Neutron Beta Decay as a test of the Standard Model and probe of new physics

Neutron Beta Decay

- Free neutron is unstable: $\tau_n \approx 15$ min
- Main decay channel: $n \rightarrow p + e^- + \bar{\nu}_e$ $0 < E_e < 783$ keV
- Other decay modes

$$
n \to p + e^- + \overline{\nu}_e + \gamma
$$

$$
n \to H + \overline{\nu_e}
$$
 BR $\approx 4 \times 10^{-6}$

$$
E_{\overline{\nu}} = 783 \text{ keV}
$$
 $E_H = 326.5 \text{ eV}$

• Exotic Decay Modes?

$$
\begin{array}{c}\n\begin{array}{c}\n\frac{w}{d} \\
\frac{w}{d} \\
$$

$$
0 < E_p < 751 \, \mathrm{eV}
$$

$$
- + \bar{\nu}_e + \gamma
$$
 BR(>1keV) $\approx 3 \times 10^{-3}$ Nature 444, (2006)
PRL 116, 242501 (2016)

$$
\text{BR} \approx 4 \times 10^{-6}
$$

NIST

Fundamental Semileptonic Decay $d+\nu_e \leftrightarrow u+e^-$

Neutron beta decay sets weak interaction rates which govern many processes:

Also gives couplings:

CKM unitarity, new physics

Neutron Beta Decay Correlations

$$
\frac{d\Gamma}{dE_e d\Omega_e d\Omega_v} \propto g_v^2 (1 + 3\lambda^2) p_e E_e (E_0 - E_e)^2 \times \left[1 + b \frac{m_e}{E_e} + a \frac{\vec{p}_e \cdot \vec{p}_v}{E_e E_v} + \langle \vec{\sigma}_n \rangle \cdot \left(A \frac{\vec{p}_e}{E_e} + B \frac{\vec{p}_v}{E_v} + D \frac{\vec{p}_e \times \vec{p}_v}{E_e E_v} \right) \right]
$$

Electron-antineutrino correlation

$$
a = \frac{1 - |\lambda|^2}{1 + 3|\lambda|^2}
$$

Spin-electron asymmetry

$$
A = -2 \frac{|\lambda|^2 + |\lambda| \cos \varphi}{1 + 3|\lambda|^2}
$$

Neutron Lifetime $\tau_n \propto$ 1 V_{ud} |²| g_v^2 |(1 + 3 λ^2

Coupling ratio

$$
\lambda = \frac{|g_A|}{|g_V|} e^{i\varphi}
$$

Spin-antineutrino asymmetry

$$
B = 2 \frac{|\lambda|^2 - |\lambda| \cos \varphi}{1 + 3|\lambda|^2}
$$

Combinations of τ_n and asymmetry coefficients yields g_V , g_A , V_{ud}

Test of Unitarity of CKM matrix

$$
|V_{ud}|^2 + |V_{us}|^2 + |V_{ub}|^2 = 1
$$

- $-$ 0⁺ → 0⁺ nuclear beta decays (most precise, ΔV_{ud} ~1.1 × 10⁻⁴, but includes both radiative and nuclear corrections)
- $-$ Neutron beta decay (no nuclear corrections, but a competitive result requires \sim 10⁻⁴ experimental precision)
- Deviation from unitarity suggests possible new physics (e.g. right-handed currents)

V_{ud} from neutron beta decay

- Requires two measurements: τ_n and $\lambda = g_A/g_V$
	- τ_n can be measured using more than one method
	- λ comes from a measurement of one or more correlations, typically A and/or a.

$$
|V_{ud}|^2 \propto \frac{K}{\tau_n |g_\nu^2| (1+3\lambda^2)}
$$

• To be competitive with $0^+ \rightarrow 0^+$ requires

$$
\begin{pmatrix}\n\cdot & \frac{\Delta\lambda}{\lambda} < 0.03\% \\
\cdot & \Delta\tau < 0.3\,\text{s}\n\end{pmatrix}
$$

This is the goal of the US neutron beta decay program over the next 5+ years

Experimental Challenges in neutron beta decay

- **The lifetime is too long.** For a typical cold beam, 10⁻⁶ decay in the detector volume. In the case of neutron bottles, one must deal with systematics over a 15 minute period.
- **Neutrons are hard to manipulate.** One must cool them over many decades of energy before magnetic fields, gravity, and optical potentials become relevant.
- **The decay antineutrino is unobservable, while the decay proton has an endpoint energy of only 751 eV.**
- **The destiny of almost all neutrons is to become a potential background event** via capture and activation.

1. Neutron lifetime τ_{n}

How to Measure *τⁿ* in a Beam

- Requires absolute counting of neutrons and one or more decay products (protons and/or electrons)
- Counts the number of neutrons that decay via the normal decay channel $n \rightarrow p + e + \overline{v}$

FM absorbs neutrons as 1/v So it's calibrated at thermal velocity

$$
\tau_n = \frac{R_n \varepsilon_p L_{\text{det}}}{R_p \varepsilon_{th} v_{th}}
$$

How to Measure *τⁿ* in a Bottle

- Have to account for loss mechanisms, complicated neutron orbits
- Storage can be in either material or magnetic trap/bottle
- Counts the total number of neutrons that decay, regardless of decay channel (including possible exotic decay modes)
- In principle can also measure n_p and/or n_e as in beam experiment as a direct test (e.g. UCNProbe)

UCN τ is a nearly "lossless" bottle where holding times exceed τ_n , allowing for the first bottle measurement with no extrapolation

Recent/ongoing (mostly US) efforts on the neutron lifetime

- Most precise measurement
- Only τ_n measurement with systematic corrections smaller than uncertainty
- $\Delta \tau = 0.3$ s (stats limited) PRL **127** 162501 (2021)

D07.00008 – S.H.

 $B = 4.6 T$

Mark III proton trap

- Update of current best beam result
- Will resume data taking as son as NIST reactor restarts (est. summer 2023)
- $\Delta \tau$ < 2 s α , t detector

precision aperture

⁵ deposit

- Beam lifetime using TPC to simultaneously measure decay electrons and neutrons using $3He(n,p)$ 3Hreaction
- $\Delta \tau$ < 1 s

n

+800 V

Current result $\Delta \tau$ ~20 s

Prog. Theor. Exp. Phys. 2020 123C02

Plus additional recent UCN efforts in Europe…

Future (US) efforts on the neutron lifetime

G15.00007 – Musedinovic

- Next-gen UCN bottle experiment
- UCN "elevator" loading increase trapped UCN 10x
- $\Delta \tau < 0.1$ s
- Currently under construction; commissioning later this year (2023)

- Next-gen beam lifetime
- Larger volume; larger, segmented proton detector; higher rates
- $\Delta \tau < 0.3$ s
	- Mid-scale instr. funding (2022 -2025

$UCN\tau + \boxed{\text{G15.00007}-Musedinovic}$ BL3 UCNProbe

- "Beam"-style experiment using **UCN**
- two-layer deuterated phoswich scintillator box to store UCN and detect beta decay electrons
- $\Delta \tau < 2$ s
- Finalizing design and hardware procurement
- Planned commissioning in 2025

Plus additional UCN efforts in Europe and ongoing beam efforts in Japan…

Space-based measurement of τ_n *using data from Lunar Prospector and MESSENGER* Slide courtesy D. J. Lawrence and J. Wilson

MESSENGER: flyby of Venus used in combination with the first flyby of Mercury to measure τ_n (*Wilson et al.*, 2000a).

13

Lunar Prospector: lunar model includes variable composition by defining a set of regions that correspond to major compositional regions (*Wilson et al*., 2000b).

APL

2. Neutron Beta-decay Asymmetries $d\Gamma$ $dE_e d\Omega_e d\Omega_v$ $\propto g_v^2 (1 + 3\lambda^2) p_e E_e (E_0 - E_e)^2 \times |1 + b|$ m_e E_e $+ a$ \overrightarrow{n} $\overrightarrow{p}_{e}^{}$. \overrightarrow{n} \overrightarrow{p}_{ν} $E_e E_v$ $+\langle \overrightarrow{\sigma_n} \rangle \cdot | A$ \overrightarrow{n} \overrightarrow{p}_{e} E_e $+ B$ \overrightarrow{n} \overrightarrow{p}_{ν} E_{ν} $+ D$ \overrightarrow{n} \overrightarrow{p}_e \times \overrightarrow{n} \overrightarrow{p}_{ν} $E_e E_v$

Electron-antineutrino correlation Beta asymmetry

$$
a = \frac{1 - |\lambda|^2}{1 + 3|\lambda|^2}
$$

$$
A = -2 \frac{|\lambda|^2 + |\lambda| \cos \varphi}{1 + 3|\lambda|^2}
$$

Used to determine λ for $V_{ud} \rightarrow$ test CKM unitarity Need $\frac{\Delta \lambda}{\lambda}$ < 0.03 %

$$
B = 2 \frac{|\lambda|^2 - |\lambda| \cos \varphi}{1 + 3|\lambda|^2}
$$

Triple Correlation

$$
D = 2 \frac{|\lambda| \sin \varphi}{1 + 3|\lambda|^2}
$$

deviations may indicate V+A Non-zero value would indicate time-reversal violation

 $h = 0$

Non-zero value may indicate S, T Need $\Delta b < 10^{-3}$ to set competitive limits

2. Neutron Beta-decay Asymmetries

PDG2022 determination of λ

- Like the lifetime, there is a fair amount of scatter, with seemingly two camps.
- The recent aSPECT (BECK) result is a bit of an outlier compared to other recent experiments
- Need consistency between measurements for V_{ud}

Neutron beta decay asymmetry landscape A PERKEO III $\frac{\Delta A}{A} = 0.2 \%$ PRL 122,242501(2019) **PERKEO III** Hall Probe DI C-coated **Calibration Source** Conner Decar U_{∞} = -15 kV
 B_{∞} = 4.4 T Δa aSPECT $\frac{\Delta a}{\Delta a} = 0.8 \%$ $E16(E\times B)$ α $E15(E\times B)$ PRC **101**,055506(2020) Scintillator Polarimetry $0 \text{ V} < U_{\text{AP}} < 780 \text{ V}_{\text{o}}$
B. = 0.44 T unalyzing
plane
alectrode Shutter Thin Foil **UCN Detector** ΔA UCNA $\frac{\Delta A}{4} = 0.67 \%$ Iron Foil UCN ecay volume Superconducting Detector **UCN floy** Spectrometer (SC) during \overline{A} T Central Field depolarization **UCN flow during** $V = \lambda$ measurement β -decay $B_0 = 2.2$ T PRC **97**, 035505 (2018) measuremer Δa \overline{ACORN} $\frac{\Delta a}{|a|} = 1.9 \%$ Switcher UCN Detecto α Addition for ΔA UCNA+ pNab: Multipixel Si $< 0.2 %$ PRC **103**,045502(2021) Neutron beam \overline{A} detectors for rizer • Data taking starting around decay electrons and protons 2025? **F16.00001 – Singh F16.00002 – Gupta D07.00005 – Fry** $\frac{\Delta A}{A} < 0.08\%$ PNab Nab Δa $< 0.08 %$ $< 0.1 %$ α $\Delta b = 3 \times 10^{-3}$ • Data taking finished 2026 (summer) • Transition from commissioning to Cold Neutron data taking 2023 (summer) Beam from left Plus PERC in Europe: $\frac{\Delta A}{A}$ < 0.04 %, uncertain schedule • Data taking finished 2025 (summer)

Lattice QCD Calculation

Lattice QCD calculations have reached 1 % precision on g_A

- Precision is largely limited by calculation resources (stats)
- Precision of 0.1 % to 0.2 % may be possible on the 5 year timescale (comparable to measurements)

Use Standard Model "Master Equation" to convert g_A to τ_n : $V_{ud} |^2 \tau_n (1 + 3 g_A^2)(1 + \Delta_R^V) = 5024.7s$

Comparisons with experimental values could help illuminate new physics

Exotic Physics Explanations for the τ_n bottle/beam discrepancy

- Dark decay channel PRL **120**, 191801 (2018)
	- Experimental constraints from searches for gammas plus exotic particle
	- Theoretical constraints using neutron star observations
- Mirror neutrons
- Hidden neutrons
- Other non-SM decay channels
- Other new physics beyond standard model

Active area both theoretically and experimentally

Summary

- Neutron beta decay is poised to provide important tests of the standard model and probe BSM physics through CKM Unitarity tests and Fierz interference.
- The US neutron beta decay program is centered around understanding the Cabibbo Anomaly in the CKM matrix, which involves two main goals over the next long range plan period:
	- Resolve the neutron lifetime discrepancy and establish a robust determination of τ_n at the 0.3 s level or better
		- UCN τ and UCN τ + (LANL); BL2 and BL3 (NIST); UCNProbe (LANL)
	- $-$ Improve the determination of λ to 0.03% or better to be competitive with $0^+ \rightarrow 0^+$
		- Nab (ORNL); pNab (ORNL); UCNA+ (LANL)
- Prospects are high

Thanks to S. Baessler, Z. Tang, S. Clayton, and others for figures and information

