results Results Results

Results

User actions in MT mode

Master

Workers

Geometry Physics RunAction

READONLY

Primary

RunAction

EvtAction

Primary

RunAction

EvtAction

Primary

RunAction

EvtAction

G4UserRunAction

MT

void BeginOfRunAction(const G4Run*)

void EndOfRunAction(const G4Run*)

G4Run* GenerateRun()

Uses:
 Book/output histograms and other analysis tools
 Custom G4Run with additional information
 Define parameters

G4UserEventAction

void BeginOfEventAction(const G4Event*)

void EndOfEventAction(const G4Event*)

Uses:

 Hit collection and event analysis
 Event selection
 Logging (e.g. output event number)

G4UserStackingAction

G4ClassificationOfNewTrack
ClassifyNewTrack(const G4Track*)

void NewStage()

void PrepareNewEvent()

Uses:
 Pre-selection of tracks (~manual cuts)
 Optimization of the order of track execution

G4UserTrackingAction

void PreUserTrackingAction(const
G4Track*)

void PostUserTrackingAction(const
G4Track*)

Uses:
 Track pre-selection
 Store trajectories

G4UserSteppingAction

void UserSteppingAction(const G4Step*)

Uses:
 Get information about particles
 Kill tracks under specific circumstances

Registration of user actions

 The instances of the user action classes (all
of them, some of them, …) must be
registered to the G4RunManager via a
user-defined action initialization class

runManager->SetUserInitialization(
new MyActionInitialization);

MyActionInitialization

void MyActionInitialization::Build() const
{

//Set mandatory classes
SetUserAction(new MyPrimaryGeneratorAction());
// Set optional user action classes
SetUserAction(new MyEventAction());
SetUserAction(new MyRunAction());

}

void MyActionInitialization::BuildForMaster() const
{

// Set optional user action classes
SetUserAction(new MyMasterRunAction());
}

 Register thread-local user actions

 Register RunAction for the master (optional)

Also the primary
generator

Part III: Command-based
scoring

Command-based scoring

• Define a scoring mesh
/score/create/boxMesh <mesh_name>
/score/open, /score/close

• Define mesh parameters
/score/mesh/boxsize <dx> <dy> <dz>
/score/mesh/nbin <nx> <ny> <nz>
/score/mesh/translate,

• Define primitive scorers
/score/quantity/eDep <scorer_name>
/score/quantity/cellFlux <scorer_name>
currently 20 scorers are available

UI commands for scoring
 no C++ required,

apart from instantiating
G4ScoringManager in

main()

• Define filters
/score/filter/particle <filter_name>

<particle_list>
/score/filter/kinE <filter_name>

<Emin> <Emax> <unit>
currently 5 filters are available

• Output
/score/draw <mesh_name>

<scorer_name>
/score/dump,
/score/list

int main() {
…

G4ScoringManager::GetScoringManager();
…
}

30

G4analysis tools

(detached session)

Geant4 analysis classes

 A basic analysis interface is available in Geant4 for
histograms (1D and 2D) and ntuples
 Make life easier because they are thread-safe

 ROOT is not! Manual text output usually not!
 No need to worry about the interference of threads

 Unique interface to support different output formats
 ROOT, AIDA XML, CSV and HBOOK
 Code is the same, just change one line to switch from

one to an other
 Everything done via G4AnalysisManager

 Singleton class  use Instance()
 UI commands available

g4analysis

 Selection of output format is performed by including
a proper header file

 All the rest of the code unchanged
 Unique interface

#ifndef ANALYSIS_HH
#define ANALYSIS_HH

// Use ROOT as output format for all Geant4 analysis tools
using G4AnalysisManager = G4RootAnalysisManager;

//using G4AnalysisManager = G4CsvAnalysisManager;

#endif

Histograms

Open file and book histograms

#include "MyAnalysis.hh"

void MyRunAction::BeginOfRunAction(const G4Run* run)
{

// Get analysis manager
G4AnalysisManager* man = G4AnalysisManager::Instance();
man->SetVerboseLevel(1);
man->SetFirstHistoId(1);

// Creating histograms
man->CreateH1("h","Title", 100, 0., 800);
man->CreateH1("hh","Title",100,0.,10);

// Open an output file
man->OpenFile("myoutput");

}
Open output file

ID=1

ID=2

Start numbering of
histograms from ID=1

Fill histograms and write on
file

#include "MyAnalysis.hh"
void MyEventAction::EndOfEventAction(const G4Run* aRun)
{
auto man = G4AnalysisManager::Instance();
man->FillH1(1, fEnergyAbs/MeV);
man->FillH1(2, fEnergyGap/MeV);

}

void MyRunAction::EndOfRunAction(const G4Run* aRun)
{
G4AnalysisManager::Instance()->Write();

}

int main()
{
...
G4AnalysisManager::Instance()->CloseFile();

}

ID=1

ID=2

Ntuples

yxEnergyEventID

-0.014213165-0.73915703199.51617530
1.1286402041.85281252198.00203551
-0.2779491990.863203688100.07344692
-0.898594988-2.06345268599.35086773
0.7364682291.030581054101.25059544
-1.065372115-1.46450941798.98498415
-0.2033192541.121931704101.15476446
-1.2834109590.012068917100.88767487
-0.5206158951.852532119100.30138618
0.5569672581.084122362100.62958829
1.317380892-1.021971662100.488768110
-0.4835302420.614222096101.671656711
0.203524549-0.77603445699.108309312
-0.6906151260.81437820497.359577613
-1.278746667-0.408732803100.726461214

Ntuples support

 g4tool supports ntuples
 Any number of ntuples
 Any number of columns per ntuple
 Supported types are int/float/double

 For more complex tasks (e.g. full functionality
of ROOT TTrees) have to link ROOT directly
 And take care of thread-safety

Book ntuples
#include "MyAnalysis.hh"
void MyRunAction::BeginOfRunAction(const G4Run* run)
{
// Get analysis manager
auto man = G4AnalysisManager::Instance();
man-> SetFirstNtupleId(1);

// Creating ntuple
man->CreateNtuple("name", "Title");
man->CreateNtupleDColumn("Eabs");
man->CreateNtupleDColumn("Egap");
man->FinishNtuple();

man->CreateNtuple("name2","title2");
man->CreateNtupleIColumn("ID");
man->FinishNtuple();

}

ID=1

Start numbering of
ntuples from ID=1

ID=2

Fill ntuples

 File handling and general clean-up as
shown for histograms

#include "MyAnalysis.hh"
void MyEventAction::EndOfEventAction(const G4Run* aRun)
{
auto man = G4AnalysisManager::Instance();
man->FillNtupleDColumn(1, 0, fEnergyAbs);
man->FillNtupleDColumn(1, 1, fEnergyGap);
man->AddNtupleRow(1);

man->FillNtupleIColumn(2, 0, fID);
man->AddNtupleRow(2);

}

ID=1,
columns 0, 1

ID=2,
column 0

G4Accumulable<T>

 Templated class to collect simple information
 Thread-safe
 Accumulable during Run
 Value merge at the end (explicit)
 Scalar variables only (otherwise, expert)

 Alternative to ntuples/histograms
 Managed by G4AccumulableManager

G4Accumulable – C++ (1)

G4Accumulable<G4int> fNElectrons;
G4Accumulable<G4double> fAverageElectronEnergy;

1) Declare (instance) variables (of RunAction)

2) Register to accumulable manager (in RunAction constructor)

G4AccumulableManager* accManager = G4AccumulableManager::Instance();
accManager->RegisterAccumulable(fNElectrons);
accManager->RegisterAccumulable(fAverageElectronEnergy);

fNElectrons += 1; // Normal arithmetics

4) Update during run (e.g. in Stacking action)

G4AccumulableManager* accManager = G4AccumulableManager::Instance();
accManager->Reset();

3) Reset to zero values (in RunAction::BeginOfRunAction)

► G4Accumulable.hh

G4Accumulable – C++ (2)

6) Report after run (in RunAction::EndOfRunAction)

G4AccumulableManager* accManager = G4AccumulableManager::Instance();
accManager->Merge();

5) Merge after run (in RunAction::EndOfRunAction)

G4AccumulableManager* accManager = G4AccumulableManager::Instance();
if (IsMaster())
{

if (fNElectrons.GetValue())
{

G4cout << " * Produced " << fNElectrons.GetValue();
G4cout << " secondary electrons/event. Average energy: ";
G4cout << fAverageElectronEnergy.GetValue()/keV/fNElectrons.GetValue();
G4cout << " keV" << G4endl;

}
else

G4cout << " * No secondary electrons produced" << G4endl;
}

More slides…

Output stream (G4cout)

 G4cout is a iostream object defined by Geant4.
 Used in the same way as standard std::cout
 Output streams handled by G4UImanager
 G4endl is the equivalent of std::endl to end a

line
 MT-handling: will display also the threadID

WT1> I am here
WT5> I am here

 Output strings may be displayed in another window
(Qt GUI) or redirected to a file

Example: output on screen

void SteppingAction::UserSteppingAction(const G4Step* aStep)
{

// Collect data
G4Track* theTrack = aStep->GetTrack();
G4DynamicParticle* particle = theTrack->GetDynamicParticle();
G4ParticleDefinition* parDef = particle->GetDefinition();

G4double edep = aStep->GetTotalEnergyDeposit();
G4double particleCharge = particle->GetCharge();
G4double kineticEnergy = theTrack->GetKineticEnergy();

// The output
G4cout

<< "Energy deposited--->" << " " << edep << "
<< "Charge--->" << " " << particleCharge << " "
<< "Kinetic Energy --->" << " " << kineticEnergy << " " <<

G4endl;
}

Output on screen: an example
Begin of Event: 0

Energy deposited---> 9.85941e-22 Charge---> 6 Kinetic energy---> 160
Energy deposited---> 8.36876 Charge---> 6 Kinetic energy---> 151.631
Energy deposited---> 8.63368 Charge---> 6 Kinetic energy---> 142.998
Energy deposited---> 5.98509 Charge---> 6 Kinetic energy---> 137.012
Energy deposited---> 4.73055 Charge---> 6 Kinetic energy---> 132.282
Energy deposited---> 0.0225575 Charge---> 6 Kinetic energy---> 132.254
Energy deposited---> 1.47468 Charge---> 6 Kinetic energy---> 130.785
Energy deposited---> 0.0218983 Charge---> 6 Kinetic energy---> 130.76
Energy deposited---> 5.22223 Charge---> 6 Kinetic energy---> 125.541
Energy deposited---> 7.10685 Charge---> 6 Kinetic energy---> 118.434
Energy deposited---> 6.62999 Charge---> 6 Kinetic energy---> 111.804
Energy deposited---> 6.50997 Charge---> 6 Kinetic energy---> 105.294
Energy deposited---> 6.28403 Charge---> 6 Kinetic energy---> 99.0097
Energy deposited---> 5.77231 Charge---> 6 Kinetic energy---> 93.2374
Energy deposited---> 5.2333 Charge---> 6 Kinetic energy---> 88.0041
Energy deposited---> 3.9153 Charge---> 6 Kinetic energy---> 84.0888
Energy deposited---> 14.3767 Charge---> 6 Kinetic energy---> 69.7121
Energy deposited---> 14.3352 Charge---> 6 Kinetic energy---> 55.3769

Example: output to an ASCII
file

#include <fstream>

class SteppingAction{
// ...
std::ofstream fout;

};

SteppingAction::SteppingAction() : fout("outfile.txt") { }

void SteppingAction::UserSteppingAction(const G4Step* aStep)
{

G4Track* theTrack = aStep->GetTrack();
G4double edep = aStep->GetTotalEnergyDeposit();
G4double kineticEnergy = theTrack->GetKineticEnergy();

// The output
fout

<< "Energy deposited--->" << " " << edep << " "
<< "Kinetic Energy -->" << " " << kineticEnergy << G4endl;

}

MT

Hands-on session

 Task4
 Task4a: User Actions
 Task4b: Command-based scoring

 http://geant4.lns.infn.it/vienna2024/
task4

G4TrackStatus

 After each step the track can change its state
 The status can be (red can only be set by the

User)

User-defined run class
class MyRun : public G4Run
{ ... };

Virtual methods
 RecordEvent()

 called at the end of each event
 alternative to EndOfEventAction() of the EventAction class

 Merge()
 Called at the end of each worker run by the master

When/why to use it?
 Convenient in MT-mode, because it allows the merging of

information (global quantities) from thread-local runs into the
master

 UserEventAction is thread-local

MT

Multiple user actions
• G4MultiRunAction
• G4MultiEventAction
• G4MultiTrackingAction
• G4MultiSteppingAction
• no G4MultiStackingAction

auto multiAction = new G4MultiEventAction{ new MyEventAction1,
new MyEventAction2 };

//...
multiAction->push_back(new MyEventAction3);
SetUserAction(multiAction);

Containers enabling to have multiple user actions of the
same “kind”, implemented as customized std::vector’s.

The geometry boundary

 To check if a step ends on a boundary, one may
compare if the physical volume of pre and post-step
points are equal

 One can also use the step status
 Step Status provides information about the process that

restricted the step length
 It is attached to the step points: the pre has the status

of the previous step, the post of the current step
 If the status of POST is fGeometryBoundary the step

ends on a volume boundary (does not apply to word
volume)

 To check if a step starts on a volume boundary you can
also use the step status of the PRE-step point

