
VIEWS24 Workshop

Geant4.jl - Particle
Transportation in Julia

Pere Mato/CERN
27 April 2024

https://github.com/JuliaHEP/Geant4.jl

https://github.com/JuliaHEP/Geant4.jl

Why a new programming language?
❖ We a need a solution for the Two Language Problem

❖ C++ is fast but complex (and every day becoming more complex)

❖ Python is nice and easy but very slow (mitigated if you avoid loops)

❖ The community has developed ways to deal with these two
languages but we pay a price
❖ Interoperability is not always smooth (e.g. garbage collection side effects)

❖ Awkward constructions (e.g. the C++ strings in the PyRDF)

2

Why Julia?
❖ The Julia language was launched in 2012 (v1.0 in 2018) - New, but not immature!

❖ Modern imperative language, multi-paradigm with reflection and object orientation

❖ Robust built-in tooling (learning from earlier languages)
❖ Outstanding integrated package manager and build system

❖ Module system with excellent code reuse

❖ Modern tooling, with built in debuggers and profilers

❖ Interactive - REPL and full notebook support (it’s the “Ju” in Jupyter)

❖ Julia has been built from the ground up to be very fast
❖ JIT compilation via LLVM to native machine code

❖ Performance is comparable to C and C++ (as a baseline, see microbenchmarks)
3

https://julialang.org/benchmarks/

Julia Wrappers to Geant4
❖ Similarly to Python, to call C++ from Julia you need to write (better

generate) wrappers for each method you want to offer to Julia

❖ Using the CxxWrap.jl package
❖ The user needs to write small code (in C++) to wrap each class and method

(similar to pybind11 or Boost.Python)

❖ The package WrapIt developed by Ph. Gras
makes use of LLVM libraries to generate
the wrappers automatically 😀
❖ It helps enormously to ensure sustainability (e.g. tracking G4 versions)

4

 Generated wrapper statistics
 enums: 28
 classes/structs: 209
 templates: 0
 others: 209
 class methods: 2846
 field accessors: 19 getters and 19 setters
 global variable accessors: 10 getters and 0 setters
 global functions: 53

Package Structure

❖ The package Geant4.jl is a pure Julia package (platform independent)

❖ The binary libraries (platform dependent) for Geant4 and the wrapper library are
downloadable artifacts of Julia _jll packages produced by the BinaryBuilder package, and
stored at the Julia infrastructure (GitHub)

❖ Binaries available for Linux, MacOS and Windows, and all common hardware architectures
5

Geant4 Geant4_julia_jll Geant4_jll

CxxWrap

libGeant4Wrap.so
exports.jl

libG4geometry.so
libG4run.so
... + data files

C++ C++Julia

Expat_jll

Xerces_jll

...
https://github.com/JuliaHEP/Geant4.jl

https://github.com/JuliaHEP/Geant4.jl

Rethinking the Application Interface

6

Geant4 
Engine

Detector 
Geometry

Physics List

Primary 
Particle Gen.

GDML

Geometry 
Code{Parameters}

{File}

{Parameters}

{Parameters}

{Parameters} User 
Actions

User 
Actions

User 
Actions

Sensitive 
Detectors
Sensitive 
Detectors
Sensitive 
Detectors

Scoring 
Meshes
Scoring 
Meshes
Scoring 
Meshes

G4JLSensitiveDetector

G4JLScoringMesh

Function

G4JLApplication

G4JLPrimaryGenerator

 <:G4JLGeneratorData

G4JLDetectorGDML

<:G4JLDetector

Function

Data 
Analysis

<:G4JLSimulationData

{Commands}

G4JLDetectorConstruction

direct call to functions
or

ui`<UI Command>`

Simulation 
Data

B-field
G4JLMagneticField

{Parameters}
 <:G4JLFieldData

Visualisation

Application Interface: Wish List
❖ The idea is to exploit the Julia language to provide a simple and ergonomic user

interface
❖ Minimalistic. Define only what you really need for the simulation application. Avoid

any boilerplate code.

❖ Do the necessary at the right time. Hide the application state and calling sequence

❖ Interactive. Using the Julia REPL, as well as support for Jupyter and Pluto notebooks

❖ Transparent MT. As much as possible hide behind the scenes, the handling of Multi-
Threading (e.g. per-thread calls and thread-local instances)

❖ Integrated simulation and analysis. In the same application the simulation data can be
analyzed and presented

7

❖ “User custom code” are callbacks in the G4 toolkit
❖ E.g. detector constructor, user actions and sensitive detectors

❖ Typically by inheriting from a virtual base classes (e.g.
G4UserSteppingAction, G4VSensitiveDetector)

❖ CxxWrap.jl provides a convenient
way to call Julia from C++
❖ The callbacks are therefore “normal”

Julia functions

Callbacks

8

#---Step action---
function stepaction(step::G4Step, app::G4JLApplication)::Nothing
 data = getSIMdata(app)
 prepoint = GetPreStepPoint(step)
 track = GetTrack(step)

 ...

 nothing
end

{Julia}

Multi-threading
❖ Geant4 can run multi-threading by distributing the simulation of events on

a C++ thread pool managed by the toolkit
❖ Trivial parallelization. Very good scaling!

❖ MT is enabled in Geant.jl just with an argument to set number of threads

❖ User actions, sensitive detector code, etc. will be run naturally on different
threads
❖ To avoid race conditions, better if each thread updates its own copy of the data

❖ Data is cloned for each thread and summed (reduced) at the end of the run

9

Simulation Data
❖ With the ‘user actions’ and ‘sensitive

detectors’ the user will collect all
simulation data in a user defined struct
inheriting from G4JLSimulationData
❖ Typically it will consists of counters,

histograms, temporary structs to be written
step-by-step or event-by-event, etc.

❖ In case of MT, a function (add!) to reduce
the contents of the data struct for each
“worker thread” needs to be provided by
the user

10

#---Simulation Data struct---
mutable struct TestEm3SimData <: G4JLSimulationData
 #---Run data---
 fParticle::CxxPtr{G4ParticleDefinition}
 fEkin::Float64

 fChargedStep::Int32
 fNeutralStep::Int32

 fN_gamma::Int32
 fN_elec::Int32
 fN_pos::Int32

 fEnergyDeposit::Vector{Float64} # Energy deposit per event
 fTrackLengthCh::Vector{Float64} # Track length per event

 fEdepEventHistos::Vector{Hist1D}
 fTrackLengthChHistos::Vector{Hist1D}
 fEdepHistos::Vector{Hist1D}
 fAbsorLabel::Vector{String}

 TestEm3SimData() = new()
end

#---add function--
function add!(x::TestEm3SimData, y::TestEm3SimData)
 x.fChargedStep += y.fChargedStep
 x.fNeutralStep += y.fNeutralStep
 x.fN_gamma += y.fN_gamma
 x.fN_elec += y.fN_elec
 x.fN_pos += y.fN_pos
 x.fEdepEventHistos += y.fEdepEventHistos
 x.fTrackLengthChHistos += y.fTrackLengthChHistos
 x.fEdepHistos += y.fEdepHistos
end

counterscounters

array of
histograms

Simulation Application
❖ The user can create a G4JLApplication with all the elements of the simulation application

(detector geometry, primary generator, physics list, user actions, etc.)

❖ Geant4 requires a strict order of instantiation/configuration/initialization and this is
guaranteed by Geant4.jl interface

❖ In case nthreads > 0 (default) the G4MTRunManager is instantiated and simulation data as
well as sensitive detector data is replicated N times

11

#---Create the Application---
app = G4JLApplication(;detector = B2aDetector(nChambers=5), # detector with parameters
 physics_type = FTFP_BERT, # what physics list to instantiate
 generator = G4JLParticleGun(...), # primary particles generator
 nthreads = 8, # number of worker threads (>0 == MT)
 endeventaction_method = endeventaction, # end event action
 sdetectors = ["Chamber_LV+" => chamber_SD] # mapping of LVs to SDs (+ means multiple LVs)
)

#---Configure, Initialize and Run---
configure(app)
initialize(app)
beamOn(app, 1000)

Visualization
❖ Implemented basic visualisation of

the geometry and tracks using
Makie.jl package
❖ including boolean solids

❖ easy for users to customize and draw
basically anything

❖ Interactive
❖ Very useful for building and debugging

the application
12

Interactivity

❖ Julia comes with a powerful and modern REPL (Read-
Eval-Print Loop)
❖ history, line completion, help, etc.

❖ Very good support for notebooks (Jupyter, Pluto)
❖ see examples in Geant4.jl documentation

❖ Both are very well integrated in IDEs such as VS Code
13

https://juliahep.github.io/Geant4.jl/dev/

Performance
❖ Performance should be equivalent to the

C++ application

❖ Julia user actions (callbacks from C++ to
Julia) do not add any significant overhead
and can be executed very efficiently
❖ JIT and with less abstraction layers

❖ Julia suffers from a larger startup time
(final type inference and JIT compilation)
❖ big improvement since Julia version 1.9

14

B2a (C++) B2a.jl

events = 1 0.9 s 6 s

events =100k 106 s 109 s

events =100k (MT) 23 s 27 s

• Simple benchmark of B2a example
• with protons @ 3 GeV
• running on a Mac-mini with the M1 processor

(8 cores = 4 performance and 4 efficiency)
• C++ and Julia are basically identical taking the

initial overhead (serial) into account

Complete and Realistic Examples
❖ The package Geant4.jl comes with a number

of examples

❖ Added ATLTileCalTB.jl converting L.
Pezzotti’s C++ example to validate G4 with
the ATLAS TileCal test beam data
❖ Sensitive detectors, user actions, signal

processing, plotting results, detector and event
visualisation

❖ ~3000 lines (C++) versus ~1000 lines (Julia),

❖ 2000 pi+ @ 18 GeV: 143 s (C++) versus 104 s
(Julia) 15

https://github.com/JuliaHEP/Geant4.jl
https://github.com/peremato/ATLTileCalTB.jl

Conclusions
❖ Programming in Julia is really fun

❖ The built-in tooling and ecosystem is very complete. Great integration with
VSCode

❖ Software re-use capabilities really excel compared to C++

❖ Geant4.jl is an extremely useful add-on to the Geant4 project
❖ Tutorials (very easy to setup and portable), interactive development (notebooks),

connection to other powerful packages in the Julia ecosystem (visualisation, data
analysis, etc.)

❖ Geant4.jl is in a working state, missing functionality can be added easily
16

Trying Out
❖ Developed a tutorial as a set of

Jupyter notebooks
❖ Step-by-step building a simulation

application

❖ Includes a number of complete examples

❖ You can either browse the rendered
Jupyter Book or follow the
instructions to run yourself the
notebooks on your computer

17

https://github.com/peremato/Geant4.jl-tutorial
https://peremato.github.io/Geant4.jl-tutorial/index.html

