CP violation in the Higgs couplings and beyond

Henning Bahl

The 20th Workshop of the LHC Higgs WG, CERN, 13.11.23

CP violation in the Higgs sector

- New sources of CP violation are necessary to explain the baryon asymmetry of the Universe.
- One possibility: CP violation in the Higgs sector.

Is the SM-like Higgs boson a CP-admixed state?

Fermions

- How can we constrain CP-violating couplings at the LHC?
 - Direct constraints: CP-odd observables.
 - Indirect constraints: CP-even observables.
 - Multivariate analyses: potentially mixing CP-odd and CPeven observables.

Fermions

- How can we constrain CP-violating couplings at the LHC?
 - Direct constraints: CP-odd observables.
 - Indirect constraints: CP-even observables.
 - Multivariate analyses: potentially mixing CP-odd and CPeven observables.
- CP structure of *HVV* interactions is comparably well-constrained.

Fermions

- How can we constrain CP-violating couplings at the LHC?
 - Direct constraints: CP-odd observables.
 - Indirect constraints: CP-even observables.
 - Multivariate analyses: potentially mixing CP-odd and CPeven observables.
- CP structure of *HVV* interactions is comparably well-constrained.

Fermions

- How can we constrain CP-violating couplings at the LHC?
 - Direct constraints: CP-odd observables.
 - Indirect constraints: CP-even observables.
 - Multivariate analyses: potentially mixing CP-odd and CPeven observables.
- CP structure of *HVV* interactions is comparably well-constrained.
- The CP structure of the $Hf\bar{f}$ interactions is far less known

$$\mathcal{L}_{\text{yuk}} = -\sum_{f=u,d,c,s,t,b,e,\mu,\tau} \frac{y_f^{\text{SM}}}{\sqrt{2}} \bar{f} \left(c_f + i\gamma_5 \tilde{c}_f \right) f H,$$

Fermions

- How can we constrain CP-violating couplings at the LHC?
 - Direct constraints: CP-odd observables.
 - Indirect constraints: CP-even observables.
 - Multivariate analyses: potentially mixing CP-odd and CPeven observables.
- CP structure of *HVV* interactions is comparably well-constrained.
- The CP structure of the $Hf\bar{f}$ interactions is far less known

$$\mathcal{L}_{\text{yuk}} = -\sum_{f=u,d,c,s,t,b,e,\mu,\tau} \frac{y_f^{\text{SM}}}{\sqrt{2}} \bar{f} \left(c_f + i\gamma_5 \tilde{c}_f \right) f H,$$

Fermions

- How can we constrain CP-violating couplings at the LHC?
 - Direct constraints: CP-odd observables.
 - Indirect constraints: CP-even observables.
 - Multivariate analyses: potentially mixing CP-odd and CPeven observables.
- CP structure of *HVV* interactions is comparably well-constrained.
- The CP structure of the $Hf\bar{f}$ interactions is far less known

$$\mathcal{L}_{\text{yuk}} = -\sum_{f=u,d,c,s,t,b,e,\mu,\tau} \frac{y_f^{\text{SM}}}{\sqrt{2}} \bar{f} \left(c_f + i\gamma_5 \tilde{c}_f \right) f H,$$

Fermions

- How can we constrain CP-violating couplings at the LHC?
 - Direct constraints: CP-odd observables.
 - Indirect constraints: CP-even observables.
 - Multivariate analyses: potentially mixing CP-odd and CPeven observables.
- CP structure of *HVV* interactions is comparably well-constrained.
- The CP structure of the $Hf\bar{f}$ interactions is far less known

$$\mathcal{L}_{\text{yuk}} = -\sum_{f=u,d,c,s,t,b,e,\mu,\tau} \frac{y_f^{\text{SM}}}{\sqrt{2}} \bar{f} \left(c_f + i\gamma_5 \tilde{c}_f \right) f H,$$

Current status and future outlook

Collider	pp	pp	pp	e^+e^-	e^+e^-	e^+e^-	e^+e^-	e^-p	$\gamma\gamma$	$\mu^+\mu^-$	$\mu^+\mu^-$	target
E (GeV)	14,000	$14,\!000$	100,000	250	350	500	1,000	$1,\!300$	125	125	3,000	(theory)
${\cal L}~({ m fb}^{-1})$	300	$3,\!000$	30,000	250	350	500	1,000	1,000	250	20	1,000	
HZZ/HWW	$4.0 \cdot 10^{-5}$	$2.5 \cdot 10^{-6}$	\checkmark	$3.9 \cdot 10^{-5}$	$2.9 \cdot 10^{-5}$	$1.3 \cdot 10^{-5}$	$3.0 \cdot 10^{-6}$	\checkmark	\checkmark	\checkmark	\checkmark	$< 10^{-5}$
$H\gamma\gamma$	_	0.50	\checkmark	_	_	_	_	_	0.06	_	_	$< 10^{-2}$
$HZ\gamma$	_	~ 1	\checkmark	_	_	_	~ 1	_	_	_	_	$< 10^{-2}$
Hgg	0.12	0.011	\checkmark	—	—	—	—	—	_	—	—	$< 10^{-2}$
$Htar{t}$	0.24	0.05	\checkmark	_	_	0.29	0.08	\checkmark	_	_	\checkmark	$< 10^{-2}$
H au au	0.07	0.008	\checkmark	0.01	0.01	0.02	0.06	_	\checkmark	\checkmark	\checkmark	$< 10^{-2}$
$H\mu\mu$	_	_	_	_	_	_	_	_	_	\checkmark	_	$< 10^{-2}$

Limits set on:
$$f_{CP}^{HX} \equiv \frac{\Gamma_{H \to X}^{CP \text{ odd}}}{\Gamma_{H \to X}^{CP \text{ odd}} + \Gamma_{H \to X}^{CP \text{ even}}}$$

On-going activities

On-going activities

New observables/STXS extension (→ Wednesday talk)

- 11.1.23: WG2+WG3 joint meeting on CPV in Higgs sector
- 21.4.23: WG2 ttH CPV meeting
- 26.9.23: WG2+WG3 joint meeting on CPV in Higgs sector
- 27.9.23: WG2 ttH CPV meeting

Better Higgs CP measurements

Exploiting the full kinematic information

General amplitude structure for CP measurements:

$$|\mathcal{M}|^{2} = c_{\text{even}}^{2} |\mathcal{M}^{\text{CP-even}}|^{2} + 2c_{\text{even}}c_{\text{odd}}\text{Re}[\mathcal{M}^{\text{CP-even}}\mathcal{M}^{\text{CP-odd}^{*}}] + c_{\text{odd}}^{2} |\mathcal{M}^{\text{CP-odd}}|^{2}$$

interference

General amplitude structure for CP measurements:

$$|\mathcal{M}|^{2} = c_{\text{even}}^{2} |\mathcal{M}^{\text{CP-even}}|^{2} + 2c_{\text{even}}c_{\text{odd}}\text{Re}[\mathcal{M}^{\text{CP-even}}\mathcal{M}^{\text{CP-odd}^{*}}] + c_{\text{odd}}^{2} |\mathcal{M}^{\text{CP-odd}}|^{2}$$

interference

CP can be tested either by:

- Distinguishing $|\mathcal{M}^{CP-even}|^2$ from $|\mathcal{M}^{CP-odd}|^2 \rightarrow$ CP-even observables.
- Constraining interference term \rightarrow CP-odd observables.

General amplitude structure for CP measurements:

$$|\mathcal{M}|^{2} = c_{\text{even}}^{2} |\mathcal{M}^{\text{CP-even}}|^{2} + 2c_{\text{even}}c_{\text{odd}}\text{Re}[\mathcal{M}^{\text{CP-even}}\mathcal{M}^{\text{CP-odd}^{*}}] + c_{\text{odd}}^{2} |\mathcal{M}^{\text{CP-odd}}|^{2}$$

interference

CP can be tested either by:

- Distinguishing $|\mathcal{M}^{CP-even}|^2$ from $|\mathcal{M}^{CP-odd}|^2 \rightarrow$ CP-even observables.
- Constraining interference term \rightarrow CP-odd observables.
- In many cases, CP-odd observables are hard to measure (require polarization information).
- Also, often no obvious choices for CP-even observables.

General amplitude structure for CP measurements:

$$|\mathcal{M}|^{2} = c_{\text{even}}^{2} |\mathcal{M}^{\text{CP-even}}|^{2} + 2c_{\text{even}}c_{\text{odd}}\text{Re}[\mathcal{M}^{\text{CP-even}}\mathcal{M}^{\text{CP-odd}^{*}}] + c_{\text{odd}}^{2} |\mathcal{M}^{\text{CP-odd}}|^{2}$$

interference

CP can be tested either by:

- Distinguishing $|\mathcal{M}^{CP-even}|^2$ from $|\mathcal{M}^{CP-odd}|^2 \rightarrow$ CP-even observables.
- Constraining interference term \rightarrow CP-odd observables.
- In many cases, CP-odd observables are hard to measure (require polarization information).
- Also, often no obvious choices for CP-even observables.

Higgs CP has become a testing ground for new analysis ideas/methods!

Classifying the CP properties of the ggH coupling in H+2j production

[HB,Fuchs,Hannig,Menen,2309.03146]

Simulation-based inference

[Brehmer et al., 1906.01578, 1805.12244, 1805.00013, 1805.00020, 1808.00973, 1907.10621]

[Brehmer et al., 1805.00013]

Matrix element information

- Allows to extract the full available information • (maximal sensitivity).
- No information loss due to binning • (as for BDT analysis).
- No approximation of shower and detector effects

Simulation-based inference

[Brehmer et al., 1906.01578, 1805.12244, 1805.00013, 1805.00020, 1808.00973, 1907.10621]

[Brehmer et al.,1805.00013]

Matrix element information

Example applications:

- Allows to extract the full available information (maximal sensitivity).
- No information loss due to binning (as for BDT analysis).
- No approximation of shower and detector effects

- tt
 t H → ~ 35% better limits on CP phase than from 2D histogram.
 [Barman et al.,2110.07635;HB & Brass 2110.10177]
- $WH \rightarrow \sim 25\%$ better limits on $c_{\widetilde{H}W}$ than from 2D histogram [Barrue et al., 2308.02882]

Global Higgs CP fits

Interplay between different couplings

"Global" ttH CPV fit

Most studies so-far concentrate on fitting CP character of a single Higgs coupling, e.g.

$$\mathcal{L}_{\text{top-Yuk}} = -\frac{y_t^{\text{SM}}}{\sqrt{2}}\bar{t}(c_t + i\gamma_5\tilde{c}_t)tH$$

"Global" ttH CPV fit

Most studies so-far concentrate on fitting CP character of a single Higgs coupling, e.g.

$$\mathcal{L}_{\text{top-Yuk}} = -\frac{y_t^{\text{SM}}}{\sqrt{2}}\bar{t}(c_t + i\gamma_5\tilde{c}_t)tH$$

In SMEFT, this coupling can be generated by rewriting:

•
$$O_{t\phi} = (\phi^{\dagger}\phi)(\bar{Q}t\tilde{\phi})$$

[Maltoni,Vryonidou,Zhang,1607.05330]

"Global" ttH CPV fit

Most studies so-far concentrate on fitting CP character of a single Higgs coupling, e.g.

$$\mathcal{L}_{\text{top-Yuk}} = -\frac{y_t^{\text{SM}}}{\sqrt{2}}\bar{t}(c_t + i\gamma_5\tilde{c}_t)tH$$

In SMEFT, this coupling can be generated by rewriting:

• $O_{t\phi} = (\phi^{\dagger}\phi)(\bar{Q}t\tilde{\phi})$

There are, however, further "Higgs" operators which contribute to e.g. $t\bar{t}H$:

$$O_{tG} = (\bar{Q}\sigma^{\mu\nu}T^A t)\tilde{\phi}G^A_{\mu\nu},$$

$$O_{\phi G} = (\phi^{\dagger} \phi) (G^{A}_{\mu\nu} G^{A\mu\nu}),$$
$$O_{\phi \tilde{G}} = (\phi^{\dagger} \phi) (G^{A}_{\mu\nu} \tilde{G}^{A\mu\nu}).$$

Interplay of the different operators not well understood if CPV is present.

[Maltoni,Vryonidou,Zhang,1607.05330]

Correlation with other Higgs channels

[[]Maltoni,Vryonidou,Zhang,1607.05330]

```
(+ interplay with bottom Yukawa etc.)
[see e.g. HB et al., ]
```

Correlation with other Higgs channels

[see e.g. HB et al.,]

 \rightarrow Would be great to get full likelihood information!

CP dependence via EW NLO corrections

- With increased precision, electroweak NLO corrections become important.
- EW NLO corrections often depend on Higgs CP nature.
- \rightarrow "Background" processes become CP sensitive.

CP dependence via EW NLO corrections

- With increased precision, electroweak NLO corrections become important.
- EW NLO corrections often depend on Higgs CP nature.
- \rightarrow "Background" processes become CP sensitive.

Example: $t\bar{t}$ production [Martini et al.,2104.04277]

CP dependence via EW NLO corrections

- With increased precision, electroweak NLO corrections become important.
- EW NLO corrections often depend on Higgs CP nature.
- \rightarrow "Background" processes become CP sensitive.

Example: $t\bar{t}$ production [Martini et al.,2104.04277]

Could become a significant complication of future studies.

EDM constraints

and the importance of the LHC

Complementarity with EDM constraints

- Several EDMs are sensitive to CP violation in the Higgs sector via 2L Bar-Zee diagrams.
- Bounds strongly depend on assumptions about
 - first-generation Yukawa coupling,
 - absence of other CP-violating BSM physics.
- Significant increase in precision expected within the next years! (see e.g. [Snowmass report, 2203.08103])
- Evaluation of NLO corrections will become necessary. (see e.g. [Brod et al., 2306.12478])

t and au Yukawas: EDM and LHC complementarity

[HB et al., 2202.11753; see also Brod et al., 2203.03736]

t and au Yukawas: EDM and LHC complementarity

[HB et al., 2202.11753; see also Brod et al., 2203.03736]

CP-odd τ coupling can potentially give sizeable contribution to baryon asymmetry.

[Fuchs et al.,1911.08495;HB et al., 2202.11753]

EDM > LHC? No.

[Fuchs et al.,1911.08495;HB et al., 2202.11753]

EDM > LHC? No.

[Fuchs et al.,1911.08495;HB et al., 2202.11753]

CP-insensitive $H \rightarrow \mu^+ \mu^-$ rate measurement outperforms EDM constraint.

Dependence on electron-Yukawa coupling

[HB et al.,2202.11753]

- Electron Yukawa-coupling only very weakly constrained ($g_e \leq 268$ at 95% CL).
- If *c_e* smaller, eEDM significantly weakened.
- Moreover, we can fine-tune CP-odd electron-Yukawa coupling such that $d_e < d_e^{ACME}$.
- Neutron EDM has similar dependence on firstgeneration quark-Yukawa couplings.

Dependence on electron-Yukawa coupling

[HB et al.,2202.11753]

- Electron Yukawa-coupling only very weakly constrained ($g_e \leq 268$ at 95% CL).
- If *c_e* smaller, eEDM significantly weakened.
- Moreover, we can fine-tune CP-odd electron-Yukawa coupling such that $d_e < d_e^{ACME}$.
- Neutron EDM has similar dependence on firstgeneration quark-Yukawa couplings.

Dependence on electron-Yukawa coupling

[HB et al.,2202.11753]

- Electron Yukawa-coupling only very weakly constrained ($g_e \leq 268$ at 95% CL).
- If *c_e* smaller, eEDM significantly weakened.
- Moreover, we can fine-tune CP-odd electron-Yukawa coupling such that $d_e < d_e^{ACME}$.
- Neutron EDM has similar dependence on firstgeneration quark-Yukawa couplings.

LHC bounds important since they do not depend on 1st gen. Yukawa couplings.

BSM models

BSM scenarios for Higgs CP violation

- O(1) CP-odd Yukawa couplings require new physics to show up at O(few 100) GeV.
- Most studied model: **complex 2HDM** with mixing between two CP-even and one CP-odd Higgs boson.

CP-odd h_{125} couplings \Rightarrow also CP-even h_{125} couplings deviate from SM.

$$\frac{\mathcal{M}^2}{v^2} = \begin{pmatrix} Z_1 & \operatorname{Re}(Z_6) & -\operatorname{Im}(Z_6) \\ & Y_2/v^2 + \frac{1}{2}Z_{345}^+ & -\frac{1}{2}\operatorname{Im}(Z_5) \\ & & Y_2/v^2 + \frac{1}{2}Z_{345}^- \end{pmatrix}$$

$$R\mathcal{M}^2 R^{ op} = ext{diag}(m_1^2, m_2^2, m_3^2) \ egin{pmatrix} h_1 \ h_2 \ h_3 \end{pmatrix} = R egin{pmatrix} arphi_1 \ arphi_2^0 \ arphi_2^0 \ arphi^0 \ arphi^0 \end{pmatrix},$$

BSM scenarios for Higgs CP violation

- O(1) CP-odd Yukawa couplings require new physics to show up at O(few 100) GeV.
- Most studied model: **complex 2HDM** with mixing between two CP-even and one CP-odd Higgs boson.

CP-odd h_{125} couplings \Rightarrow also CP-even h_{125} couplings deviate from SM.

Perform Higgs CP measurements without assuming that other Higgs couplings are at their SM values!

$$\frac{\mathcal{M}^2}{v^2} = \begin{pmatrix} Z_1 & \operatorname{Re}(Z_6) & -\operatorname{Im}(Z_6) \\ & Y_2/v^2 + \frac{1}{2}Z_{345}^+ & -\frac{1}{2}\operatorname{Im}(Z_5) \\ & & Y_2/v^2 + \frac{1}{2}Z_{345}^- \end{pmatrix}$$

$$R\mathcal{M}^2 R^{ op} = ext{diag}(m_1^2, m_2^2, m_3^2)$$
 $\begin{pmatrix} h_1 \\ h_2 \\ h_3 \end{pmatrix} = R \begin{pmatrix} arphi_1^0 \\ arphi_2^0 \\ a^0 \end{pmatrix},$

BSM scenarios for Higgs CP violation

- O(1) CP-odd Yukawa couplings require new physics to show up at O(few 100) GeV.
- Most studied model: **complex 2HDM** with mixing between two CP-even and one CP-odd Higgs boson.

CP-odd h_{125} couplings \Rightarrow also CP-even h_{125} couplings deviate from SM.

Perform Higgs CP measurements without assuming that other Higgs couplings are at their SM values!

• Intricate interplay between h_{125} measurements, direct searches, flavor constraints, EWPOs, EDM measurements, ... (see e.g. recent [de Giorgi et al.,2304.10560])

$$\frac{\mathcal{M}^2}{v^2} = \begin{pmatrix} Z_1 & \operatorname{Re}(Z_6) & -\operatorname{Im}(Z_6) \\ & Y_2/v^2 + \frac{1}{2}Z_{345}^+ & -\frac{1}{2}\operatorname{Im}(Z_5) \\ & & Y_2/v^2 + \frac{1}{2}Z_{345}^- \end{pmatrix}$$

$$egin{aligned} R\mathcal{M}^2 R^{ op} &= ext{diag}(m_1^2,m_2^2,m_3^2) \ \begin{pmatrix} h_1 \ h_2 \ h_3 \end{pmatrix} &= R \begin{pmatrix} arphi_1^0 \ arphi_2^0 \ a^0 \end{pmatrix} \,, \end{aligned}$$

Electron EDM in the complex 2HDM

[Altmannshofer et al., 2009.01258]

- Not only the SM-like Higgs has CP-violating couplings, but also the BSM Higgs bosons.
- Cancellations between different contributions become possible.

- Combine multiple EDMs.
- Exploit complementarity with direct searches.

Conclusions

Conclusions

- Characterizing the CP nature of the Higgs boson is an important goal for the (HL-)LHC .
- Key points to remember:
 - Novel analysis methods promise significant precision improvements,
 - should not rely on assumption that only one Higgs coupling deviates from SM
 → need more global analyses,
 - CP dependencies in backgrounds,
 - LHC allows to constrain specific couplings while EDM measurements are sensitive to all kind of CP-violating physics,
 - concrete BSM models allow to exploit complementarity with direct searches, etc.

Conclusions

- Characterizing the CP nature of the Higgs boson is an important goal for the (HL-)LHC .
- Key points to remember:
 - Novel analysis methods promise significant precision improvements,
 - should not rely on assumption that only one Higgs coupling deviates from SM
 → need more global analyses,
 - CP dependencies in backgrounds,
 - LHC allows to constrain specific couplings while EDM measurements are sensitive to all kind of CP-violating physics,
 - concrete BSM models allow to exploit complementarity with direct searches, etc.
- Further topics I couldn't cover:
 - "HEFTy" CP violation, [Bhardwaj et al., 2308.11722]
 - generative unfolding for $t\bar{t}H$ CP measurements, [Ackerschott et al.,2308.00027]
 - matrix-element method for *tH* CP measurements, [Heimel et al., 2310.07752]

• ...

l.

Thanks for your attention!

23

Conclusions

- Characterizing the CP nature of the Higgs boson is an important goal for the (HL-)LHC .
- Key points to remember:
 - Novel analysis methods promise significant precision improvements,
 - should not rely on assumption that only one Higgs coupling deviates from SM
 → need more global analyses,
 - CP dependencies in backgrounds,
 - LHC allows to constrain specific couplings while EDM measurements are sensitive to all kind of CP-violating physics,
 - concrete BSM models allow to exploit complementarity with direct searches, etc.
- Further topics I couldn't cover:
 - "HEFTy" CP violation, [Bhardwaj et al., 2308.11722]
 - generative unfolding for $t\bar{t}H$ CP measurements, [Ackerschott et al.,2308.00027]
 - matrix-element method for *tH* CP measurements, [Heimel et al., 2310.07752]

• ...

Appendix

CP-odd observables:

- Clean interpretation.
- Difficult experimentally since topquark polarization needs to be measured.

CP-odd observables:

- Clean interpretation.
- Difficult experimentally since topquark polarization needs to be measured.

Indirect constraints:

Strong constraints from ggH and • $H\gamma\gamma$ rate measurements. Constraints very model-dependent. ٠ (c_t, \tilde{c}_t) free $\Delta \chi^2$ 1.0200.515 \tilde{c}_t 0.0105-0.5-1.00.60.81.01.20.4 c_t [HB et al., 2007.08542]

CP-odd observables:

- Clean interpretation.
- Difficult experimentally since topquark polarization needs to be measured.

Indirect constraints:

- Strong constraints from ggH and $H\gamma\gamma$ rate measurements.
- Constraints very model-dependent.

Kinematic information:

- Focus on comparably modelindependent *ttH* production.
- Combination of different decay channels and across experiments difficult.

[CMS, 2208.02686]

CP-odd observables:

- Clean interpretation.
- Difficult experimentally since topquark polarization needs to be measured.

Indirect constraints:

- Strong constraints from ggH and $H\gamma\gamma$ rate measurements.
- Constraints very model-dependent.

Kinematic information:

- Focus on comparably modelindependent *ttH* production.
- Combination of different decay channels and across experiments difficult.

Exploit complementarity of different approaches!

Next steps: CP-sensitive STXS, degeneracies with CP-violation in non-Higgs couplings, other processes, ...

Generative unfolding for $t\bar{t}H$

[Ackerschott et al.,2308.00027]

- Perform unfolding using conditional invertible neural network (cINN).
- Construct parton-level CP-sensitive observables.

1 flavor fits: *b*

[HB et al.,2202.11753]

- Ring-like structure since $\Gamma_{H \to bb} \propto c_b^2 + \tilde{c}_b^2$.
- Bottom-Yukawa coupling, however, also affects *ggH* rate:

•
$$\frac{\sigma_{gg \rightarrow H}}{\sigma_{gg \rightarrow H}^{SM}} \simeq 1.1c_t^2 + 2.6\tilde{c}_t^2 - 0.1c_tc_b + \cdots$$

- Negative c_b values disfavored since ggH rate is enhanced by $\sim 20\%$.
- Direct bottom CP measurements very difficult.

Indirect CP constraints will remain important for the bottom-Yukawa coupling.

Interplay of bottom and top Yukawas

Non-linear top-Higgs CP violation

[Bhardwaj,Englert,Goncalves,Navarro, 2308.11722]

$${\cal L}_{
m HEFT} \supset -rac{m_t}{v}\,\kappa_t\,ar{t}(\coslpha+i\gamma^5\sinlpha)\,t\,h -rac{m_t}{2v^2}\,\kappa_{tt}\,ar{t}(\coseta+i\gamma^5\sineta)\,t\,h^2$$

Probe correlations between *tth* and *tthh* couplings using di-Higgs production modes at HL-LHC.

Non-linear top-Higgs CP violation

[Bhardwaj,Englert,Goncalves,Navarro, 2308.11722]

$${\cal L}_{
m HEFT} \supset -rac{m_t}{v}\,\kappa_t\,ar{t}(\coslpha+i\gamma^5\sinlpha)\,t\,h -rac{m_t}{2v^2}\,\kappa_{tt}\,ar{t}(\coseta+i\gamma^5\sineta)\,t\,h^2$$

Probe correlations between *tth* and *tthh* couplings using di-Higgs production modes at HL-LHC.

Baryogenesis in the complex 2HDM

- Complex 2HDM provides all ingredients for electroweak baryogenesis:
 - Additional sources of CP violation.
 - Modifications of the Higgs potential to trigger strong firstorder phase transition.
- Calculation of baryon asymmetry suffers from large theoretical uncertainty:
 - thermal resummation,
 - VIA vs WKB/FH approximation,
 - description of bubble wall,
 - ...

