# LHC Higgs WG2 summary and outlook LHC Higgs WG workshop 2023



Daniele Barducci Sarah Heim Ken Mimasu Giacomo Ortona



#### **Focus: Higgs Properties**

#### **Conveners:**

| WG2 convenors |                  |                           |         |
|---------------|------------------|---------------------------|---------|
| ATLAS         | Sarah Heim       | DESY                      | 01/2023 |
| CMS           | Giacomo Ortona   | Torino                    | 12/2022 |
| Theory        | Ken Mimasu       | University of Southampton | 07/2021 |
|               | Daniele Barducci | University and INFN Pisa  | 02/2022 |

#### Changes since the last meeting:

Giacomo Ortona took over from Mauro Donega Sarah Heim took over from Nicolas Berger HUGE THANKS TO MAURO AND NICOLAS!



#### **Focus: Higgs Properties**

#### **Conveners:**

| WG2 convenors |                  |                           |         |
|---------------|------------------|---------------------------|---------|
| ATLAS         | Sarah Heim       | DESY                      | 01/2023 |
| CMS           | Giacomo Ortona   | Torino                    | 12/2022 |
| Theory        | Ken Mimasu       | University of Southampton | 07/2021 |
|               | Daniele Barducci | University and INFN Pisa  | 02/2022 |









Daniele

Giacomo

Ken

Sarah



#### **Focus: Higgs Properties**

#### **Conveners:**

| WG2 convenors |                  |                           |         |
|---------------|------------------|---------------------------|---------|
| ATLAS         | Sarah Heim       | DESY                      | 01/2023 |
| CMS           | Giacomo Ortona   | Torino                    | 12/2022 |
| Theory        | Ken Mimasu       | University of Southampton | 07/2021 |
|               | Daniele Barducci | University and INFN Pisa  | 02/2022 |

#### REPLACEMENT IN PROGRESS

| WG2 subgroups                          | Subgroup mailing<br>list | Mail to<br>conveners |                                 | СМЅ                               | Theory                            |
|----------------------------------------|--------------------------|----------------------|---------------------------------|-----------------------------------|-----------------------------------|
| Fiducial, Differential and Template XS | Mailing List             | Mail                 | Hongtao Yang, LBNL<br>(08/2020) | Matteo Bonanomi, UHH<br>(10/2022) | Frank Tackmann, DESY<br>(05/2017) |

Twiki link: <u>https://twiki.cern.ch/twiki/bin/view/LHCPhysics/LHCHWG#WG2\_Higgs\_properties</u> Indico link: <u>https://indico.cern.ch/category/5848/</u> (topical meetings)

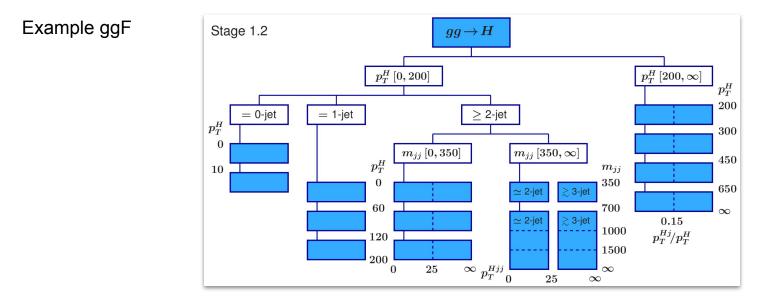
#### Simplified Template Cross Sections (STXS)

- STXS uncertainties (documentation of Run-2 procedure and results)
- STXS in the future
  - CPV, other reasons for additional splitting
  - STXS in decays

### CPV

- CPV in (extended) Higgs sectors (Joint activity with WG3)
- CPV in ttH
- CPV benchmarks & common parameterizations

### Synergy with LHC EFT WG

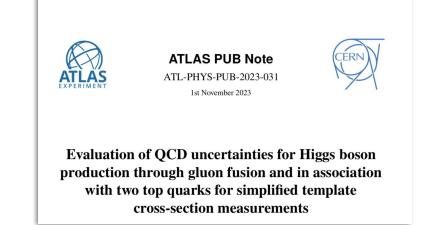

- SMEFT
- EFT H+HH combination, joint w/ WG4 (See WG4 summary talk)

What is it?

- Cross sections are measured in mutually exclusive phase space regions specific to the different Higgs boson production modes.

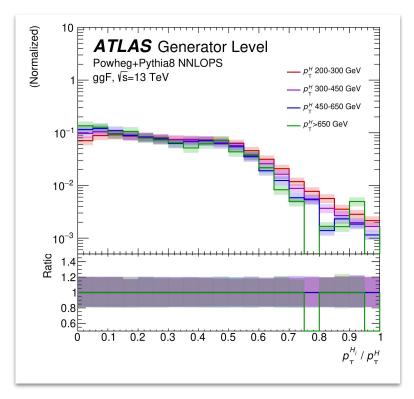
Motivation

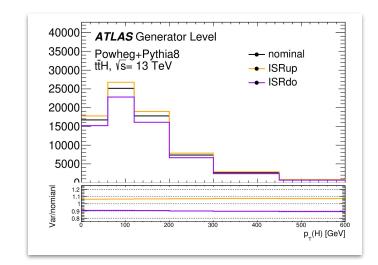
- maximize the sensitivity of Higgs boson cross-section measurements
- minimize their theory dependence
- allow for the combination of analyses in different decay channels




#### Goal: A paper about Run-2 uncertainty scheme

- numbers for ggF and ttH from ATLAS
  - In order to put this into a non-ATLAS paper, needed to publish numbers in a Pub Note first
- numbers for VBF, VH from CMS


#### Where we are now


- Numbers are all calculated and have been used
- ATLAS Pub Note is now public: <a href="https://cds.cern.ch/record/2878797">https://cds.cern.ch/record/2878797</a>
- Paper discussion started (would be nice in time for ATLAS-CMS combination)



## STXS uncertainties - the ATLAS note

- Tables and plots for the different regions in ggF and ttH
- Discusses also details of derivations, corrections applied, etc.

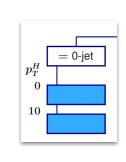




| Powheg NNLOPS |                      |            |
|---------------|----------------------|------------|
| < 60          | [60, 120)            | [120, 200) |
| 13.1          | 13.1                 | 13.1       |
| -8.1          | +7.6                 | +7.6       |
|               | -2.9                 | +10.3      |
| 15.4          | 15.5                 | 18.3       |
|               | < 60<br>13.1<br>-8.1 |            |

- Motivation for binning beyond STXS 1.2
  - Growing data set (improve BSM and SM sensitivity)
  - CPV
  - Decays
- Discussion ongoing for some time, now it's time for concrete steps
- => Dedicated (discussion) session this morning
- => two targets
  - STXS 1.3 for Run 3 (and 2?)
    - clear plan ahead, timeline for next steps planned
  - STXS 2 for 1 a<sup>-1</sup> at HL-LHC

| Ned 1 | 15/11                                                                                  | >                |
|-------|----------------------------------------------------------------------------------------|------------------|
|       | - Print PDF Full screen Detailed view                                                  | Filter           |
| 00    | Update on common format & toolchain for SMEFT parametrisations, STXS & beyond (15'+7') | Eleonora Rossi   |
|       | 30/7-018 - Kjell Johnsen Auditorium, CERN                                              | 09:00 - 09:22    |
|       | STXS beyond 1.2 (CPV and other considerations), experimental view (15'+7') Benedi      | ct Tobias Winter |
|       | 30/7-018 - Kjell Johnsen Auditorium, CERN                                              | 09:22 - 09:44    |
|       | STXS in decays (15'+7') Michael Due                                                    | ehrssen-Debling  |
| 00    | 30/7-018 - Kjell Johnsen Auditorium, CERN                                              | 09:44 - 10:06    |
|       | STXS beyond 1.2, BSM view (15'+7', remote)                                             | Tilman Plehn     |
|       | 30/7-018 - Kjell Johnsen Auditorium, CERN                                              | 10:06 - 10:28    |


| 11:00 | STXS - SM view and discussion intro                                     | Frank Tackmann |
|-------|-------------------------------------------------------------------------|----------------|
|       | 30/7-018 - Kjell Johnsen Auditorium, CERN                               | 11:00 - 11:20  |
|       | Discussion - The path to the next STXS binning                          | Frank Tackmann |
| 10.00 | 30/7-018 - Kjell Johnsen Auditorium, CERN                               | 11:20 - 12:05  |
| 12:00 | Constraints on EFT operators from Higgs property fits (20'+10', remote) | Andrei Gritsan |
|       | 30/7-018 - Kjell Johnsen Auditorium, CERN                               | 12:05 - 12:30  |

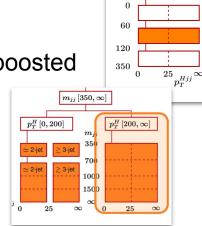
## STXS for Run 3 and beyond – ideas for STXS 1.3 binning $^{10}$

#### ggF

Add more low pTH bins in 0-jet More at high pTH

 $(\Delta \phi_{ii} \text{ for STXS 2})$ 




#### Hqq

Split VH into pTV bins

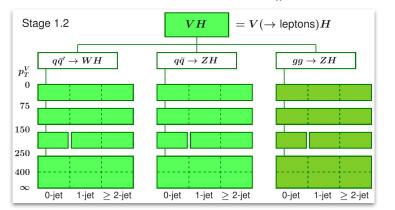
Add high pTH bin for boosted

Add  $\Delta\phi_{jj}$  bins for CP

(VBF+y for STXS 2)

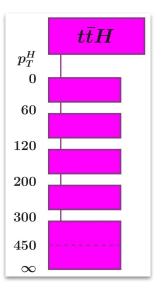


See talk by Benedict/Frank


 $m_{jj}$ 

 $m_{jj}\left[0,350
ight]$ 

### V(lep)H

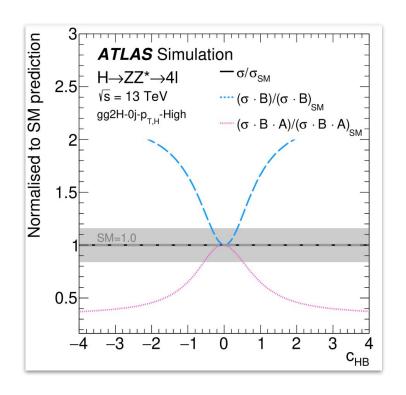

more high pTV bins

(Second variable (p.ex.  $\Delta \phi_{\parallel}$ ) for STXS 2)



#### ttH

Additional pTH bins (add var STXS 2?)




## STXS in decays

See talk by Michael

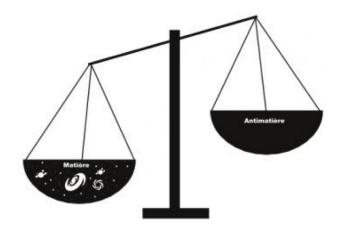
Idea:

- Clean way to define and label Higgs decay modes for measurements
- Provide a fiducial phase space for what we call H->ZZ, p.ex., approximating the experimental selection
- Avoid model-dependent extrapolations



- Most important for the decays
   with > 2 final state particles
- ZZ->4I,  $Z/\gamma^*\gamma$ , WW->evmuv

#### Status


- First simple fiducial volume successfully flattens the reco/fid ratio for the different models for the ATLAS 4I analysis
- Not so successful in CMS => adjustment/compromise of fiducial definition needed

#### Is there an additional source of CP in the Higgs sector?

See talk by Henning Bahl on Monday

Activities in WG2

- ttH
- Extended scalar sectors
- Common parameters and benchmarks

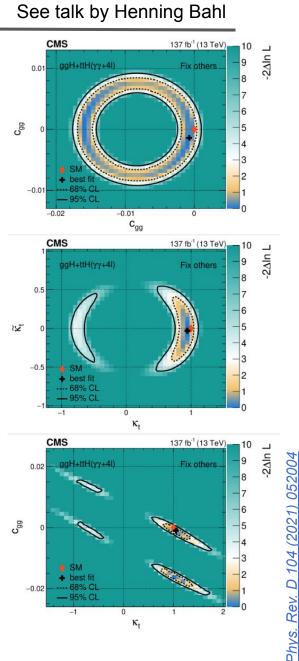


Googledoc: summary of activities, mailing list sign up sheet, all welcome! https://docs.google.com/document/d/1qX5Ypq0Frw47HzItEqtxEt8PG9NM3Z5v kl8BGT2OZtk/edit?usp=sharing

## CP Violation in ttH

Several meetings & round-table discussions in last 12 months

 $\mathcal{L}_{\text{top-Yuk}} = -\frac{y_t^{\text{SM}}}{\sqrt{2}} \bar{t} (c_t + i\gamma_5 \tilde{c}_t) t H$  $|\mathcal{M}_{t\bar{t}H}|^2 = c_t^2 \left| \mathcal{M}_{t\bar{t}H}^{\text{CP-even}} \right|^2 + 2c_t \tilde{c}_t Re [\mathcal{M}_{t\bar{t}H}^{\text{CP-even}} \mathcal{M}_{t\bar{t}H}^{\text{CP-odd}^*}] + \tilde{c}_t^2 \left| \mathcal{M}_{t\bar{t}H}^{\text{CP-odd}} \right|^2$ 


#### Including interference in the multivariate analysis

- Parametrized models depending on CP-angle, not only pure odd
- New methods: NN Classifiers, Simulation-based inference

# More global analyses/combinations between ggH and ttH

- Do not only probe one coupling in isolation
- Considered in one CMS analysis so far

Contacts: Henning Bahl & Haichen Wang



See talk by Tanja Robens

Common activity with WG3 (BSM Higgs)

Extended Higgs sectors can provide CP-even and CP-odd eigenstates that mix.

- => Maybe our Higgs@125GeV is one of those mixed states
- => constraints on benchmark models from Higgs searches and CP studies

Goal:

- Establish benchmark models and identify interesting parameter space regions for CPV studies
- Focus on complementarity between explicit BSM signatures and Higgs properties
- Lots of interesting aspects, not yet converged on something that could be written up

2.6

Idea is to give guidelines/ recommend benchmark models for CP combinations and global interpretations

- **Reviews**/dictionaries for parameterization:
- 'UV' benchmarks: bottom-up & top-down

Note in (slow) progress

| C | onte | nts                                                          |
|---|------|--------------------------------------------------------------|
| 1 | Intr | roduction                                                    |
| 2 | Par  | ametrisations and dictionaries for CPV in Higgs interactions |
|   | 2.1  | General anomalous couplings                                  |
|   | 2.2  | $\kappa$ 's, angles and CP fractions                         |
|   | 2.3  | SMEFT                                                        |
|   | 2.4  | HEFT                                                         |
|   | 2.5  | Dictionaries                                                 |

#### 3 Experimental status & prospects

Common tools

#### 4 Benchmarks: Bottom-up approach 4.1 CPV invariants in SMEFT 4.2 Flavor symmetries 4.3 Froggatt-Nielsen inspired benchmarks 4.4 ... 5 Benchmarks: Top-down approach 2HDM extensions 5.15.2Higgs singlet extension with vector fermions 5.3 Higgs triplet models

- 5.4 Time varying Yukawa couplings 5.5 Models for Loop-induced Gauge-Higgs couplings
- 5.6 ...
- 6 Conclusions

| 2<br>2<br>2<br>2           |
|----------------------------|
| 2<br>2<br>2<br>2<br>2<br>2 |
| 2<br>2<br>2<br>2<br>2<br>2 |
| 2<br>2<br>2<br>2<br>2<br>2 |
| 2<br>2<br>2<br>2<br>2<br>2 |
| 2<br>2<br>2<br>2<br>2      |
| 2<br>2<br>2<br>2<br>2      |
| 2<br>2<br>2<br>2<br>2      |
| 2<br>2<br>2<br>2           |
| 2<br>2<br>2<br>2           |
| 2<br>2<br>2<br>2           |
| 2<br>2<br>2                |
| 2<br>2<br>2                |
| 2<br>2<br>2                |
| 2                          |
| 2                          |
| 2                          |
| 2                          |
| 2                          |
| 2                          |
| 2                          |
|                            |
|                            |
|                            |
|                            |
|                            |
|                            |
|                            |
| 3                          |
| -                          |
|                            |
|                            |
|                            |
| 0                          |
| 3                          |
|                            |
| 0                          |
| 3                          |
| ~                          |
| ~                          |
| 3                          |
| -                          |
| ~                          |
| 3                          |
| 0                          |
| 1                          |
| 3                          |
| 0                          |
|                            |
|                            |
|                            |
|                            |
| 3                          |
| -                          |
| ~                          |
| 3                          |
| 0                          |
|                            |
| 4                          |
| t                          |
|                            |
| 1                          |
| 4                          |
| -                          |
|                            |
| 4                          |
| *                          |
|                            |
| 4                          |
| 1                          |
|                            |
| 4                          |
| t                          |
|                            |
|                            |

4

1

## Common tool/data format for SMEFT parametrisations <sup>16</sup>

#### See Eleonora Rossi's talk in WG2 parallel session

Joint activity with LHCEFTWG, currently gathering feedback!

Proposal for a .json data format to publish SMEFT parametrisations

- Avoid duplication of efforts for challenging computations
- Simple comparison/validation of results
- Re-use of predictions in subsequent analyses or global fits

Associated toolchain based on EFT20bs

• Easily reproduce numbers or generate new parametrisations for e.g. different cuts or processes

## Common tool/data format for SMEFT parametrisations <sup>17</sup>

Note in progress, planned for early 2024

- Introduction of format & tool
- Comparison exercise between ATLAS & CMS

LHC HIGGS WORKING GROUP

PUBLIC NOTE

#### Publishing SMEFT parametrisations for HEP measurements: a proposal for a common data format and simulation toolchain for Higgs simplified template cross sections

Working title...

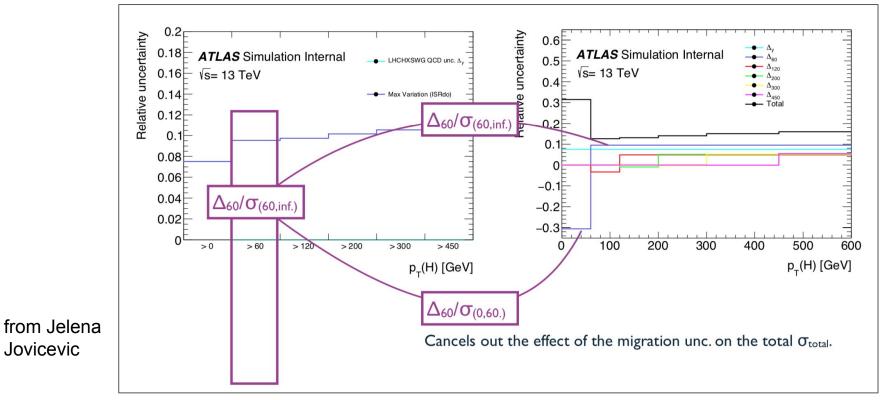
Ilaria Brivio<sup>1</sup>, Ana Cueto<sup>1</sup>, Charlotte Knight<sup>1</sup>, Jonathon Langford<sup>1</sup>, Ken Mimasu<sup>1</sup> and Eleonora Rossi<sup>1</sup>

Table of Contents

- 1. Introduction
- 2. Setup for MC toolchain
- 3. Usage of EFT2Obs to obtain parametrisation
- 4. CMS/ATLAS validation exercise
- 5. Data format for SMEFT parametrisations

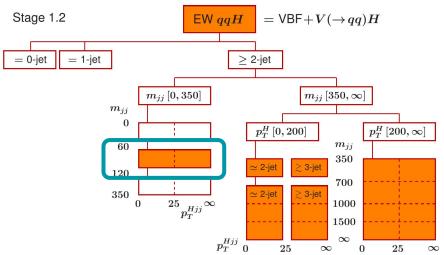
Continue activities in all areas, in particular

- STXS
  - Uncertainty paper
  - Define STXS 1.3 binning
- CPV
  - Publish benchmarks & common parameterization note
  - Refocus effort? One idea would be a dedicated subgroup
- SMEFT
  - Parameterization note
- Start discussion meetings on YR5, some important points:
  - **WG2**:
    - STXS, EFT interpretations work out granularity that is needed for Run 4
    - CP studies (binning, precision of ttH)
    - High precision for EFTs
    - kappa framework -> embed into HEFT
    - Library of models to have a uniform starting point for ATLAS/CMS/theory.


## Thanks for all the work!

Why we cannot just use  $\mu$ r and  $\mu$ f scale variations

- in some regions of phase space, the standard variations can lead to unrealistically small uncertainty estimates for fixed order calculations through cancellation effects
- standard variation gives incorrect uncertainty correlations between bins, as there is no division into different sources
- we normalize our MC predictions to the best available cross sections, which makes the scale variation in the respective sample not applicable any more


What we use instead: Long-Range Stewart-Tackmann procedure

- Use QCD scale variations to determine uncertainties for **inclusive cross sections**, and use these to extract uncertainties for **exclusive cross sections**
- uncertainties split into two types
  - **Yield** uncertainties which affect the overall normalization and, if they are not flat in all observables, also the shape.
  - Migration uncertainties which affect the shape but not the normalization, and hence will have impacts that sum to 0 across all regions of phase



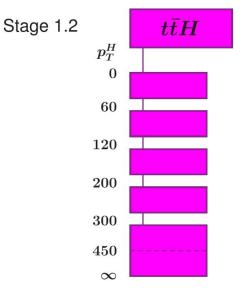
Remember, some bin boundaries are currently mostly used for uncertainty evaluation, but not split due to lack in sensitivity

- ggF add more pTH bins in 0-jet?
- qqH add the  $\Delta \phi j j$ , split VH into pTV bins, add VBF $\gamma$ ?



=> also here, need more concrete suggestions, supported by numbers: if you want to have a say in this, please contact Hongtao or me!

Remember, some (dashed) bin boundaries are currently mostly used for uncertainty evaluation, but not split due to lack in sensitivity


- ggF add more pTH bins in 0-jet?
- Hqq add the  $\Delta \phi j j$ , split VH into pTV bins, add VBF $\gamma$ ?
  - Stage 1.2  $= V(\rightarrow \text{leptons})H$ VHVH - split in pTH vs PTV?  $q\bar{q}' 
    ightarrow WH$  $q\bar{q} 
    ightarrow ZH$ gg 
    ightarrow ZH $p_T^V$ More high pTV bins? 75 150250400 $\infty$ 1-jet  $\geq$  2-jet 1-jet  $\geq$  2-jet 0-jet 0-jet 0-jet 1-jet > 2-jet

=> also here, need more concrete suggestions, supported by numbers: if you want to have a say in this, please contact Hongtao or me!

Remember, some bin boundaries are currently mostly used for uncertainty evaluation, but not split due to lack in sensitivity

- ggF add more pTH bins in 0-jet?
- Hqq add the  $\Delta \phi jj$ , split VH into pTV bins, add VBF $\gamma$ ? Stage
- VH split in pTH vs pTV?
   More high pTV bins?
- ttH choose additional variables?

=> also here, need more concrete suggestions, supported by numbers: if you want to have a say in this, please contact Hongtao or me!

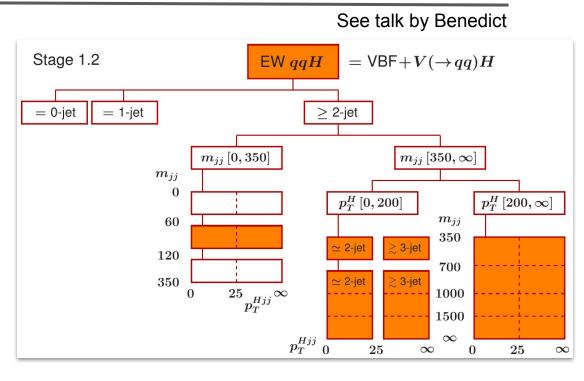


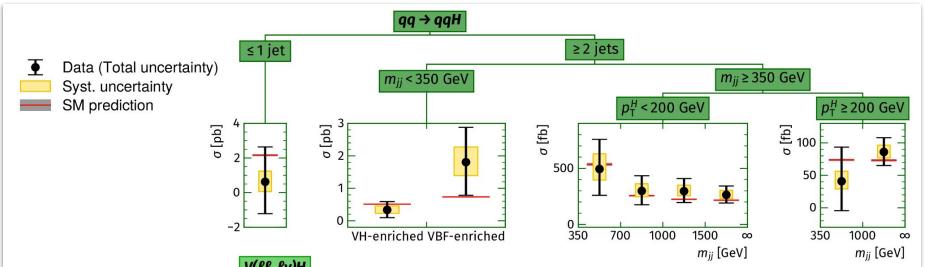
- One of the Sakharov conditions for explaining matter-antimatter asymmetry: CP violation
- SM does not have enough CP-violation to explain the effect
- Additional source of CP in Higgs sector?
  - In SM: Higgs is CP even
  - Many BSM models: CP-odd Higgs or mixed state

Important: CP of Higgs couplings is checked separately for bosons and fermions

For bosons suppressed:  $\mathcal{L}_{EFT} = \mathcal{L}_{SM} + \sum_{i} \underbrace{\frac{C_{i}^{(d)}}{\Lambda^{(d-4)}}O_{i}^{(d)}}_{i} \text{ for } d > 4.$ Wilson coefficients

For fermions can happen at tree level:


$$\mathcal{L}_{Hff} = -\frac{m_f}{\nu} \kappa_f (\cos \alpha \bar{\psi} \psi + \sin \alpha \bar{\psi} i \gamma_5 \psi) H.$$


MORE ON EFT LATER ...

SM: a = 0

## STXS for Run 3 and beyond - CPV

- All STXS observables are CP even
- First step: add Δφ<sub>jj</sub> to VBF bins? (ggF harder)
- Might need to reshuffle m<sub>jj</sub>
   binning



