Mitch Newcomer Representing work at RAL, Liverpool, BNL and Penn

SERIALPOWERUPDATEATLASBARRELSCT

Stave Module – Electrical Performance

- Measurements on Modules @ Liverpool
- First Measurements on Stavelets @RAL
- Control of Serial Powering
- New stuff

**Serial Powered Module Material Burden: ~.016% Xo Based on SPP ASIC & passives including capacitive coupling caps for digital signaling and hybrid area required for components. Thanks to Tony Affolder, Liverpool

Stave Module – Electrical Performance (Liverpool)

Parallel Powered (reference)

Serially Powered

Serially Powered Module Works!

Input Noise comparable between powering schemes Evidence of a noise signature seen on module(s)

- Outer columns have higher noise compared to inner
- Irrespective of powering scheme

ACES 2011

New Generation of Serial Power Current Source

2nd Gen Current Source*

• Includes overvoltage protection, isolated USB interface and Programmable PID coefficients for system tuning.

* Designer Jan Statsny

Current Source v3 Block Diagram

(work supported by RAL)

Stavelet Protection

One wire Addressable by Hybrid Serial Power Control developed by BNL. Installed on each of the 8 Stavelet Hybrids.

An SCR function allows autonomous shut down on Over Voltage Sense

Progress on SCT Stavelet's @ RAL Slides from : Peter Phillips John Matheson Giulio Villani

Thermal Images of the Stavelet in Operation (RAL)

Each hybrid may be bypassed using the PPB 1-wire operated shunt Voltage differences consistent with 2.5V per hybrid 2.7V overheads: bus tape, bond wires, PPB PCBs, external cabling

ACES 2011

Stavelet Hybrid Voltages vs Current (RAL)

The ABCN-25 "M" shunt and the hybrid's control circuitry work as expected: Constant hybrid voltage from 4.0A

G&S Improvements (RAL)

Aluminium cover connected to baseplate with @# Tape

Stavelet HV Filter (RAL)

Implemented within diecast box

ACES 2011

External LV Filter (RAL)

FROM PSU

Screened LV cable to Stavelet (screen is connected to shield)

Jan Stastny's Current Source: Current Noise, Stavelet running at 5A

Before G&S Improvements, without Internal Filter

After G&S Improvements & with Internal Filter

ACES 2011

ATLAS Stavelet Measurements @ RAL (Peter Phillips, John Matheson)

3rd Mar 2011

Jan Stastny Current Source at 5A, 230V bias, ALL MODULES ON Run 1451 Scan 3 ENC (Hybrid 4 Column 0) ENC (Hybrid 6 Column 0) 1280 645.8 128 800 700 500 400 300 668 ENC 655 ENC 649 ENC 672 ENC 1200 ENC (Hybrid 6 Column 1) ENC (Hybrid 4 Column 1) ENC (Hybrid 2 Column 1) ENC (Hybrid 0 Column 1) 128 1280 128 639.1 128 والمرفق والمقتر وخراكم وأدفا الأراد والمارك 300 633 ENC 646 ENC 627 ENC 623 ENC 200 ENC (Hybrid 5 Column 0) 1280 605.3 369.4 ENC (Hybrid 7 Column 0) ENC (Hybrid 3 Column 6) ENC (Hybrid 1 Column 0) 1280 639.6 369.9 1280 638.8 368.8 128/ 639.5 366.5 80 -8 800 700 500 400 614 ENC 620 ENC 622 ENC 634 ENC ENC (Hy ENC (Hyb ENC (Hyb ENC (Hybrid 7 Co 1280 640.6 364.3 128/ 641.5 365.7 632. 639 800 642 ENC 643 ENC 652 ENC 678 ENC 200 100 Channel ACES 2011 14

ATLAS Stavelet Measurements (a) RAL (Peter Phillips, John Matheson)

3rd Mar 2011 COMPOSITE

Jan Stastny Current Source at 5A, 230V bias, ODDS AND EVENS

Run 1 Scan 3

Evolving Serial Powering Protection ASIC

2010 Power Working Group Presentation Described SPP chip and simulations in detail. "Serial Power & Protection (SPP) ASIC for 1 to 2.5V Hybrid Operation"

http://indico.cern.ch/getFile.py/access?contribId=11&resId=o&materialId=slides&confId=85278

SPP chip has internal shunt regulator to set its voltage to 2.3V.
Allows two operating regimes for control voltage going to FEIC based shunt transistors: .4 to 1.0 regulate, 2.1 to 2.3 shut down hybrid.
On chip band gap forms reference for SPP 2.3V and for hybrid voltage.
Hybrid voltage may be set from 1V to 2.5V using an attenuator network on V hybrid.
Autonomous shut down for Over Voltage.

•One extra stave wire supplies power to the SPP and Programmable shut down control

Additional features considered in 2011:

•On board shunt transistor available to guarantee hybrid switch off.

- •Hybrid Voltage programming planned after first prototype
- •Rad Hard Version next

SPP Block with Signals (2010)

First Prototype of SPP block ready for testing

Analog Control loop includes:

- 1.1 V BandGap.
- SPP 2.3V internal shunt regulator.
- Hybrid Regulation loop suitable for use on hybrids or staves.

Submitted for fabMay 2010ReturnedJan 2011

Chip on board test PCB prepared but due to bond pad size: 6oX95um Pad layout needed to be reworked. To be sent out this week.

Test board plug in compatible with ABCn Modules and Stavelets.

IBM CMOS8RF 130nm Technology

Connector Pin compatible with BNL Protectiion board socket on Hybrid

SPP – Fall 2010 Hybrid simulations

- Full Monte Carlo HSPICE schematic simulation of 12 hybrids including realistic connections and parasitics CMOS 8RF models for SPP.
- Pulse-width modulated signal superimposed on Vglobal (25v)
 - Command pulse amplitude: 2.2v
 - Narrow pulse: 50 ns
 - Wide pulse: 150ns
 - 4 address bits/1 data bit

Serial Hookup of SPP Chip for Simulation

*See Slide 17 for proper hookup to V global

ACES 2011

SPP-12 hybrid HSPICE simulations (Monte=10)

SPP – 12 Hybrid HSPICE simulations (Monte=10)

SPP – 12 hybrid HSPICE simulations (Monte=10)

SPP – 12 hybrid simulations (Monte=10)

SPP full Prototype Chip Layout (2011 submission)

PENN 3/7/11 SPP CHIP: 2mm x 2mm Big Shunt: 54000um/600nm NFET Shunt **Shorting Transistors** Transistors W=18000u. 5cm X ..6um Added L=600n 63mV @ 1.6A OPAMP SPP chip as in 2010 🔶 Small Shunt Transistor W=6800um L= 600nm 믓 **CMOS 8RF** SPCONTROL

Serial Power Protection and Control

• Single Global power line supplies each SPP with independent power

• SPP is addressable to turn "on" and "off" a hybrid.

•Built in Transistor capable of shunting hybrid current Independent of ASIC based Shunt Transistors

Summary

•Serial Powering shown to be successful at the Module and Stave Level.

•Current Source operates reliably with a 5A, 2.5V ABCn based Stavelet.

(Should be easier to build for a lower current, 1.2V 130nm Chipset.)

•One wire protection shown to work with Stavelet. Remote addressing works.

Opimization of G&S underway

- **1. AC coupled Sensor.**
- 2. AC coupled signaling.
- 3. Need to study coupling of module Reference to EOS reference to minimize common mode.

•Testing of fabricated SPP Control loop including Bandgap, Opamp and hybrid regulation will start in a couple of weeks. Results will feed into submission of first complete SPP ASIC. Expected in Q2 2011