The Nuclear Pear Factory: Symmetry Violation Searches with Pear-Shaped Nuclei in the FRIB Era

Jaideep Taggart Singh Michigan State University/FRIB 1430-1500, April 14, 2023 2023 GPMFC April APS Workshop Hilton Minneapolis, Conrad A, Level 2 Marie-Anne Bouchiat

EDM: Measures the Separation of Charges

"Thunder Cloud as Generator #2" (1971) by Paterson Ewen [Art Gallery of Ontario]

2023-04-14

Different Sources of *CP* ↔ EDM of Different Systems

Different Sources of *CP* ↔ EDM of Different Systems

2023 EDM Limits: Free of SM "Backgrounds"

Chupp, Fierlinger, Ramsey-Musolf, JTS RMP 91:015001 (2019) & Nature 562:355 (2018) & PRL 124:081803 (2020) & arxiv:2212.11841

System	Best Limit (95%) 1E-28 <i>e</i> cm	SM estimate 1E-28 <i>e</i> cm	Method (Location)
Neutron	220	~10-4	ultracold neutrons in a bottle (PSI)
"Electron"	0.11 0.05	~10 ⁻¹⁰	cold ThO beam (Chicago/Harvard/Northwestern) trapped HfF+ (JILA/Boulder)
Hg-199	0.074	~10-6	atoms in vapor cell (UW-Seattle)

Imagine a Hg-199 atom that is composed of two oppositely charged hemispherical shells each with charge magnitude *e*:

If the Hg-199 atom was the size of the Earth, then the maximum thickness of these shells would be less than the diameter of a strand of human hair.

Physics Today, June 2003

Statistical Sensitivity

$$\Delta
u =
u_{\uparrow} -
u_{\downarrow} = rac{4dE}{h}$$
 $\sigma_{
u} = rac{\Gamma_{ ext{linewidth}}}{ ext{SNR}}$

Quantum Projection Noise:

The Gold Standard: Hg-199 EDM Search

- **diamagnetic**, ¹S₀ ground state
- $I = \frac{1}{2}$, no elect. quad. moment
- high Z, (80) rel. atomic struct.
- stable, (17% n.a.) 92% enriched
- high vapor pressure, (10¹³/cm³)
- modest electric field, 10 kV/cm
- 30+ year old experiment!

Limiting systematic appears to be ~10 nm scale motion of vapor cells when HV is switched in the presence of 2nd order *B*-field gradients.

u = 8.3 HzThe best limit on atomic EDM: $\Delta \nu \le 0.1 \text{ nHz}$ EDM(¹⁹⁹Hg) < 0.74x10⁻²⁹ e-cm (95% C.L.) Graner et al., PRL 116:161601 (2016)

Diamagnetic Atoms: All electrons are paired.

Neutral Atom

nucleus

electron cloud

Schiff Shielding in Diamagnetic Atoms

• Shielding in Diamagnetic Atoms

Schiff PR 132:2194 (1963)

Shielding Imperfect with Relativistic Atoms & Finite Nuclei

Nuclear Schiff Moment in the Lab Frame

Enhanced Nuclear Moments with Parity Doublets

$$S_{z} = \frac{\langle er^{2}z \rangle}{10} - \frac{\langle r^{2} \rangle \langle ez \rangle}{6}$$
$$S \equiv \langle \Psi_{0} | S_{z} | \Psi_{0} \rangle = \sum_{k \neq 0} \frac{\langle \Psi_{0} | S_{z} | \Psi_{k} \rangle \langle \Psi_{k} | V_{PT} | \Psi_{0} \rangle}{E_{0} - E_{k}} + \text{c.c.}$$

Parity Doublet

hlet

Haxton & Henley PRL 51:1937 (1983)

$$\Delta E \qquad |\Psi_1\rangle = \frac{|\alpha\rangle - |\beta\rangle}{\sqrt{2}} \\ |\Psi_0\rangle = \frac{|\alpha\rangle + |\beta\rangle}{\sqrt{2}}$$

Enhanced Schiff Moments in Deformed Nuclei

$$S_{z} = \frac{\langle er^{2}z \rangle}{10} - \frac{\langle r^{2} \rangle \langle ez \rangle}{6}$$
$$S \equiv \langle \Psi_{0} | S_{z} | \Psi_{0} \rangle = \sum_{k \neq 0} \frac{\langle \Psi_{0} | S_{z} | \Psi_{k} \rangle \langle \Psi_{k} | V_{PT} | \Psi_{0} \rangle}{E_{0} - E_{k}} + \text{c.c.}$$

Parity Doublet

- Nearly degenerate parity doublet Haxton & Henley PRL 51:1937 (1983)
- Large intrinsic Schiff moment due to octupole deformation Auerbach, Flambaum, & Spevak PRL 76:4316 (1996)

$$\Delta E \qquad |\Psi_1\rangle = \frac{|\alpha\rangle - |\beta\rangle}{\sqrt{2}} \\ |\Psi_0\rangle = \frac{|\alpha\rangle + |\beta\rangle}{\sqrt{2}}$$

Enhanced Sensitivity in Radium-223/Radium-225

$$S_{z} = \frac{\langle er^{2}z\rangle}{10} - \frac{\langle r^{2}\rangle\langle ez\rangle}{6}$$
$$S \equiv \langle \Psi_{0}|S_{z}|\Psi_{0}\rangle = \sum_{k\neq 0} \frac{\langle \Psi_{0}|S_{z}|\Psi_{k}\rangle\langle \Psi_{k}|V_{PT}|\Psi_{0}\rangle}{E_{0} - E_{k}} + \text{c.c.}$$

$$\begin{split} |\Psi_1\rangle &= \frac{|\alpha\rangle - |\beta\rangle}{\sqrt{2}} \\ |\Psi_0\rangle &= \frac{|\alpha\rangle + |\beta\rangle}{\sqrt{2}} \end{split}$$

- Nearly degenerate parity doublet Haxton & Henley PRL 51:1937 (1983)
- Large intrinsic Schiff moment due to octupole deformation Auerbach, Flambaum, & Spevak PRL 76:4316 (1996)

Total Enhancement Factor: EDM (²²⁵Ra) / EDM (¹⁹⁹Hg)

	Skyrme Model	Isoscalar	Isovector		
	SIII	300	4000		
	SkM*	300	2000		
	SLy4	700	9000		
²²⁵ Ra: Dobaczewski & Engel PRL 94:232502 (2005) ¹⁹⁹ Hg: Ban et al. PRC 82:015501 (2010)					

2023 GPMFC Workshop - Minneapolis

55 keV

16

2023-04-14

The Laser Trap Ra EDM Experiment @ Argonne

Ra EDM: Completely Statistics Limited

Dec 2014: PRL 114:233002: $|d(Ra-225)| < 50x10^{-23} e \text{ cm } (95\%)$ June 2015: PRC 94:025501: $|d(Ra-225)| < 1.4x10^{-23} e \text{ cm } (95\%)$

Effect	Current uncertainty	α scenario uncertainty	β scenario uncertainty
E-squared effects	1×10^{-25}	7×10^{-29}	$7 imes 10^{-31}$ a
B-field correlations	1×10^{-25}	5×10^{-27}	3×10^{-29a}
Holding ODT power correlations	6×10^{-26}	9×10^{-30}	9×10^{-32a}
Stark interference	6×10^{-26}	2×10^{-27}	$3 imes 10^{-29}$ a
E-field ramping	9×10^{-28}	2×10^{-29}	N/A
Blue laser power correlations	7×10^{-28}	1×10^{-31}	1×10^{-31}
Blue laser frequency correlations	4×10^{-28}	8×10^{-30}	8×10^{-30}
$\mathbf{E} \times \mathbf{v}$ effects	4×10^{-28}	7×10^{-30}	N/A
Leakage current	3×10^{-28}	9×10^{-29}	N/A
Geometric phase	3×10^{-31}	7×10^{-30}	5×10^{-33}
Total	2×10^{-25}	5×10^{-27}	4×10^{-29a}

^aThis uncertainty will improve with the statistical sensitivity of the experiment.

More efficient detection of atoms: optical cycling More efficient laser cooling and trapping: 1 ppm to 100 ppm Higher electric field: 70 kV/cm to >200 kV/cm **Goal is <10⁻²⁶ e cm over 4 years and then 10⁻²⁸ e cm long term**

2022: Atomic EDM of ¹⁷¹Yb (Stable) in a Laser Trap Using Laser Probing

- Pathfinder experiment for ^{223,225}Ra
- Coherent spin precession time > 300 s
- EDM(¹⁷¹Yb) < 1.5x10⁻²⁶ e-cm (95% C.L.), equivalent to ~1000xEDM(¹⁹⁹Hg)

PRL 129, 083001 (2022)

slide from Z.-T. Lu

- Determined the magic ODT (optical dipole trap) wavelength PRA 102, 062805 (2020)
- Developed a quantum nondemolition (QND) method with a spin-detection efficiency of 50% arXiv:2209.08218v1 (2022)
- Observed the systematic
 due to parity mixing in ODT,
 and suppressed the effect by
 averaging measurements
 with ODTs in opposite
 directions
- Upgrades underway to improve sensitivity by x100

2023-04-14

Recent Results in Xe-129 and Yb-171 (Not Pear-Shaped)

Ra-225: PRC 94:025501 (2016): < **1.4x10⁻²³** *e* **cm (95%)** (laser trap experiment)

Xe-129: PRL 123:143003 (2019): **<1.4x10⁻²⁷** *e* **cm (95%)** (gas cell experiment)

Yb-171: PRL 129:083001 (2022): < **1.5x10⁻²⁶** *e* **cm (95%)** (laser trap experiment, very similar to Ra experiment)

- The new physics constraints within the hadronic sector for all three of these experiments are roughly equal.
- The Yb experiment validates the laser trap approach for Ra for at least another three orders of magnitude.

Molecular <u>Electron</u> EDM Experiments: Large Internal E-field and Control of Systematics

ACME – ThO^{*} Neutral Beam (Chicago / Harvard / Northwestern) C. Panda (Harvard 2018) Nature 562 355 (2018)

Neon Buffer Gas

Opportunity for Nuclear Schiff Moments: Short-Lived Pear-Shaped Nuclei Inside Molecules

Enhancements: nuclear Schiff moment enhancement of x1000 (225Ra) to maybe(!?!) x1000000 (²²⁹Pa) *and* ~100 MV/cm effective internal E-field (lab < 1 MV/cm)

Potential: x10⁵ to x10¹⁰ more new physics sensitivity than the ¹⁹⁹Hg

experiment on a per atom basis.

Opportunity: Isotope harvesting @ FRIB: from "Beam to Beaker" $(^{225}Ra, ^{229}Pa, ...)$

Challenges:

- How do we get the harvested isotopes from "Beaker" into an experiment?
- How do we calibrate the new physics sensitivity of these "enhancer • isotopes" inside of molecules?
- How do we efficiently form & probe short-lived radioactive molecules? • 2023-04-14 2023 GPMFC Workshop - Minneapolis 23

Facility for Rare Isotope Beams @ MSU

"Isotope Harvesting" at The Facility for Rare Isotope Beams (MSU/East Lansing)

Prof. Greg Severin

Prof. Alyssa Gaiser Prof. Katharina Domnanich

\$upport Needed For "Beaker to Experiment" >90% of primary beam is unused **Flowing Water** Collect Dipole Target radionuclides of Magnet interest **Isotope Harvesting** Water System Primary beam Foil Target

NIMB 478 34 (2020)

Secondary beams

Mixed primary and secondary beams

- FRIB Operations is supported by DOE-NP
- Isotope Harvesting @ FRIB is supported by DOE-Isotopes

2023-04-14

Protactinium-229 (229Pa) *may* be unusually sensitive!

Parity Doublet

Pa-229: Haxton & Henley PRL 51:1937 (1983) I. Ahmad et al Phys. Rev. C 92:024313 (2015) Dobaczewski et al PRL 121, 232501 (2018)

Isotope	ΔE (keV)	τ _{1/2} (sec)	sensitivity
Hg-199	1800	stable	1
Rn-223	$\sim 10^{2}$?	10 ³	10 ²
Ra-225	55	106	10 ³
Pa-229	(0.06 +/- 0.05)?	10 ⁵	10 ⁶

FRIB will make lots of Pa-229!

Planned Pa-229 Nuclear Spectroscopy @ FRIB!

We have used superconducting high-resolution radiation detectors to measure the energy level of metastable 235m U as 76.737 \pm 0.018 eV. The 235m U isomer is created from the α decay of 239 Pu and embedded directly into the detector. When the 235m U subsequently decays, the energy is fully contained within the detector and is

FIG. 1. Schematic of experimental setup: 235m U recoil ions produced by the decay of 239 Pu are embedded in the STJ detectors, which measure their subsequent decay into the 235 U ground state.

Pear-Shaped Nuclei Implanted In Cryogenic Solids: 225 RaF (t_{1/2} = 15 days) & 229 Pa (t_{1/2} = 1.5 days)

- Efficient trapping of a wide variety of species
- Very high number densities
- Stable and chemically inert confinement
- Transparent in the optical regime for optical probing
- Under certain conditions, polar molecules orient themselves along the crystal axes which allows for control of systematics: PRA 98:032513 (2018)

- Challenge: quantum control in rare gas solids
- Ions implanted in optical crystals allowing for optically-addressable nuclear spins Hyp. Int. 240:29 (2019)
- Implanted ions can sit at two distinct sites with opposite pointing internal E-fields which allows for control of systematics PR 131 1912 (1963)
- Efforts are underway to form & implant molecules & ions into solids JTS DOE ECA 2018

RaF & RaOH in Noble Gas Solids (MSU/York/Toronto)

2023-04-14

Quantum Logic Spectroscopy of Single Molecular Ions: ²²⁵RaOH⁺, ²²⁵RaSH⁺, & ²²⁵RaOCH₃⁺ (t_{1/2} = 15 days)

- Spectroscopy and atomic structure measurements of the logic ion Ra⁺ PRL 122, 223001 (2019), PRA 100, 062512 (2019), PRA 100, 062504 (2019), PRA 102, 042822 (2020) PRA 105, 042801 (2022)
- Formation of relevant CPV-sensitive single molecular ions PRL 126, 023002 (2021)
- Identification of candidate molecular ions with pear-shaped nuclei with enhanced CPV sensitivity
 PRL 126, 023003 (2021)
 slide from A. Jayich

2023-04-14

Direct Laser Cooling of Neutral Molecules Into a Laser Trap: ²²⁵RaF & ²²⁵RaOH ($t_{1/2}$ = 15 days)

- Molecular spectroscopy of RaF is underway!
- Laser cooling of RaF appears feasible and scheme is under development

Nature 581:396 (2020) PRL 127:033001 (2021)

slide from R. Garcia Ruiz

Benefits of Polyatomic Molecules

- Laser coolable & trappable
- Highly polarizable
- Comagnetometer states for control of systematics
- High CPV sensitivity

PRL 119, 133002 (2017) Quantum Science & Tech. 5, 044011 (2020)

slide from N. Hutzler

Ultracold Assembly of Neutral Molecules Within A Laser Trap: ²²³FrAg ($t_{1/2} = 22$ minutes)

• Included in Gen-I Estimate:

--300x NSM enhancement --near-ideal molecular structure $-t_{coh} \sim 10$ s [Cornish, Zwierlein, etc.] -- $\sim 100\%$ detection efficiency -- $n = 10^4$ molecules

 \Rightarrow ~1000x projected improvement vs. ¹⁹⁹Hg state of the art

Needs major involvement of radiochemists, thermal ion beam source experts, radiological safety experts, ... to develop ²²³Fr+ ion source

slide from D. DeMille

All these parameters ALREADY DEMONSTRATED with stable bi-alkalis (!)

Theory calculations favorable: New J. Phys. 23 113039 (2021) New J. Phys. 24 025005 (2022)

odd-proton nuclei like ²²³Fr probe largely orthogonal parameter space vs. odd-neutron species

2023-04-14

The Nuclear Pear Factory: A Proposed Center

Single, *Trapped* Radioactive Molecules for Nuclear Science

 $E_{PV} \sim$

1.5

Direct, **high-precision** access to **electroweak** nuclear properties at the intersection of AMO, nuclear and particle physics:

- → Hadronic parity violation
- → "TeV-scale" Z'-boson search
- → Nuclear electroweak structure

slide from Jonas Karthein

1.525

Magnetic field

strength (T)

1.55

 $\frac{\langle \psi_{\uparrow}^{+} | H_{\pm} | \psi_{\downarrow}^{-} \rangle}{\langle E - E_{\downarrow} \rangle}$

Degeneracy + Stark mixing

 \rightarrow amplification by >10¹¹

22.0

21.5

21.0

(GHz·h)

Energy

Prof. D. DeMille

U. Chicago/ANL

SiO+

Single, *Trapped* Radioactive Molecules for Nuclear Science

→ Penning Ion Trap:

- Strong magnetic field + RF field
- Full control over eigenmotions
- Direct information through image charge

Close collaborators:

D. DeMille (ANL, UChicago), N. Hutzler (Caltech), R. Ringle (FRIB), J. Dilling (ORNL), K. Blaum (MPIK)

garciaruizlab.com & radioactivemolecules.com

slide from Jonas Karthein

2023-04-14

Thanks For Your Attention!

- Detecting a non-zero EDM would be an unambiguous signature of physics 1. Beyond the Standard Model of Particle Physics.
- 2. Pear-shaped nuclei such as Radium-225 and Protactinium-229 have significantly enhanced sensitivity to *CP*-violation originating within the nuclear medium.
- Short-lived radioactive molecules potentially have $x10^5$ to $x10^{10}$ more new 3. physics sensitivity than Hg-199 in the hadronic sector on a per atom basis.
- **Isotope harvesting and radiochemistry at FRIB** enables access to these enhancer 4. isotopes in practical quantities for ultrasensitive EDM searches.
- We propose a center, <u>The Nuclear Pear Factory</u>, to realize the unprecedented 5. discovery potential made possible by short-lived radioactive molecules.

<u>singhj@frib.msu.edu</u> web: spinlab.me

twitter: @spinlabmsu

