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Outline

• Sensitive detectors 

• Native scorers 

• How to retrive information from native scorers
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Sensitive detectors

• A logical volume becomes sensitive if it has a pointer of G4VSensitiveDetector 

• Actually to a concrete class that inherits from it 

• A sensitive detector (SD) can be instantiated several times, assigning each 
instance to a different logical volume 

• SD objects must have unique detector names 

• A logical volume can only have one SD object attached  
(But you can implement your detector to have many functionalities) 

• Two possibilities to make use of the SD functionality: 
• Create your own sensitive detector (defining a class inheriting from 

G4VSensitiveDetector) 
• Highly customizable (not shown in this short course) 

• Use Geant4 built-in tools: Primitive scorers
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Adding sensitivity to a logical volume

• Create an instance of a sensitive detector and register it to the 
Sensitive Detector Manager 

• Assign the pointer of your SD to the logical volume of your detector 
geometry 

• Must be done in ConstructSDandField() of the user geometry class

G4VSensitiveDetector* mySensitive  
   = new MySensitiveDetector(SDname="MyDetector"); 

G4SDManager* sdMan =G4SDManager::GetSDMpointer(); 
sdMan->AddNewDetector(mySensitive); 

logicVol->SetSensitiveDetector(mySensitive); 
//Or: 
//SetSensitiveDetector(“LVname”,mySensitive);
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Native scorers

• Geant4 provides a number of primitive scorers, each one 
accumulating one physics quantity (e.g. total dose) for an event 

• This is alternative to the custom sensitive detectors (not shown 
in this course), which can be used with full flexibility to have 
complete control 

• It is convenient to use primitive scorers instead of user-defined 
sensitive detectors when: 
• you are not interested in recording each individual step, but 

accumulating physical quantities for an event or a run 
• you have not too many scorers 
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G4MultiFunctionalDetector

• G4MultiFunctionalDetector is a concrete class derived from 
G4VSensitiveDetector  

• It has to be assigned to a logical volume as a sensitive detector 

• It takes an arbitrary number of G4VPrimitiveScorer classes, to define the 
scoring quantities that you need   

• Each G4VPrimitiveScorer accumulates one physics quantity for each physical 
volume 

• E.g. G4PSDoseScorer (a concrete class of G4VPrimitiveScorer provided by 
Geant4) accumulates dose for each cell 

• By using this approach, there’s no need to implement sensitive detector and hit 
classes!
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G4VPrimitiveScorer

• Primitive scorers (classes inheriting from G4VPrimitiveScorer) have to be 
registered to the G4MultiFunctionalDetector 
• RegisterPrimitive() 

• RemovePrimitive() 

• They are designed to score one kind of quantity (surface flux, total dose) and to 
generate one hit collection per event 
• automatically named as:  

<MultiFunctionalDetectorName>/<PrimitiveScorerName> 
• hit collections can be retrieved in the EventAction or RunAction (as those 

generated by sensitive detectors) 
• do not share the same primitive scorer object among multiple 

G4MultiFunctionalDetector objects (results may mix up!) 
• Create as many instances of the scorer as needed
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Example

MyDetectorConstruction::ConstructSDandField() 
{ 
   G4MultiFunctionalDetector* myScorer = new 

G4MultiFunctionalDetector(“myCellScorer”); 

myCellLog->SetSensitiveDetector(myScorer); 

G4VPrimitiveScorer* totalSurfFlux = 
   new G4PSFlatSurfaceFlux(“TotalSurfFlux”); 
myScorer->RegisterPrimitive(totalSurfFlux);  
G4VPrimitiveScorer* totalDose =  
   new G4PSDoseDeposit(“TotalDose”); 
myScorer->RegisterPrimitive(totalDose); 

} 
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instantiate a  
multi-functional 
detector

attach it to a volume

create two primitive 
scorers (surface flux 
and total dose) and 
register them



Some primitive scorers

• Concrete Primitive Scorers  
(Application Developers Guide 4.4.5) 
 

• Track length: G4PSTrackLength, G4PSPassageTrackLength 

• Deposited energy: G4PSEnergyDepsit, G4PSDoseDeposit 

• Current/Flux: G4PSFlatSurfaceCurrent, 
G4PSSphereSurfaceCurrent, G4PSPassageCurrent, 
G4PSFlatSurfaceFlux, G4PSCellFlux, G4PSPassageCellFlux 

• Others: G4PSMinKinEAtGeneration, G4PSNofSecondary, 
G4PSNofStep, G4PSCellCharge

https://geant4-userdoc.web.cern.ch/UsersGuides/ForApplicationDeveloper/html/Detector/
hit.html#concrete-classes-of-g4vprimitivescorer
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G4VSDFilter

• You can also filter which kind of tracks you want to consider  
(e.g. protons only) 

• Attaching a G4VSDFilter to G4VPrimitiveScorer: 

• G4SDChargeFilter (accepts only charged particles) 

• G4SDNeutralFilter (accepts only neutral particles) 

• G4SDKineticEnergyFilter (accepts tracks in a defined range 
of kinetic energy) 

• G4SDParticleFilter (accepts tracks of a given particle type) 

• G4VSDFilter (base class to create user-customized filters)
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Example

MyDetectorConstruction::ConstructSDandField() 
{ 
  G4VPrimitiveScorer* protonSurfFlux  
      = new G4PSFlatSurfaceFlux(“pSurfFlux”); 

  G4VSDFilter* protonFilter  
     = new G4SDParticleFilter(“protonFilter”); 
  protonFilter->Add(“proton”); 

  protonSurfFlux->SetFilter(protonFilter); 

  myScorer->RegisterPrimitive(protonSurfFlux);  
}
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create a primitive 
scorer (surface flux), 
as before

create a particle filter 
for protons

register the filter to 
the primitive scorer

register the scorer to the 
multifunctional detector 
(as before)



Hot to retrive information

• At the conclusion of a simulation, extracting data from scorers is essential 

• Each scorer generates a hit collection 

• This collection is associated with the specific G4Event instance 

• Hit collections can be accessed at the event's end using an integer ID 

• Hit collections are organized as G4THitsMap<G4double>* 

• This allows for iteration over individual entries 

• The operator+= is provided for hit collections, it automatically aggregates 
all hits, i.e. no need for manual looping and summation!
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How to retrive information

Scorer 1 Scorer 2

Event 1 (0, 5.32) (0, 1.43) 
(2, 3.17)

Event 2 (1, 3.14) (0, 4.23)

Event 3 empty empty

… … …

Event N (0, 7.14)

(1, 5.43) (0, 2.1)
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How to retrive information

Scorer 1 Scorer 2

Event 1 (0, 5.32) (0, 1.43) 
(2, 3.17)

Event 2 (1, 3.14) (0, 4.23)

Event 3 empty empty

… … …

Event N (0, 7.14)

(1, 5.43) (0, 2.1)

Logical volume copy number

Quantity scored
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How to retrive information

Scorer 1 Scorer 2

Event 1 (0, 5.32) (0, 1.43) 
(2, 3.17)

Event 2 (1, 3.14) (0, 4.23)

Event 3 empty empty

… … …

Event N (0, 7.14)

(1, 5.43) (0, 2.1)

HCofThisEvent
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(hit collection of this event)



Hot to retrive information

• Retrieve the ID for a collection using its name 
 

• Get all Hits Collections available in this event 
 

G4int collID = G4SDManager::GetSDMpointer() 
  ->GetCollectionID("myCellScorer/TotalSurfFlux");

G4HCofThisEvent* HCE = event->GetHCofThisEvent();
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Scorer 1 Scorer 2

Event 1 (0, 5.32) (0, 1.43) 
(2, 3.17) HCofThisEvent



Hot to retrive information

• Get all Hits Collections available in this event 
 

• Get the Hit Collection with the given ID (a cast is needed)

G4HCofThisEvent* HCE = event->GetHCofThisEvent();

G4THitsMap<G4double>* evtMap =  
    static_cast<G4THitsMap<G4double>*> (HCE->GetHC(collID));
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Scorer 1 Scorer 2

Event 1 (0, 5.32) (0, 1.43) 
(2, 3.17)

evtMap



Hot to retrive information

• Get the Hit Collection with the given ID (a cast is needed 
 

• Iterate through each entry in the Hit Collection (HC)  
 
 

• 'copyNb' serves as the map key, while the associated 
field represents the actual data

G4THitsMap<G4double>* evtMap =  
    static_cast<G4THitsMap<G4double>*> (HCE->GetHC(collID));
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for (auto pair : *(evtMap->GetMap())) { 
    G4double flux = *(pair.second); 
    G4int copyNb  = pair.first; 
}



Hot to retrive information

• Iterate through each entry in the Hit Collection (HC)  
 
 

• 'copyNb' serves as the map key, while the associated 
field represents the actual data
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for (auto pair : *(evtMap->GetMap())) { 
    G4double flux = *(pair.second); 
    G4int copyNb  = *(pair.first); 
}

Scorer 1 Scorer 2

Event 1 (0, 5.32) (0, 1.43) 
(2, 3.17)

pair



Hands on

• https://geant4.lns.infn.it/vienna2024/task4/task4c.html
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