VIEWS24 Workshop

Geant4.jl - Partcle e
Traﬂsp()r[atl()n ln Julla 27 April 2024

https://github.com/JuliaHEP/Geant4.jl

https://github.com/JuliaHEP/Geant4.jl

Why a new programming language?

* We a need a solution for the Two Language Problem
* C++ is fast but complex (and every day becoming more complex)

* Python is nice and easy but very slow (mitigated if you avoid loops)

* The community has developed ways to deal with these two
languages but we pay a price

« Interoperability is not always smooth (e.g. garbage collection side effects)

* Awkward constructions (e.g. the C++ strings in the PyRDF)

@ C‘Q
Why Julia? julia
* The Julia language was launched in 2012 (v1.0 in 2018) - New, but not immature!

* Modern imperative language, multi-paradigm with reflection and object orientation

* Robust built-in tooling (learning from earlier languages)

* Qutstanding integrated package manager and build system

* Module system with excellent code reuse jlﬂlﬁl
* Modern tooling, with built in debuggers and profilers <
« Interactive - REPL and full notebook support (it’s the “Ju” in Jupyter) Sy

* Julia has been built from the ground up to be very fast A

« JIT compilation via LLVM to native machine code

+ Performance is comparable to C and C++ (as a baseline, see microbenchmarks)

https://julialang.org/benchmarks/

Julia Wrappers to Geant4

* Similarly to Python, to call C++ from Julia you need to write (better
generate) wrappers for each method you want to offer to Julia

« Using the CxxWrap.jl package

* The user needs to write small code (in C++) to wrap each class and method

(similar to pybind11 or Boost.Python)

* The package Wraplt developed by Ph. Gras
makes use of LLVM libraries to generate
the wrappers automatically &

Generated wrapper statistics
enums: 28
classes/structs: 209
temp lates: 0
others: 209
class methods: 2846
field accessors: 19 getters and 19 setters
global variable accessors: 10 getters and @ setters

global functions: 53

« It helps enormously to ensure sustainability (e.g. tracking G4 versions)

Package Structure

CxxWrap

T

-

Geant4 :

Julia

Geant4_julia_jll

C++

https:/ / github.com /JuliaHEP / Geant4.jl

libGeant4Wrap.so
exports.jl

Geant4_|ll

C++

3

Expat_|ll

Xerces_|lI

libG4geometry.so
libG4run.so

... + data files

* The package Geant4.jl is a pure Julia package (platform independent)

o

* The binary libraries (platform dependent) for Geant4 and the wrapper library are
downloadable artifacts of Julia _jll packages produced by the BinaryBuilder package, and
stored at the Julia infrastructure (GitHub)

* Binaries available for Linux, MacOS and Windows, and all common hardware architectures

e

https://github.com/JuliaHEP/Geant4.jl

Rethinking the Application Interface

{File})— GDML /
*‘ |

G4JLDetectorGDML '
Detector {Parameters} User
e Geometry A Geometry 1 Actions
COde : Function
<:G4JLDetector G4JLDetectorConstruction
Function
{Parameters} -~ B-field - /
<:G4JLFieldData G4JLMagneticField iy Sensitive $S|mUIat|0n I I
H| Detectors Data 1l
G4JLSensitiveDetect <:G4JLS1 l\t' Dat
{Pal’ametel’S} PhySICS LISt G4JLApplication \
y. \‘A I|
— Scoring
Primary {Commands} 1] Meshes
{Pal’ameterS} Part|C|e Gen direct call to functions G4JLScoringMesh
<:G4JLGeneratorData] LUt 8£mmand>‘

G4JLPrimaryGenerator

Application Interface: Wish List

* The idea is to exploit the Julia language to provide a simple and ergonomic user
interface

+ Minimalistic. Define only what you really need for the simulation application. Avoid
any boilerplate code.

* Do the necessary at the right time. Hide the application state and calling sequence
* Interactive. Using the Julia REPL, as well as support for Jupyter and Pluto notebooks

« Transparent MT. As much as possible hide behind the scenes, the handling of Multi-
Threading (e.g. per-thread calls and thread-local instances)

* Integrated simulation and analysis. In the same application the simulation data can be
analyzed and presented

Callbacks

+ “User custom code” are callbacks in the G4 toolkit
« E.g. detector constructor, user actions and sensitive detectors

« Typically by inheriting from a virtual base classes (e.g.
G4UserSteppingAction, G4VSensitiveDetector)

#--Step action----——mm————————r—r-r—————

- CXXWIap.jl prOVideS d COnvenient function stepaction(step::G4Step, app::G4JLApplication)::Nothing
data = getSIMdata(app)

Way t() Call]Ulla f]'_‘om C—l——|— prepoint = GetPreStepPoint(step)

track = GetTrack(step)

+ The callbacks are therefore “normal”
Julia functions end

nothing

{Julia}

Mula-threading

* Geant4 can run multi-threading by distributing the simulation of events on
a C++ thread pool managed by the toolkit

* Trivial parallelization. Very good scaling!

“ MT 1is enabled in Geant.jl just with an argument to set number of threads

“ User actions, sensitive detector code, etc. will be run naturally on different
threads

* To avoid race conditions, better if each thread updates its own copy of the data

+ Data is cloned for each thread and summed (reduced) at the end of the run

Simulation Data

~ . / . s / Rr #——-Simulation Data strgct————————————f—————f __________________________
* With the “user actions” and ‘sensitive nutable struct TestEn3Sindata <: G4JLSimvlationdata
fParticle: :CxxPtr{G4ParticleDefinition}

detectors’ the user will collect all fEkin: :Float64
& . - A fChargedStep::Int32
simulation data in a user defined struct feutralStep::Int32 counters

fN_gamma: :Int32

inheriting from G4JLSimulationData f_elec: : Int32 /

fN_pos::Int32

fEnergyDeposit::Vector{Float64} # Energy deposit per event
KX Typlcally lt Wlll COHSlStS Of counters fTrackLengthCh: :Vector{Float64} # Track length per event
J
- : fEdepEventHistos::Vector{Hist1D}
hlstograms, temporary structs to be written fTrackLengthChHistos: : Vector{Hist1D} oy iof
fEdepHistos::Vector{Hist1D} _ histograms
fAbsorLabel::Vector{String} L

step-by-step or event-by-event, etc.

TestEm3SimData() = new()
end

+ In case of MT, a function (add!) to reduce |+-a function——ooe

function add!(x::TestEm3SimData, y::TestEm3SimData)
x.fChargedStep += y.fChargedStep

the contents of the data struct for each . fNeutralstep += y. fleut ralster

x.fN_gamma += y.fN_gamma

£/ JJ . X.fN_elec += y.fN_elec

worker thread” needs to be provided by X fN_pos 4= y.N_pos

X.TEdepEventHistos += y.fEdepEventHistos

X.fTrackLengthChHistos += y.fTrackLengthChHistos

the USGI‘ X.fEdepHistos += y.fEdepHistos

end

Simulation Application

* The user can create a G4JLApplication with all the elements of the simulation application
(detector geometry, primary generator, physics list, user actions, etc.)

* Geant4 requires a strict order of instantiation/configuration/initialization and this is
guaranteed by Geant4.jl interface

¢ In case nthreads > 0 (default) the G4AMTRunManager is instantiated and simulation data as
well as sensitive detector data is replicated N times

#-———Create the Application----—m—m—m—mm—m—memereemm oo mmpmm—- —- - -, —; . —,;—;,.,;, ,;—;—;—;— —,—,—- —-;—;—,;—;—,—,;,—;—,;—,—-,—-. ,_ , ., .-
app = G4JLApplication(;detector = B2aDetector(nChambers=5), detector with parameters
physics_type = FTFP_BERT, what physics list to instantiate
generator = G4JLParticleGun(...), primary particles generator
nthreads = 8, number of worker threads (>0 == MT)
endeventaction_method = endeventaction, end event action
sdetectors = ["Chamber LV+" => chamber_SD] mapping of LVs to SDs (+ means multiple LVs)

)

#-——-Confiqure, Ipitiatize and ROB0H—/———"m"mF-"-7T"-"1r1rH—H—1"7"1——"n — ——(— 0
configure(app)

initialize(app)

beamOn(app, 1000)

Visualization

Implemented basic visualisation of
the geometry and tracks using
Makie.jl package

including boolean solids

easy for users to customize and draw

basically anything

Interactive

Very useful for building and debugging
the application

Interactvity

-
a

‘julia> using Geanté

mato — Geant4.jl — julia — 74x17

Documentation: https://docs.julialang.org
Type "?" for help, "]?" for Pkg help.

Version 1.9.2 (20823-07-85)
Official https://julialang.org/ release

‘julia> box = G4Box("box", 2,3,4)

Geant4.G4BoxAllocated(Ptr{Nothing} Bx00006000016e9110)

2.0

julia> Jj

‘julia> DistanceToOut(box, G4ThreeVector(), G4ThreeVector(1,0,0))

* Julia comes with a powerful and modern REPL (Read-

Eval-Print Loop)

« history, line completion, help, etc.

* Very good support for notebooks (Jupyter, Pluto)

* see examples in Geant4.jl documentation

« Both are very well integrated in IDEs such as VS Code

— Jupyter Solids o Logout
Not Trusted |julia1.9.2 O

- File Edit View Insert Kernel Help

B + < @ B 4 ¥ PRuin B C MW Code O =

In [3]: tubl = G4Tubs("tubl",0,10,10,0,2n)
draw(tubl, wireframe=true, color=:blue)

Out[3]:

In [4]: tub2 = G4Tubs("tub2",5,10,10,0, 2mn/3)
draw(tub2, wireframe=true, color=:blue)

Out[4]:

https://juliahep.github.io/Geant4.jl/dev/

Performance

* Performance should be equivalent to the
C++ application

events = 1

+ Julia user actions (callbacks from C++ to events =100k
Julia) do not add any significant overhead
and can be executed very etficiently

events =100k (MT)

» Simple benchmark of B2a example

« JIT and with less abstraction layers + with protons @ 3 GeV
* running on a Mac-mini with the M1 processor
* Julia sutfers from a larger startup time e s i

e C++ and Julia are basically identical taking the

(final type inference and JIT compilation) | initial overhead (serial) into account

“ big improvement since Julia version 1.9

14

Complete and Realistic Examples

* The package Geant4.jl comes with a number

Of eXa I I l leS Energy leak Total Calo Energy
4000
' 1500 | '

000 e R

Std Dev = 1000.0 1000 b+ Std Dev = 1300.0

2000 F Overflow = false Overflow = false

. o ° 1000 F 500
oo
° ° 0 ' ' ' ' 0) '
0 5.00x10° 1.00x10" 1.50x10" 2.00x10" 0 5.00x10°

Pezzotti’'s C++ example to validate G4 with
the ATLAS TileCal test beam data

“ Sensitive detectors, user actions, signal
processing, plotting results, detector and event *

b D %
30357
PR
E“,_,ll
Il wn=
>0
[N N
@ =
v | ® -
=} [
N > o ®
=} =) =) =)
X X X X
v - - -
°c X % b A
T T T T
OF
’-‘_
o
m
3
=
=
o
"
L
o
w
©
©
~
©

photoelectors
Energy of particle
oooooo

visualisation ol

~3000 lines (C++) versus ~1000 lines (Julia),

« 2000 pi+ @ 18 GeV: 143 s (C++) versus 104 s
(Julia)

15

https://github.com/JuliaHEP/Geant4.jl
https://github.com/peremato/ATLTileCalTB.jl

Conclusions

* Programming in Julia is really fun

* The built-in tooling and ecosystem is very complete. Great integration with
V5Code

“ Software re-use capabilities really excel compared to C++

* Geant4.jl is an extremely useful add-on to the Geant4 project

« Tutorials (very easy to setup and portable), interactive development (notebooks),
connection to other powerful packages in the Julia ecosystem (visualisation, data
analysis, etc.)

* Geant4.jl is in a working state, missing functionality can be added easily

16

Trying Out

* Developed a tutorial as a set of
Jupyter notebooks

Q_ Search ® + K

Welcome to Geant4.jl Tutorial

Building Simulation Applications

“ Step-by-step building a simulation
application -

* Includes a number of complete examples = o

Sensitive Detectors

* You can either browse the rendered

Event Display

Jupyter Book or follow the

CERN Liquid Hydrogen Bubble

Chamber

instructions to run yourself the

Scoring

Scintillating Detector Example

Welcome to Geant4.jl Tutorial

This is a short introductory tutorial for the Geant4.jl package.

This tutorial is supported by the HSF JuliaHEP team and currently it is maintained by Pere Mato.

Geant4.jl: Particle transport in Julia

Building Simulation Applications

Introduction to Geant4.jl

Interacting with the wrapped classes

Defining Geant4.jl Geometries

Defining Physics Lists

Defining Primary Particles

Defining Magnetic Field

Building Applications

Sensitive Detectors

Scoring Meshes

Histograms

Event Display

Complete Examples

CERN Liguid Hydrogen Bubble Chamber

Water Phantom Simulation with Scoring

Scintillating Detector Example

TestEM3 Example

ra
La

This material is release under a Creative Commons Attribution 4.0 International Public License, CC-BY-4.0.

Please see the LICENSE file.

PN

Next

notebooks on your computer

17

LT B

https://github.com/peremato/Geant4.jl-tutorial
https://peremato.github.io/Geant4.jl-tutorial/index.html

