Ultra-long carbon nanotube forest via *in situ* supplements of iron and aluminum vapor sources

Kindai University Hisashi Sugime

20th Jun 2023

Paper information

Carbon 172 (2021) 772-780

Research Article

Ultra-long carbon nanotube forest via *in situ* supplements of iron and aluminum vapor sources

Hisashi Sugime ^{a, b, *}, Toshihiro Sato ^a, Rei Nakagawa ^a, Tatsuhiro Hayashi ^c, Yoku Inoue ^c, Suguru Noda ^{a, b}

Growth

Mechanical & Electrical Characterization

H. Sugime et al., Carbon 172, 772-780 (2021).

Introduction

Growth of carbon nanotube (CNT) forest

Several pioneering works of multi-wall (MW) **CNT** forests WZ. Li et al., Science ZW. Pan et al., Nature SS. Fan et al., Science 274, 1701 (1996). 394, 631 (1998). 283, 512 (1999). Fe/SiO₂ Fe/SiO₂ Fe/SiO₂ C_2H_2 C_2H_2 C_2H_2 H₂O-assisted growth of single-wall (SW) 2 cm MWCNT forest 2 mm SWCNT forest **CNT** forest K. Hata et al., Science Fe/Al₂O₃ 306, 1362 (2004). C_2H_4 importance of Al₂O₃ layer Y. Murakami et al., Chem. W. Cho et al., Carbon Phys. Lett. 385, 298 (2004). 72, 264 (2014). Co-Mo/SiO₂ Fe/Gd/Al₂O₃ C_2H_5OH thin ← Fe → thick C_2H_4 S. Noda et al., Jpn. J. Appl. Phys. 46, L399 (2007).

Spontaneous growth termination are key issues.

Several phenomena during the growth

Change of I_G/I_D in Raman spectra

Diameter increase of CNT

G. Eres et al., *J. Phys. Chem. B* 109, 16684 (2005).

Alignment change

E.R. Meshot et al., *Appl. Phys. Lett.* 92, 113107 (2008).

K. Hasegawa et al., *Appl. Phys. Express* 3, 045103 (2010).

H. Sugime et al., ACS Appl. Mater. Interfaces 6, 15440 (2014).

H. Sugime et al., ACS Appl. Mater. Interfaces 6, 15440 (2014).

Catalyst particles are embedded into the tubes

Several kinds of structural change of the catalyst nanoparticles occur simultaneously.

Fe-Gadolinium (Gd) catalyst

Growth lifetime: ~13 h at 780 °C

H. Sugime et al., ACS Nano 13, 13208 (2019).

Application of Gd-added catalyst to the growth of single-wall CNT forest

W. Cho et al., *Carbon* 72, 264 (2014).

 $\frac{\text{Fe/Gd/Al}_2\text{O}_3}{\text{C}_2\text{H}_4}$

Too thick Gd inhibits the growth of CNT forests.

Fe-Gadolinium (Gd) catalyst

Experimental

Cold-gas CVD apparatus

H. Sugime et al., *Carbon* **50**, 2953 (2012).

Experimental

Catalyst preparation

RF sputtering

no-growth-on-Gd/Al₂O_x area

- Catalyst: Fe(2nm)/Gd(0.8nm)/Al(15nm)/Si sub
- C₂H₂(0.3%)/H₂(10%)/CO₂(0.5%)/Fc/AIP/Ar(carrier gas)
- T_{sub} : 750 °C, P_{total} : ambient pressure

Fc: Ferrocene, 0.6 ppmv AIP: Aluminum isopropoxide, 0.03 ppmv

0 min

400 min

800 min

1200 min

1600 min

Results

CNT wires without twisting (Length: ~1 cm, Diameter: 30-80 µm)

Density of individual CNT = 1.2 g cm^{-3} (calculated form TEM observation)

Comparable values with millimeter-long MWCNTs (0.85 GPa and 35 GPa) H.-I. Kim et al., Sci. Rep. 7, 9512 (2017).

Results

The electrical conductivity enhanced more significantly compared with the ampacity by annealing

Summary

- A breakthrough method for growing a 14-cm-long CNT forest with an average growth rate of 1.5 μm s⁻¹ and a growth lifetime of 26 h was developed.
- It was found that the combination of the catalyst system of Fe/Gd/Al₂O_x and the in situ supplements of Fe and Al vapor sources at very low concentrations was crucially important for the long growth.
- The cold-gas CVD apparatus was also shown to play an important role in suppressing unnecessary reactions and depositions on the CNT forests.
- The long CNT forests enabled a detailed investigation of the tensile and electrical properties of the CNTs at different growth periods through macroscopic measurements.

