Switched Capacitor DC-DC in FE-I4

Dario Gnani¹ (design), Yunpeng Lu² (measurement and talk), Weiguo Lu² (simulation) 1-Lawrence Berkeley National Laboratory 2-Institute of High Energy Physics, Beijing

March 8th, 2011

FE-I4 Introduction

- Designed in a 130nm feature size bulk silicon process.
 - Chip size: $2cm \times 1.9cm$
 - Pixel array: 80col×336row (26,880 pixels)
 - Pixel size: $250 \text{um} \times 50 \text{um}$
 - For each pixel: free running CSA + shaping + discriminator
 - Sophisticated digital logic porcessing "firing time" and "time over threshold(TOT)" of each pixel, and transmitting data out of the chip via a pair of 160Mb/s differential signals.

Power Options for FE-I4

- Basically the power rail inside FE-I4 are devided into 4 groups and attached to seperate pads:
 - VDDD1/GNGD1, VDDD2/GNDD2, VDDA1/GNDA1, VDDA2/GNDA2
 - In addition dedicated power nets for PLL, EFUSE and T3 isolation as well.
- 3 isolated power modules in the chip.
 - Two linear-shunt LDOs(ShuLDO)-> Laura's talk.
 - One switched capacitor DC-DC converter-> this talk.
 - Neither is hard-wired inside the chip. Thus Wire connections outside the chip needed.

(Ground connections not shown)

Power Modules in FE-I4 Layout

DC-DC configuration in FE-I4

- CLOLK is provided from outside the chip. This clock also serves as auxiliary clock for the chip.
- Ceramic capacitors used for the test. Cpump is mounted on the board as close to the chip as possible.
- DCDC_OUT and ShuLDO1_IN are connected in the chip and share the same pad.
- As a "devide-by-two" converter, ideally: lout=2lin & Vout=Vin/2.

DC-DC Schematic Diagram

- Non-overpapping Clock generator:
 - generates 3 internal clock signals from CLK_IN
 - the same frequency but different phase.
- Charge pump:
 - consists of 4 transistors working as switches
 - manipulates the pump capacitor under control of clock signals.

Non-overlapping clocks

5ns gap between CLK_BOT1 and CLK_BOT2 to eliminate adverse ٠ discharging.

Testing Results

Efficiency vs Clock frequency

Vin=3.3V, Rload=5Ω

- Simulation result shows Vefficiency around 90%, while the test result shows Vefficiency of about 84%.
- Just take 1MHz as the optimal frequency for the following test.

Ripple Voltage

- Observed ripple voltage was much larger(7mV) than the value predicted by simulation(<1mV).
- Its amplitude depended on load current(as shown in pictures below).
- We can't regenerate comparable ripple voltage by simulation. Still can't understand it by now.

Noise in Threshold Scan

Effect of running DC-DC standalone

• Running DC-DC but not using it to power the chip.

- Noise depends on DC-DC current.
- Seems like that DC-DC is not well isolated from the rest of the chip as expected.
- To investgate this problem, we made a test shown on next page.

An attempt to inject switching current via DC-DC_T3 isolation well

- DC-DC module sits in a T3 isolation well.
 - which is connected to DC-DC_in.
 - expected to be isolated from the rest of the chip by this way.
- Injecting switching current into the T3 isolation well, to see if noise from threshold scan increased.
- But it doesn't work by far. Two alleged reasons:
 - The current(tens of mA) from the pulser is not big enough.
 - The capacitance between T3 well and substrate smoothed the little switching current.

Follow-up

- 1. To find out where does the noise come from?
 - Put more efforts into the trial of switching current injection.
- 2. To put the pump capacitor on the bonding pads
 - smallest package available: "0201";
 - not sure it will work or not since not clear where the noise comes from.
 - should increase operating frequency--minimum of output resistance at higher frequency due to no wire bonds.
- 3. To make a board to test the irradiated chips.
 - 3 chips irradiated last Dec. and under test now.
 - But no wire bonding for DC-DC can be made on the boards.
 - Plan to make a small board sitting on top of chip. DC-DC will be wire bonded to this board and further attached to wires for test.

• Thanks for paying attention!

Backup Slides

Power Requirments in FE-I4

- 2.2nm gate oxide for all transistors(except for DC-DC converter and EFUSE programming circuitry).
- Thickest gate oxide in the process(5.2nm) used for DC-DC converter and EFUSE programming circuitry.
- The voltage ratings are conservatively estimated according to the gate oxide thickness, area, lifetime, operation temperature, and expected failure rate.
 - 1cm² gate area is rated for 1.6V with a 1ppm failure rate after 100KPOH at temperature of 125 °C.
 - The benifits from low operation temperature are not included.

		Internal Nodes	Linear Regulators	DC-DC Converter	Units
	Min. operating voltage	1.20	1.30	2.20	V
Voltage rating and current consumption	Max. operating voltage	1.50	1.65	3.40	V
	Nominal operating current	0.60	0.60	0.31	А
	Max. current at max. voltage	0.90	0.90	0.46	А
	Peak transients allowed	1.75	2.00	4.0	V
	Max. voltage at power supply ¹	2.10	2.50	4.73	V
	Derived R/T drop allowed in cables	0.60	0.85	1.33	V

1: The chip will see this voltage minus the cable voltage drop. This limit is chosen under the worst case assumption that a zero voltage drop in the cables can occur.

Switched Capacitor DC-DC

- Merits of switching capacitor DC-DC:
 - converting "high volatege low current"(good for power cables) to "low voltage high current"(required by frontend electronics);
 - using capacitors for energy storage benifits from the the industrial trend of high capacity small shape capacitors(and therefore decreasing mass).
- Pending questions:
 - Noise imposed upon the analog part when integrated into the same chip.
 - Power efficiency degraded by irradiation, about 10% observed on a prototype.

