

Direct Neutrino Mass Searches Covering the Inverted Mass Ordering

Walter C. Pettus Indiana University

APS GPMFC Workshop 14 April 2023

Questions of Neutrino Mass

- Neutrinos are only fundamental fermions with unmeasured mass
- Non-zero neutrino mass is in conflict with original formulation of Standard Model
- Neutrino mass scale is vastly disparate from all other fundamental fermions
- Neutrino mass connected via 0vββ to fundamental symmetries

Wikimedia Commons

Direct Neutrino Mass Measurement

- Endpoint technique is only direct and model independent method to measure neutrino mass
 - Non-zero mass results in shift in maximum electron energy and shape distortion at endpoint

Endpoint Search Candidates

- Tritium beta decay has yielded leading direct limits for 75 years y
 - ${}^{3}_{1}H \rightarrow {}^{3}_{2}He^{+} + e^{-} + \overline{\nu_{e}}$
 - Endpoint: 18.6 keV; half-life: 12.3 yr
- Holmium electron capture decay
 - ${}^{163}_{67}Ho \rightarrow {}^{163}_{66}Dy^* + v_e$
 - Endpoint: 2.8 keV; half-life: 4570 yr

- Other isotopes have received interest attention: ¹⁸⁷Re, ¹¹⁵In
 - No currently viable experimental program
 - Orders of magnitude worse figure-of-merit for quantity of isotope per decay in last eV

KATRIN: State-of-the-Art

- Kantonine Hillium Neutrino Extension
- Culmination of decades of experience in magnetic + electrostatic spectrometers
 - Electrons guided from tritium source, through filtering spectrometer, to integrating detector Electrostatic high pass filter
 Analysing plane
 Electron

INDIANA UNIVERSITY

KATRIN: State-of-the-Art

ult yielded sub-eV sensitivity $_{\alpha}$ imental limit of m_{β} < 0.8 eV (90% C.L.)

- Only data from 2019
- Further results expected this year with ~0.5 eV sensitivity
- Neutrino mass operations continue through 2025 to reach 0.2 eV sensitivity
- Science program beyond turns to keV sterile neutrino search with TRISTAN detector

Beyond KATRIN

- MAC-E technology reaching technical scaling limit with KATRIN
 - Larger spectrometer required for improved resolution
 - Integrating spectroscopy reduces
 statistical power
 - New spectrometer-related backgrounds discovered at KATRIN scale
- Molecular tritium source introduces systematic uncertainty due to molecular effects

Beyond KATRIN: Sensitivity

ור

8

Holmium Electron Capture

• Microcalorimeters implanted with ¹⁶³Ho isotope

- Endpoint determination precision exceeds current Penning trap measurement
 - Calorimeter: $Q_{EC} = 2860 \pm 2_{stat} \pm 5_{syst} eV$ (preliminary)
 - Penning: $Q_{EC} = 2833 \pm 30_{stat} \pm 15_{syst} eV$

Micro-Calorimeter Challenges

- Complicated spectral corrections due to electronic shell effects
- Slow readout creates pileup in spectrum
- Large number of channels (~10⁹) required
 - Multiplexing many channels together possible (required)

Beyond KATRIN: Project 8 Sensitivity

11

see Luiz de Viveiros, K15.004

B. Monreal

 \vec{B}

e⁻

³H-³H

14 April 2023

Never measure anything but frequency.

– Arthur Schawlow

Beyond KATRIN Concept

Cyclotron Radiation Emission Spectroscopy (CRES)

Harness frequency-energy relation for relativistic electrons

Project 8 Experiment

 A phased tritium beta endpoint experiment to measure the electron neutrino mass

	Phase	ll Comm	ission	Operat	ions	Þ	Analysis		Final re • arX	esults, se iv:2212. iv:2303	ee: 05048 (: 12055 (:	submitte	d to PRL	.)
Phase	I.	• P	roof-of	f-princip r measu	ole de Jremer	monst nt in wa	tration aveguid	of CR e appa	ES teo ratus	chniqu	е			
2015	2016	2017	2018	2019	2020	2021	2022	2023	2024	2025	2026	2027	2028	

- High-resolution Kr measurements
- First tritium measurement and first neutrino mass limit with CRES
 - Zero-background beyond endpoint
 - Control of systematics effects

Waveguide Experimental Concept

APS / Alan Stonebraker

Waveguide CRES Results

Editors' Suggestion

Single-Electron Detection and Spectroscopy via Relativistic Cyclotron Radiation

D. M. Asner et al. (Project 8 Collaboration) Phys. Rev. Lett. 114, 162501 - Published 20 April 2015

Physics See Viewpoint: Cyclotron Radiation from One Electron

(reprocessed)

920

1.0

.....

units) 8⁰

Shallow trap data

Deep trap data

---- Deep trap fit result

Shallow trap fit result

Instrumental resolution (1.7±0.2 eV) now better than natural CE linewidth (2.8 eV)

Deep trap frequency - 25 GHz (MHz)

910

905

17900

900

arXiv:2212.05048

18000

915

16

First Tritium Spectrum

- Collected 3 months stable run of tritium
 - ~4000 events across all signal channels
 - Zero background beyond endpoint

T ₂ endpoint:					
$E_0 = (18553^{+18}_{-19}) \text{ eV} (90\% \text{ C.I.})$					
Neutrino mass:					
\leq 155 eV/c ² (90% C.I.)	Bayesian				
\leq 152 eV/c ² (90% C.L.)	Frequentist				
Background rate:					
$\leq 3 \times 10^{-10} \text{ eV}^{-1} \text{s}^{-1} (90\% \text{ C.I.})$					

Final results, see:

- arXiv:2212.05048 (submitted to PRL)
- arXiv:2303.12055 (submitted to PRC)

Project 8 Experiment

 A phased tritium beta endpoint experiment to measure the electron neutrino mass

- Critical R&D demonstrations of technologies
 - Large-volume CRES measurement, first with single-mode cavity
 - Atomic tritium production, transport, and trapping
 - Culminates with first atomic tritium endpoint measurement

CRES – The Path Forward

- Develop atomic source
 - Overcome systematic of molecular final states
- Increase volume
- Improve SNR
 - Higher density with shorter tracks

Improve control of systematics, field homogeneity, scattering effects

Phase III ATD – Molecular Limitation

Sensitivity beyond inverted hierarchy requires atomic tritium

Phase III ATD – Trapping Atoms

- Magnetic moment of atomic species allows for guiding and trapping
 - Unpaired electron of atomic T (or H, D) gives it magnetic moment
 - "Low-field-seeking" states trapped by magnetic bottle
 - Requires high-multipole trap to achieve uniform CRES field region

21

Phase III ATD – Supplying Atomic Tritium

Molecular tritium thermally cracked at ~2500 K

22

CRES – The Path Forward

- Develop atomic source
 - Overcome systematic of molecular final states
- Increase volume
- Improve SNR
 - Higher density with shorter tracks

Improve control of systematics, field homogeneity, scattering effects

Phase III – Beyond Waveguide

- Demonstrate scalability of CRES technique ۲
- Cavity efficiently couples electron power to readout antenna
 - Mode-filtering reduces complexity of mode structure
 - Open-ended terminated cavity still allows gas injection •

Phase III – Beyond Waveguide

- Demonstrate scalability of CRES technique
- Cavity efficiently couples electron power to readout antenna
 - Mode-filtering reduces complexity of mode structure
 - Open-ended terminated cavity still allows gas injection •

26 GHz Cavity CRES Demonstrator (CCD)

- First cavity demonstrator will operate at 26 GHz / 1 T
 - Installation this summer at University of Washington

- Demonstration of high-precision calibration with electron gun source
- Science from ^{83m}Kr spectroscopy measurements

Future Cavities & Lower Frequency

- Cavity R&D must press to lower frequency
 - 26 GHz has unacceptably high dipolar spin flip losses
 - Targeting 1 GHz or lower

ANA UNIVERSITY

Project 8 Experiment

 A phased tritium beta endpoint experiment to measure the electron neutrino mass

 Atomic tritium endpoint measurement covering inverted ordering allowed region

Atomic Experiment Concept

- Experiment must ultimately combine successes of both R&D pathways:
 - Large-volume CRES detection
 - Atomic tritium production, transport, and trapping
- Requires effective exposure of ~10 m^{3*}yr for 40 meV (inverted ordering) sensitivity

Phase IV Sensitivity

Framework developed for investigating sensitivity of ultimate experiment

Achieving 40 meV sensitivity requires

- Multi m³·yr effective exposure
- High flux atomic tritium source
- ~0.1 eV resolution
- 10⁻⁷ field uniformity

```
With potential to independently measure hierarchy
```


Phys. Rev. C 103, 065501 (2021)

Other Science Reach

- Precision spectroscopy of tritium beta decay also yields sensitivity to new physics, with same neutrino mass dataset
 - eV-scale sterile neutrinos via kink search

• Relic neutrino overabundance via peak beyond the endpoint

Conclusions

- Understanding and measuring the absolute neutrino mass scale remain grand open experimental challenges
- KATRIN continues to deliver world-leading mass limits
 - Full exposure in 2025, target sensitivity of 200 meV
- Project 8 developing Cyclotron Radiation Emission Spectroscopy (CRES) as promising technique for a next-generation neutrino mass experiment
 - Phase II results finalized last month
 - Kr resolution below natural linewidth with full modeling of lineshape
 - First neutrino mass limit from RF technique
 - Zero background experiment
 - Control of systematics over broad energy range on continuous T₂ beta spectrum
 - R&D program underway tackling critical technology demonstrations for future inverted-hierarchy-covering (40 meV) experiment
 - Atomic tritium production, cooling, guiding, and trapping
 - Large volume CRES detection

Project 8 Collaboration

Case Western Reserve University

- Razu Mohiuddin, Ben Monreal, Yu-Hao Sun
- Heidelberg University
- Felix Spanier
- University of Illinois
- Chen-Yu Liu

Indiana University

- Manjinder Oueslati, Walter Pettus Johannes Gutenberg University, Mainz
- Sebastian Böser, Martin Fertl, Alec Lindman, Christian Matthé, Brunilda Mucogllava, René Reimann, Florian Thomas, Larisa Thorne

Karlsruhe Institute of Technology

- Thomas Thümmler
- Lawrence Livermore National Laboratory
 - Kareem Kazkaz

Pacific Northwest

Heidelberg

Ψ

JG

Massachusetts Institute of Technology

PROJE

- Pacific Northwest National Laboratory
 - Jeremy Gaison, Noah Oblath, Dan Rosa de Jesús, Jonathan Tedeschi, Brent VanDevender

Pennsylvania State University

- Carmen Carmona-Benitez, Richard Mueller, Luiz de Viveiros, Andrew Ziegler
- University of Washington
 - Ali Ashtari Esfahani, Christine Claessens, Peter Doe, Sanshiro Enomoto, Alexander Marsteller, Elise Novitski, Hamish Robertson, Gray Rybka
- Yale University
 - Karsten Heeger, James Nikkel, Penny Slocum, Pranava Teja Surukuchi, Arina Telles, Talia Weiss

INDIANA UNIVERSITY

14 April 2023

Yale