

Summary of CMS Higgs EFT results

Alessandro Calandri - ETH Zürich

LHC Higgs Working Group workshop - Nov 15, 2023

- increasing number of Higgs EFT measurements in CMS and ATLAS
- EFT results focus in interpretation of unfolded spectrum in presence of EFT effects or extract coefficients with dedicated analyses using optimal observables
- Kappa parametrisation on effective couplings and extension to Wilson coefficients
- ➡ EFT interpretations of Higgs STXS measurements
- Highlights on recent Higgs EFT results in CMS
 - $H \rightarrow ZZ \rightarrow 4I \text{ and off-shell analysis}$
 - $\bullet \quad \mathsf{H} \rightarrow \mathsf{WW} \text{ results}$
 - ► $H \rightarrow \tau \tau$ EFT analysis in CMS and combination with on-shell $H \rightarrow ZZ$ and $H \rightarrow \gamma \gamma$
 - CP violation in ttH multilepton final states
 - a quick glimpse on double Higgs EFT results
- Wrapping-up and conclusions

Kappa parametrisation and Wilson coefficients

Experimental profile of the Higgs boson with Run 1/2 data becoming very precise

- large set of precision measurements performed with Run 2 data
- Precision measurement is key to look for deviations of SM couplings: achieved using low-energy approximation (EFT) to UV complete theory

Kappa parametrisation scale effective couplings

- BSM effect may not rescale just couplings in Higgs production and decay
- need for dedicated probe of additional operators in tensor structure scaled by Wilson coefficients and suppressed by Λ^{d-4} (Λ represent the energy scale of the NP process)

З

Wilson coefficients & EFT Lagrangian expansion

4

, b

Expansion of SM lagrangian in $1/\Lambda$: observables EFT effects are parametrised

- with linear term in WC's and a linear+quadratic term in WC's (both are dim-6 operators)
- difference between linear and linear+quadratic used to get hints of components beyond $1/\Lambda^2$

SMEFT [link] is a popular model for EFT interpretation using dim-6 operators

- with linear term in WC's and a linear+quadratic term in WC's
- Some EFT contributions are CP-odd operators: access on those operators is relevant as non vanishing components indicate CP violation

Operator	Wilcon coefficient	Leavengien medification	Channela	1
Operator	wilson coemicient	Lagrangian modification	Channels	l <u> </u>
${\cal O}^{(1)}_{Hq}=iH^\dagger\overline{D}_\mu H\overline{q}\gamma^\mu q$	cHj1	qqV vertex, HVqq contact term	ZII	l Y
${\cal O}^{(3)}_{Hq}=iH^{\dagger}\sigma^{i}\overleftrightarrow{D}_{\mu}H\overline{q}\sigma^{i}\gamma^{\mu}q$	cHj3	qqV vertex, HVqq contact term	ZII, WIv	
${\cal O}_{Hu}=iH^\dagger \overleftarrow{D}_\mu H \overline{u}_R \gamma^\mu u_R$	cHu	qqV vertex, HVqq contact term	ZII	
${\cal O}_{Hd}=iH^\dagger \overleftrightarrow{D}_\mu H \overline{d}_R \gamma^\mu d_R$	cHd	qqV vertex, HVqq contact term	ZII	q Π
${\cal O}_{HW}=H^{\dagger}HW^{i}_{\mu u}W^{i\mu u}$	cHW	HVV vertex	ZII, WIv	\sim Z/W r'
$\mathcal{O}_{H ilde{W}} = H^\dagger H ilde{W}^i_{\mu u} W^{i\mu u}$	cHWtil	HVV vertex	ZII, WIv	
$\mathcal{O}_{HB} = H^{\dagger} H B_{\mu\nu} B^{\mu\nu}$	cHB	HVV vertex	ZII	
$\mathcal{O}_{H\tilde{B}}=H^{\dagger}H\tilde{B}_{\mu\nu}B^{\mu\nu}$	cHBtil	HVV vertex	ZII	$q \qquad \qquad$
${\cal O}_{HWB}=H^{\dagger}\sigma^{i}HW^{i}_{\mu u}B^{\mu u}$	cHWB	HVV vertex, Wlv vertex	ZII	
${\cal O}_{H ilde W B} = H^\dagger \sigma^i H ilde W^i_{\mu u} B^{\mu u}$	cHWBtil	HVV vertex, WIv vertex	ZII	
${\cal O}_{H\square}=(H^{\dagger}H)\square(H^{\dagger}H)$	cHbox	HVV vertex, hbb coupling	ZII, WIv] 🔺
${\cal O}_{HD}=(D^\mu H^\dagger H)(H^\dagger D_\mu H)$	cHDD	HVV vertex, hbb coupling, qqV vertex	ZII, WIv	
${\cal O}_{bH} = (H^{\dagger}H)(\overline{q}bH)$	cbHRe + cbHIm	hbb coupling	ZII, WIv	1

EFT interpretation using STXS

Fundamental to keep all operators in interpretation due to correlation effects

No single measurement constraints all operators - need for global approach

EFT interpretation of STXS fit using STXS categorisation for Higgs production modes - no sensitivity to CP given lack of dedicated CP-sensitive observables (ΔΦ(jj) for VBF production)

EFT interpretation using STXS (3) <u>CMS PAS HIG-19-005</u>

6

Assumption of EFT interpretation in STXS bins: no EFT effects on background components - acceptance corrections in STXS bins to account for EFT effects

On-shell H->ZZ->4L

ggH SM

H other

ggH f^{ggH}_{a3}=1

0.6

 D_{0-}^{ggH}

Hgg,H→4I

VBF-2jet

D_{bkg}>0.2

0.8

CMS

data

ZX

 $ZZ/Z\gamma^*$

0.2

15

10H

0^k

Events / bin

Phys. Rev. D 104 (2021) 052004

7

Constraints HVV using Anomalous Coupling: extended to WC constraints (SMEFT)

0.4

Various hypotheses on combined AC fit

Full production and decay

MEM (MELA) employed to

using optimal observables

included in MELA to tackle

separate production modes/

kinematic to constrain

discriminate signal vs

EFT tensor structure

Wilson coefficients

backgrounds

- fixing all couplings but one to SM expectations or all couplings profiled
- access sensitivity to CP structure in HZZ decay

On-shell H->ZZ->41 (2) Phys. Rev

			Coupling	g Observed	Expected
Performing simultaneous fit to all Wilson			$c_{H\Box}$	$0.04\substack{+0.43 \\ -0.45}$	$0.00\substack{+0.75 \\ -0.93}$
VBF and VH modes			c_{HD}	$-0.73\substack{+0.97 \\ -4.21}$	$0.00\substack{+1.06 \\ -4.60}$
,			$\longrightarrow C_{HW}$	$0.01\substack{+0.18 \\ -0.17}$	$0.00\substack{+0.39 \\ -0.28}$
	both linear and quadratic terms considered		c_{HWB}	$0.01\substack{+0.20 \\ -0.18}$	$0.00\substack{+0.42\\-0.31}$
	largest precision for c(HW), a	$CP-odd$ c_{HB}	$0.00\substack{+0.05\\-0.05}$	$0.00\substack{+0.03 \\ -0.08}$	
	precision on CP-odd EFT WC		$\rightarrow C_{H\tilde{W}}$	$-0.23\substack{+0.51 \\ -0.52}$	$0.00^{+1.11}_{-1.11}$
			$c_{H ilde{W} ext{B}}$	$-0.25\substack{+0.56\\-0.57}$	$0.00^{+1.21}_{-1.21}$
			$C_{H ilde{ extbf{B}}}$	$-0.06\substack{+0.15\\-0.16}$	$0.00\substack{+0.33\\-0.33}$
	Also provided constraints for c(ZZ) and CP-odd c(ZZ) coupling components using results on Warsaw basis	CMS 10 8 	137 fb ⁻¹ (13 TeV) ed ed	CMS 10 8 	137 fb ⁻¹ (13 TeV)
ETH zür	rich	–0.5 0 C _{zz}	0.5	°	. 2

EFT combination across channels & operators

Simultaneous measurement of EFT operators, c(gg),~c(gg), kt,~kt impacting gluonfusion loop - common EFT approach for several channels with additional sensitivity to CP odd operators

gluon fusion in addition to ttH/tH ($\rightarrow \gamma \gamma /ZZ$) used to constrain EFT top couplings

Extending AC HVV constraints to HWW

11

New for Higgs Hunting 2023!

- Expanding investigation on AC constraints in HWW channel
- Constraints on anomalous effects at the HVV and Hgg vertices following AC and SMEFT interpretations
 - analysis split in categories targeting gluon fusion,VBF-like and VH-like topologies
 - MELA kinematic discriminant: output nodes for Higgs mode discriminator, SM couplings vs BSM, interference vs SM/BSM

Results provided under two fitting hypotheses

POI's are fixed/floating

- AC and Higgs SMEFT Warsaw basis
- Significant improvement in sensitivity/analysis coverage compared to full Run I analysis

Coupling	Observed	Expected	
	a = c + 1.42	a a 1 27	
$c_{H\Box}$	$-0.76^{+1.43}_{-3.43}$	$0.0^{+1.37}_{-1.84}$	
$c_{\rm HD}$	$-0.12^{+0.93}_{-0.32}$	$0.0\substack{+0.43 \\ -0.30}$	
$c_{\rm HW}$	$0.08\substack{+0.43 \\ -0.87}$	$0.0\substack{+0.37 \\ -0.48}$	
$c_{\rm HWB}$	$0.17\substack{+0.88 \\ -1.79}$	$0.0\substack{+0.77\\-0.96}$	
$c_{\rm HB}$	$0.03\substack{+0.13 \\ -0.26}$	$0.0\substack{+0.11 \\ -0.14}$	
$c_{\mathrm{H}\tilde{\mathrm{W}}}$	$-0.26\substack{+0.67\\-0.50}$	$0.0\substack{+0.48 \\ -0.52}$	
$c_{\rm H\tilde{W}B}$	$-0.54_{-1.03}^{+1.37}$	$0.0\substack{+0.99 \\ -1.07}$	
$c_{\mathrm{H}\tilde{\mathrm{B}}}$	$-0.08\substack{+0.20\\-0.15}$	$0.0\substack{+0.15 \\ -0.16}$	

<u>CMS PAS HIG-22-008</u>

CP violation in EEH/EH

JHEP 07 (2023) 092

Conv.

Total unc.

Nonprompt

Charge mism.

 $BDT_{CP} > 0.24$

ttW

ttΖ

Diboson

Rares

-2d InL

10

12

24

138 fb⁻¹ (13 TeV)

H->TT analysis

Targeting measurement of several EFT vertices

- VBF production analysis: HVV EFT vertex, ggH production analysis: Hgg EFT vertex
- HVV vertex constrained using $H \rightarrow \tau \tau$ decay in VBF production while Hgg vertex uses combination of $H \rightarrow \tau \tau$ and $H \rightarrow ZZ \rightarrow 4I$ (on-shell analysis)
- pure CP-odd hypothesis for Higgs couplings to gluons excluded at 2.4σ

H->TT analysis (2)

14

Access Hff couplings with H→ZZ, ttH→γγ and H→ττ in gluon-fusion production mode - combination improves limits on anomalous couplings by around 25%

achieved constraints on c(gg) and CP-odd c(gg) operators

EFT interpretations in double Higgs analyses

15

Wrapping-up & conclusions

16

Precision measurements is key to look for deviations on SM couplings: several Effective Field Theory interpretations of Higgs measurements in CMS

beyond kappa framework and complementary to direct searches for New Physics

EFT interpretation of STXS results allows to probe EFT parameters using various Higgs production modes

- EFT effects parametrised in STXS bins and dedicated acceptance corrections in analysis phase-space
- main drawback(s)/assumptions:
 - no dedicated sensitivity to CP and no optimal observables to improve EFT effect sensitivity
 - assuming no modifications of background shapes/normalisation due to EFT effects
- Dedicated measurements of EFT effects in CMS analyses: H→ZZ/WW, H→ττ, started exploring double Higgs analyses

Developing PCA analyses to tackle large combinations and simultaneous constraints on Wilson coefficients

- very relevant for global EW+Higgs EFT combination and to select non flat directions in EFT space
- Ongoing effort in CMS+ATLAS to provide common STXS+SMEFT parameterisation in the context of the LHC EFT WG [LHC EFT workshop, Dec 2022]

Several more EFT interpretation Run 2 results will be released soon - stay tuned! ETH zürich

Additional slides

17

EFT interpretation using STXS (2)

18

Constraints on main WC's in STXS bins affecting following vertices

EW+Higgs boson interactions, boson couplings to fermions and 4-fermion interactions

EW+Higgs interactions	Boson c fer	4-fermion interactions	
Wilson coefficient	Operator	Wilson coefficient	Operator
$c_{H\square}$	$(H^\dagger H) \square (H^\dagger H)$	C _{uG}	$(\bar{q}_p \sigma^{\mu\nu} T^A u_r) \tilde{H} G^A_{\mu\nu}$
C _{HDD}	$\left(H^{\dagger}D^{\mu}H ight)^{*}\left(H^{\dagger}D_{\mu}H ight)$	C _{uW}	$(\bar{q}_p \sigma^{\mu\nu} u_r) \tau^I \widetilde{H} W^I_{\mu\nu}$
c _{HG}	$H^\dagger H G^A_{\mu u} G^{A\mu u}$	C _{uB}	$(\bar{q}_p \sigma^{\mu\nu} u_r) \widetilde{H} B_{\mu\nu}$
C _{HB}	$H^{\dagger}HB_{\mu u}B^{\mu u}$		$(\bar{l}_p \gamma_\mu l_t)(\bar{l}_r \gamma^\mu l_s)$
C _{HW}	$H^{\dagger}HW^{I}_{\mu u}W^{I\mu u}$	$c_{qq}^{\scriptscriptstyle (1)}$	$(\bar{q}_p \gamma_\mu q_t)(\bar{q}_r \gamma^\mu q_s)$
C _{HWB}	$H^{\dagger} au^{I} H W^{I}_{\mu u} B^{\mu u}$	$c_{qq}^{(3)}$	$(\bar{q}_p \gamma_\mu \tau^I q_r) (\bar{q}_s \gamma^\mu \tau^I q_t)$
C _{eH}	$(H^{\dagger}H)(l_{p}e_{r}H)$	c _{qq}	$(\bar{q}_p \gamma_\mu q_t) (\bar{q}_r \gamma^\mu q_s)$
C _{uH}	$(H^{\dagger}H)(\bar{q}_{p}u_{r}H)$	$c_{oldsymbol{q}oldsymbol{q}}^{\scriptscriptstyle{(31)}}$	$(\bar{q}_p \gamma_\mu \tau^I q_t) (\bar{q}_r \gamma^\mu \tau^I q_s)$
C _{dH}	$(H^{\dagger}H)(\bar{q}_{p}d_{r}\widetilde{H})$	c _{uu}	$(\bar{u}_p \gamma_\mu u_r)(\bar{u}_s \gamma^\mu u_t)$
$c^{\scriptscriptstyle (1)}_{oldsymbol{H}oldsymbol{l}}$	$(H^{\dagger}i\overleftrightarrow{D}_{\mu}H)(\bar{l}_{p}\gamma^{\mu}l_{r})$	$c_{uu}^{(1)}$	$(\bar{u}_p \gamma_\mu u_t)(\bar{u}_r \gamma^\mu u_s)$
$c_{Hl}^{\scriptscriptstyle (3)}$	$(H^{\dagger}i\overleftrightarrow{D}_{\mu}^{I}H)(\bar{l}_{p}\tau^{I}\gamma^{\mu}l_{r})$	$c_{qu}^{\scriptscriptstyle (1)}$	$(\bar{q}_p \gamma_\mu q_t)(\bar{u}_r \gamma^\mu u_s)$
C _{He}	$(H^{\dagger}i\overleftrightarrow{D}_{\mu}H)(\bar{e}_{p}\gamma^{\mu}e_{r})$	$c_{ud}^{(8)}$	$(\bar{u}_p \gamma_\mu T^A u_r) (\bar{d}_s \gamma^\mu T^A d_t)$
$c_{Hq}^{\scriptscriptstyle (1)}$	$(H^{\dagger}i\widetilde{D}_{\mu}H)(\bar{q}_{p}\gamma^{\mu}q_{r})$	$c_{qu}^{\scriptscriptstyle (8)}$	$(\bar{q}_p \gamma_\mu T^A q_r) (\bar{u}_s \gamma^\mu T^A u_t)$
$c_{Hq}^{\scriptscriptstyle{(3)}}$	$(H^{\dagger}i\overleftrightarrow{D}_{\mu}^{I}H)(\bar{q}_{p}\tau^{I}\gamma^{\mu}q_{r})$	$c_{qd}^{\scriptscriptstyle (8)}$	$(\bar{q}_p \gamma_\mu T^A q_r) (\bar{d}_s \gamma^\mu T^A d_t)$
c _{Hu}	$(H^{\dagger}i\overleftrightarrow{D}_{\mu}H)(\bar{u}_{p}\gamma^{\mu}u_{r})$	cw	$\epsilon^{IJK} W^{I\nu}_{\mu} W^{J\rho}_{\nu} W^{K\mu}_{\rho}$
c_{Hd}	$(H^{\dagger}i\overleftarrow{D}_{\mu}H)(\bar{d}_{p}\gamma^{\mu}d_{r})$	c_G	$f^{ABC}G^{A\nu}_{\mu}G^{B\rho}_{\nu}G^{C\mu}_{\rho}$

EFT interpretation using Higgs STXS framework

EFT basis

$$f_{a3}^{ggH} = \frac{|a_3^{gg}|^2}{|a_2^{gg}|^2 + |a_3^{gg}|^2} \operatorname{sign}\left(\frac{a_3^{gg}}{a_2^{gg}}\right)$$

Hff couplings - CP-even

$$|f_{CP}^{Hff}| = \left(1 + 2.38 \left[\frac{1}{|f_{a_3}^{ggH}|}\right]\right)^{-1} = \sin^2 \alpha^{Hff}$$

Hff couplings - CP-odd

$$f_{a_3} = \frac{|a_3^{gg}|^2}{|a_2^{gg}|^2 + |a_3^{gg}|^2} \operatorname{sign}\left(\frac{a_3^{gg}}{a_2^{gg}}\right)$$

HVV couplings - gg couplings (only non zero contributions are a2 and a3)

$$\begin{split} c_{zz} &= -\frac{s_w^2 c_w^2}{2\pi \alpha} a_2, \\ \tilde{c}_{zz} &= -\frac{s_w^2 c_w^2}{2\pi \alpha} a_3. \end{split}$$

$$\begin{split} c_{gg} &= -\frac{1}{2\pi \alpha_S} a_2^{gg}, \\ \tilde{c}_{gg} &= -\frac{1}{2\pi \alpha_S} a_3^{gg}, \end{split}$$
EFT interpretation