
Interaction with kernel - part 2

Vienna workshop on simulations 2024

25th April

Carlo Mancini Terracciano

carlo.mancini-terracciano@uniroma1.it

mailto:carlo.mancini-terracciano@uniroma1.it

Outline

• Sensitive detectors

• Native scorers

• How to retrive information from native scorers

2

Sensitive detectors

• A logical volume becomes sensitive if it has a pointer of G4VSensitiveDetector

• Actually to a concrete class that inherits from it

• A sensitive detector (SD) can be instantiated several times, assigning each
instance to a different logical volume

• SD objects must have unique detector names

• A logical volume can only have one SD object attached
(But you can implement your detector to have many functionalities)

• Two possibilities to make use of the SD functionality:
• Create your own sensitive detector (defining a class inheriting from

G4VSensitiveDetector)
• Highly customizable (not shown in this short course)

• Use Geant4 built-in tools: Primitive scorers

3

Adding sensitivity to a logical volume

• Create an instance of a sensitive detector and register it to the
Sensitive Detector Manager

• Assign the pointer of your SD to the logical volume of your detector
geometry

• Must be done in ConstructSDandField() of the user geometry class

G4VSensitiveDetector* mySensitive
 = new MySensitiveDetector(SDname="MyDetector");

G4SDManager* sdMan =G4SDManager::GetSDMpointer();
sdMan->AddNewDetector(mySensitive);

logicVol->SetSensitiveDetector(mySensitive);
//Or:
//SetSensitiveDetector(“LVname”,mySensitive);

4

Native scorers

• Geant4 provides a number of primitive scorers, each one
accumulating one physics quantity (e.g. total dose) for an event

• This is alternative to the custom sensitive detectors (not shown
in this course), which can be used with full flexibility to have
complete control

• It is convenient to use primitive scorers instead of user-defined
sensitive detectors when:
• you are not interested in recording each individual step, but

accumulating physical quantities for an event or a run
• you have not too many scorers

5

G4MultiFunctionalDetector

• G4MultiFunctionalDetector is a concrete class derived from
G4VSensitiveDetector

• It has to be assigned to a logical volume as a sensitive detector

• It takes an arbitrary number of G4VPrimitiveScorer classes, to define the
scoring quantities that you need

• Each G4VPrimitiveScorer accumulates one physics quantity for each physical
volume

• E.g. G4PSDoseScorer (a concrete class of G4VPrimitiveScorer provided by
Geant4) accumulates dose for each cell

• By using this approach, there’s no need to implement sensitive detector and hit
classes!

6

G4VPrimitiveScorer

• Primitive scorers (classes inheriting from G4VPrimitiveScorer) have to be
registered to the G4MultiFunctionalDetector
• RegisterPrimitive()

• RemovePrimitive()

• They are designed to score one kind of quantity (surface flux, total dose) and to
generate one hit collection per event
• automatically named as:

<MultiFunctionalDetectorName>/<PrimitiveScorerName>
• hit collections can be retrieved in the EventAction or RunAction (as those

generated by sensitive detectors)
• do not share the same primitive scorer object among multiple

G4MultiFunctionalDetector objects (results may mix up!)
• Create as many instances of the scorer as needed

7

Example

MyDetectorConstruction::ConstructSDandField()
{
 G4MultiFunctionalDetector* myScorer = new

G4MultiFunctionalDetector(“myCellScorer”);

myCellLog->SetSensitiveDetector(myScorer);

G4VPrimitiveScorer* totalSurfFlux =
 new G4PSFlatSurfaceFlux(“TotalSurfFlux”);
myScorer->RegisterPrimitive(totalSurfFlux);
G4VPrimitiveScorer* totalDose =
 new G4PSDoseDeposit(“TotalDose”);
myScorer->RegisterPrimitive(totalDose);

}
8

instantiate a
multi-functional
detector

attach it to a volume

create two primitive
scorers (surface flux
and total dose) and
register them

Some primitive scorers

• Concrete Primitive Scorers
(Application Developers Guide 4.4.5)

• Track length: G4PSTrackLength, G4PSPassageTrackLength

• Deposited energy: G4PSEnergyDepsit, G4PSDoseDeposit

• Current/Flux: G4PSFlatSurfaceCurrent,
G4PSSphereSurfaceCurrent, G4PSPassageCurrent,
G4PSFlatSurfaceFlux, G4PSCellFlux, G4PSPassageCellFlux

• Others: G4PSMinKinEAtGeneration, G4PSNofSecondary,
G4PSNofStep, G4PSCellCharge

https://geant4-userdoc.web.cern.ch/UsersGuides/ForApplicationDeveloper/html/Detector/
hit.html#concrete-classes-of-g4vprimitivescorer

9

https://geant4-userdoc.web.cern.ch/UsersGuides/ForApplicationDeveloper/html/Detector/hit.html#concrete-classes-of-g4vprimitivescorer
https://geant4-userdoc.web.cern.ch/UsersGuides/ForApplicationDeveloper/html/Detector/hit.html#concrete-classes-of-g4vprimitivescorer

G4VSDFilter

• You can also filter which kind of tracks you want to consider
(e.g. protons only)

• Attaching a G4VSDFilter to G4VPrimitiveScorer:

• G4SDChargeFilter (accepts only charged particles)

• G4SDNeutralFilter (accepts only neutral particles)

• G4SDKineticEnergyFilter (accepts tracks in a defined range
of kinetic energy)

• G4SDParticleFilter (accepts tracks of a given particle type)

• G4VSDFilter (base class to create user-customized filters)

10

Example

MyDetectorConstruction::ConstructSDandField()
{
 G4VPrimitiveScorer* protonSurfFlux
 = new G4PSFlatSurfaceFlux(“pSurfFlux”);

 G4VSDFilter* protonFilter
 = new G4SDParticleFilter(“protonFilter”);
 protonFilter->Add(“proton”);

 protonSurfFlux->SetFilter(protonFilter);

 myScorer->RegisterPrimitive(protonSurfFlux);
}

11

create a primitive
scorer (surface flux),
as before

create a particle filter
for protons

register the filter to
the primitive scorer

register the scorer to the
multifunctional detector
(as before)

Hot to retrive information

• At the conclusion of a simulation, extracting data from scorers is essential

• Each scorer generates a hit collection

• This collection is associated with the specific G4Event instance

• Hit collections can be accessed at the event's end using an integer ID

• Hit collections are organized as G4THitsMap<G4double>*

• This allows for iteration over individual entries

• The operator+= is provided for hit collections, it automatically aggregates
all hits, i.e. no need for manual looping and summation!

12

How to retrive information

Scorer 1 Scorer 2

Event 1 (0, 5.32) (0, 1.43) 
(2, 3.17)

Event 2 (1, 3.14) (0, 4.23)

Event 3 empty empty

… … …

Event N (0, 7.14)

(1, 5.43) (0, 2.1)

13

How to retrive information

Scorer 1 Scorer 2

Event 1 (0, 5.32) (0, 1.43) 
(2, 3.17)

Event 2 (1, 3.14) (0, 4.23)

Event 3 empty empty

… … …

Event N (0, 7.14)

(1, 5.43) (0, 2.1)

Logical volume copy number

Quantity scored

14

How to retrive information

Scorer 1 Scorer 2

Event 1 (0, 5.32) (0, 1.43) 
(2, 3.17)

Event 2 (1, 3.14) (0, 4.23)

Event 3 empty empty

… … …

Event N (0, 7.14)

(1, 5.43) (0, 2.1)

HCofThisEvent

15

(hit collection of this event)

Hot to retrive information

• Retrieve the ID for a collection using its name

• Get all Hits Collections available in this event

G4int collID = G4SDManager::GetSDMpointer()
 ->GetCollectionID("myCellScorer/TotalSurfFlux");

G4HCofThisEvent* HCE = event->GetHCofThisEvent();

16

Scorer 1 Scorer 2

Event 1 (0, 5.32) (0, 1.43) 
(2, 3.17) HCofThisEvent

Hot to retrive information

• Get all Hits Collections available in this event

• Get the Hit Collection with the given ID (a cast is needed)

G4HCofThisEvent* HCE = event->GetHCofThisEvent();

G4THitsMap<G4double>* evtMap =
 static_cast<G4THitsMap<G4double>*> (HCE->GetHC(collID));

17

Scorer 1 Scorer 2

Event 1 (0, 5.32) (0, 1.43) 
(2, 3.17)

evtMap

Hot to retrive information

• Get the Hit Collection with the given ID (a cast is needed

• Iterate through each entry in the Hit Collection (HC)

• 'copyNb' serves as the map key, while the associated
field represents the actual data

G4THitsMap<G4double>* evtMap =
 static_cast<G4THitsMap<G4double>*> (HCE->GetHC(collID));

18

for (auto pair : *(evtMap->GetMap())) {
 G4double flux = *(pair.second);
 G4int copyNb = pair.first;
}

Hot to retrive information

• Iterate through each entry in the Hit Collection (HC)

• 'copyNb' serves as the map key, while the associated
field represents the actual data

19

for (auto pair : *(evtMap->GetMap())) {
 G4double flux = *(pair.second);
 G4int copyNb = *(pair.first);
}

Scorer 1 Scorer 2

Event 1 (0, 5.32) (0, 1.43) 
(2, 3.17)

pair

Hands on

• https://geant4.lns.infn.it/vienna2024/task4/task4c.html

20

https://geant4.lns.infn.it/vienna2024/task4/task4c.html

