SMEFT in ATLAS

Eleonora Rossi on behalf of ATLAS

20th Workshop of LHC Higgs WG 13-15 November 2023

Outline

Off-shell HZZ SMEFT interpretation

• Latest interpretation of the Nature Higgs combination: consolidate EFT and BSM interpretations including new channels w.r.t. the 2021 combination + differential interpretation (<u>ConfNote</u>) - new inputs: boosted-Hbb, $H \rightarrow Z\gamma$, $H \rightarrow \mu\mu$ + differential

Analysis			Reference	Binning	SMEFT	Dedicated	
Decay channel	Production mode		1010101100	Dining		BSM	
11		120	[23]	STXS-1.2	\checkmark	\checkmark	
$H \to \gamma \gamma$	(all production modes)	139	[20]	differential	√(subset)		
$H \rightarrow Z Z^* \rightarrow 4\ell$	(all production modes)	139	[22]	STXS-1.2	\checkmark	\checkmark	
	(un production modes)	137	[19]	differential	$\sqrt{(\text{subset})}$		
	$(t\bar{t}H multileptons)$	36.1	[34]	STXS-0		\checkmark	
II .	(-11 1 1 1)	120	[20]	OTVO 1 0	/	/	
$H \rightarrow \tau \tau$	(all production modes)	139	[29]	S1X5-1.2	\checkmark	\checkmark	
	(<i>ttH</i> multileptons)	36.1	[34]	STXS-0		\checkmark	
$H \rightarrow WW^*$	(ooF VRF)	139	[30]	STXS-12		1	
11 / 11 11	(SS^1, VD^1)	36.1	[30]	STXS-0	v	·	
	$(t\bar{t}H$ multileptons)	36.1	[43]	STXS-0		v /	
	(<i>im</i> mutiteptons)	50.1	[]4]	5172-0		v	
$H \rightarrow b\bar{b}$	(VH)	139	[24, 25]	STXS-1.2	\checkmark	\checkmark	
	(VBF)	126	[26]	STXS-1.2	\checkmark	\checkmark	
	$(t\bar{t}H)$	139	[28]	STXS-1.2	\checkmark	\checkmark	
	(all production modes, boosted)	139	[27]	STXS-1.2	\checkmark	\checkmark	

$H \rightarrow Z\gamma$	(all production modes)	139	[31]	STXS-0	\checkmark	\checkmark	
$H \rightarrow \mu \mu$	(all production modes)	139	[32]	STXS-0	\checkmark	\checkmark	

• Preparing the way towards a new ATLAS Global Combination!!

Sketch from R.Balasubramanian inspired by Ken Mimasu

20th Workshop of LHC Higgs WG - 13-15/11/2023 Eleonora Rossi

EW

Higgs

Top

EFT interpretation

The LHC has not found any evidence of New Physics.

- Direct searches for SUSY or exotics continue, but the focus on indirect exploration is increasing...
- An Effective Field Theory (EFT) approach can be used to set **model-independent constraints** on BSM physics and perform indirect searches for BSM physics that is not within the direct reach of the LHC.
 - It is a very powerful tool used in different fields of physics; allows one to combine different types of measurements (Higgs, top, EW physics,...).
 - Constrain EFT coefficients -> constrain large classes of UV theories.
 - A popular EFT model is the <u>SMEFT</u>
 - SMEFT is a complete QFT compatible with higher-order calculations.

Off-shell interpretation

SMEFT interpretation of off-shell H->ZZ

- Higgs boson decays to $ZZ \rightarrow 4\ell$ and $ZZ \rightarrow 2\ell 2\nu$ final states.
- Off-shell Higgs boson events offer the opportunity to probe a higher energy scale.

$$\frac{\sigma^{\text{SMEFT}}(c_t, c_g)}{\sigma^{\text{SM}}} \simeq (c_t + c_g)^2 \left(1 - \frac{7}{15} \frac{c_g}{c_t + c_g} \frac{m_H^2}{4m_t^2}\right)$$

$$c_{t\varphi} = -\frac{y_t \Lambda^2}{v^2} (c_t - 1)$$

$$c_{\varphi G} = \frac{g_s^2 \Lambda^2}{48\pi^2 v^2} c_g$$

ggFSBI

 \mathcal{O}_{to} SM

 \mathcal{O}_{ta} Squared

Data

Sys

SM

ATLAS Preliminary

 $\sqrt{s} = 13 \text{ TeV}, 139 \text{ fb}^{2}$

10

- Off-shell: mass-dependent term cannot be neglected-> degeneracy of the Higgstop quark and effective Higgs-gluon couplings broken, enabling separate measurements of the coupling modifiers.
- The 95% CL limits on the single WCs (lin+quad) are:
 - *cφG* (Higgs-gluon coupling modifier): observed & expected [-0.04, 0.03].
 - $c_{t\phi}$ (Higgs-top coupling modifier): observed (expected) [-9, 18] ([-9, 17]).

STXS interpretation

STXS inputs

ATLAS-CONF-2023-052

He-Total

Stat.

ATLAS	Preliminary		
√ <i>s</i> = 13 Te'	V, 139 fb ⁻¹	⊢● Total	Stat.
$m_{H} = 125.0$	99 GeV, ly _H l < 2.5	Syst.	SM
			Total Stat. Syst.
	0-jet, $p_{\tau}^{\prime\prime}$ < 200 GeV	1.2	$7 \begin{array}{c} +0.18 \\ -0.17 \end{array} \left(\pm 0.08 \\ , \begin{array}{c} +0.16 \\ -0.15 \end{array} \right)$
	1-jet, $p_T^H < 60 \text{ GeV}$	0.6	$6 \begin{array}{c} {}^{+0.59}_{-0.58} \left({}^{+0.30}_{-0.29} , {}^{+0.51}_{-0.50} \right) \end{array}$
	1-jet, $60 \le p_{_{T}}^{_{H}} < 120 \text{ GeV}$	0.6	$8 \begin{array}{c} {}^{+0.49}_{-0.46} \left({}^{\pm 0.32}_{-0.33} \right) \\ \end{array}$
gg →H (WW*)	1-jet, $120 \le p_T^H < 200 \text{ GeV}$	1.4	$3 \begin{array}{c} {}^{+0.89}_{-0.76} \left({}^{+0.63}_{-0.62} , {}^{+0.62}_{-0.44} \right) \end{array}$
	\ge 2-jet, p_{τ}^{H} < 200 GeV	1.5	$4 \begin{array}{c} {}^{+0.95}_{-0.84} \left({}^{+0.43}_{-0.42} , {}^{+0.85}_{-0.72} \right) \end{array}$
	$p_{\tau}^{H} \ge 200 \text{ GeV}$	•• 1.3	$7 \begin{array}{c} {}^{+0.91}_{-0.76} \left({}^{+0.63}_{-0.62} , {}^{+0.65}_{-0.44} \right) \end{array}$
	≥ 2-jet, 350 ≤ m_{jj} < 700 GeV, p_{γ}^{H} < 200 GeV	0.1	2 +0.60 (+0.45 -0.58 (-0.41 ,±0.41)
	≥ 2-jet, 700 ≤ m_{jj} < 1000 GeV, p_{T}^{H} < 200 GeV		$7 \begin{array}{c} +0.68 \\ -0.61 \end{array} \begin{pmatrix} +0.57 \\ -0.51 \end{array} , \begin{array}{c} +0.37 \\ -0.33 \end{pmatrix}$
$qq \rightarrow Hqq (WW^*)$	\ge 2-jet, 1000 $\le m_{jj} < 1500~{\rm GeV}, p_{_T}^H < 200~{\rm GeV}$	1.3	$2 \begin{array}{c} +0.64 \\ -0.51 \end{array} \begin{pmatrix} +0.50 \\ -0.45 \end{array} , \begin{array}{c} +0.40 \\ -0.24 \end{pmatrix}$
	≥ 2-jet, $m_j \ge 1500 \text{ GeV}$, $p_T^H < 200 \text{ GeV}$	• 1.1	$9 \begin{array}{c} {}^{+0.48}_{-0.42} \left({}^{+0.42}_{-0.38} \right. {}^{+0.23}_{-0.17} \right)$
	\geq 2-jet, $m_{j} \geq 350~{\rm GeV}, p_{_T}^{_H} \geq 200~{\rm GeV}$	1.5	$4 \begin{array}{c} {}^{+0.61}_{-0.51} \left({}^{+0.51}_{-0.46} , {}^{+0.34}_{-0.22} \right) \end{array}$
	0-iet. <i>p</i> ^{<i>H</i>} < 10 GeV		3 +0.36 (+0.30 +0.19)
	0-jet, $10 \le p^{H} \le 200 \text{ GeV}$	• 11	5 +0.23 (+0.18 +0.14)
	1-jet, $p_{+}^{\mu} < 60 \text{ GeV}$	0.3	-0.20 (-0.17 '-0.11) 1 +0.43 (+0.40 +0.16)
aa . H (77*)	1-jet, 60 ≤ p_{τ}^{H} < 120 GeV	1.4	-0.38 (-0.36 , -0.13) 2 +0.52 (+0.42 +0.30)
gg →11 (ZZ)	1-jet, $120 \le p_{\tau}^{H} < 200 \text{ GeV}$	0.4	1 + 0.84 + 0.80 + 0.23 + 0.08 + 0.23 + 0.08 + 0.23 + 0.08 + 0.23 + 0.08 + 0.23 + 0.08 + 0.0
	≥ 2-jet, $p_T^H < 200 \text{ GeV}$	0.3	5 + 0.60 + 0.55 + 0.23 + 0.60 + 0.51 + 0.14
	$p_T^H \ge 200 \text{ GeV}$	2.4	$1^{+1.52}_{-1.09}$ $\begin{pmatrix}+1.32 & +0.75\\ -1.04 & -0.31\end{pmatrix}$
qq →Hqq (ZZ*)	VBF	1.4	$9 \begin{array}{c} +0.63 \\ -0.50 \end{array} \begin{pmatrix} +0.61 \\ -0.50 \end{array} , \begin{array}{c} +0.17 \\ -0.09 \end{array} \end{pmatrix}$
	≥ 2-jet, 60 < <i>m_{jj}</i> < 120 GeV	1.5	$1 \begin{array}{c} +2.83 \\ -2.24 \end{array} \begin{pmatrix} +2.79 \\ -2.22 \end{array} , \begin{array}{c} +0.45 \\ -0.29 \end{pmatrix}$
	\geq 2-jet, $m_j \geq$ 350 GeV, $p_T^H \geq$ 200 GeV	0.1	B +2.09 (+2.08 +0.18)
			+1.67 (+1.67 +0.15)
VHIEP (ZZ^)			[∞] -1.05 \-1.05 [,] -0.01)
tītH (ZZ*)	-	1.7	$3 \begin{array}{c} +1.77 \\ -1.14 \end{array} \begin{pmatrix} +1.72 \\ -1.13 \end{pmatrix} \begin{array}{c} +0.39 \\ -0.18 \end{pmatrix}$
–10 –4	3 -6 -4 -2 0	2 4 6	8
	(σ x BH normalized	to SIM value

				ATLAS	Preliminarv
ATLAS	Preliminary	Total	Stat	√ <i>s</i> = 13 Te\	/, 139 fb ⁻¹
<i>√s</i> = 13 Te	V, 139 fb ⁻¹		Stat.	m _H = 125.0	9 GeV, ly _H l <2
m _H = 125.0	09 GeV, ly _H < 2.5	Syst.	5101		
			Total Stat. Syst.		
	0-jet, <i>p</i> ^{<i>H</i>} ₇ < 10 GeV ►		0.66 +0.27 (±0.24 , +0.12)		
	0-jet, 10 ≤ p_{τ}^{H} < 200 GeV		1.24 +0.18 (±0.15 , +0.10)		1-jet, 120 ≤ p ^H < 3
	1-jet, <i>p</i> ^{<i>H</i>} ₊ < 60 GeV	I	$1.16 + 0.39 (\pm 0.36 + 0.13)$		≥ 1-jet, <i>m_{ii}</i> < 350
	1-jet, 60 ≤ p_T^{H} < 120 GeV	I .	$1.14 \begin{array}{c} +0.40 \\ 0.36 \\ 0.33 \\ 0.15 \\ 0.1$	$aa \rightarrow H(\tau\tau)$	≥ 2-jet, <i>m_{ii}</i> < 350
	1-jet, 120 ≤ p_T^H < 200 GeV		0.93 + 0.57 + 0.53 + 0.20 = 0.53 + 0.52 + 0.10	33()	≥ 2-jet, <i>m_{jj}</i> ≥ 350
gg →H (γγ)	≥ 2-jet, m_{j} < 350 GeV, p_{τ}^{H} < 120 GeV		$0.58 \begin{array}{c} +0.56 \\ -0.54 \end{array} \begin{pmatrix} +0.53 \\ -0.52 \end{array} \begin{pmatrix} +0.19 \\ -0.52 \end{array} \end{pmatrix}$		$200 \le p_{_T}^{_H} < 300~{\rm G}$
	≥ 2-jet, m _j < 350 GeV, 120 ≤ p ^H ₇ < 200 GeV	-	$1.31 \begin{array}{c} +0.50 \\ -0.48 \end{array} \begin{pmatrix} +0.48 \\ -0.47 \end{array} , \begin{array}{c} +0.15 \\ -0.09 \end{pmatrix}$		$p_{_{T}}^{_{H}} \ge 300 \text{ GeV}$
	≥ 2-jet, m _j ≥ 350 GeV, p ^H ₇ < 200 GeV	-	1.09 ±0.95 (+0.91 , +0.30 _0.89 , -0.34)		
	$200 \le p_{\tau}^{H} < 300 \text{ GeV}$	H	$1.56 \begin{array}{c} +0.45 \\ -0.41 \end{array} \begin{pmatrix} +0.41 \\ -0.39 \end{array} , \begin{array}{c} +0.18 \\ -0.13 \end{pmatrix}$		≥ 2-jet, 60 ≤ <i>m_j</i> ≤
	$300 \le p_{\tau}^{H} < 450 \text{ GeV}$		$0.17 \begin{array}{c} +0.56 \\ -0.49 \end{array} \begin{pmatrix} +0.54 \\ -0.47 \end{array} + \begin{array}{c} +0.14 \\ -0.47 \end{array}$	$qq \rightarrow Hqq (\tau\tau)$	≥ 2-jet, <i>m_{jj}</i> ≥ 350
	$p_{\tau}^{H} \ge 450 \text{ GeV}$		2.11 +1.47 (+1.42 , +0.41) -1.18 (-1.15 , -0.23)		
				<i>ttH</i> (ττ)	
	≤ 1-jet and VH-veto	-	$1.05 \begin{array}{c} +0.96 \\ -0.86 \end{array} \left(\begin{array}{c} +0.90 \\ -0.84 \end{array} , \begin{array}{c} +0.32 \\ -0.18 \end{array} \right)$		
	≥ 2-jet, VH-had		$\begin{array}{cccc} 0.21 & {}^{+0.74}_{-0.63} & \left(\begin{array}{c} {}^{+0.72}_{-0.62} & {}^{+0.14}_{-0.12} \right) \end{array}$	<i>qq</i> → <i>Hqq</i> (bb)	
	≥ 2-jet, 350 ≤ m_j < 700 GeV, p_T^H < 200 GeV	-	$1.28 \begin{array}{c} +0.80 \\ -0.60 \end{array} \left(\begin{array}{c} +0.61 \\ -0.56 \end{array} , \begin{array}{c} +0.51 \\ -0.23 \end{array} \right)$		
qq →Hqq (үү)	≥ 2-jet, 700 ≤ m_{j} < 1000 GeV, p_T^H < 200 GeV		$1.47 \begin{array}{c} +0.84 \\ -0.68 \end{array} \left(\begin{array}{c} +0.72 \\ -0.64 \end{array} , \begin{array}{c} +0.43 \\ -0.23 \end{array} \right)$		$150 \le p_{\tau}^{V} < 250 \text{ G}$
	≥ 2 -jet, $m_{j} \ge 1000 \text{ GeV}, p_T^H < 200 \text{ GeV}$	H	$1.31 \begin{array}{c} +0.46 \\ -0.38 \end{array} \left(\begin{array}{c} +0.36 \\ -0.33 \end{array} , \begin{array}{c} +0.29 \\ -0.20 \end{array} \right)$	$qq \rightarrow H/v$ (bb)	$250 \le p_{\gamma}^{V} < 400 \text{ G}$
	≥ 2-jet, 350 ≤ m_{j} < 1000 GeV, p_T^H ≥ 200 GeV		$\begin{array}{ccc} 0.31 & {}^{+0.74}_{-0.61} & \left(\begin{array}{c} {}^{+0.73}_{-0.59} & {}^{+0.13}_{-0.11} \right) \end{array}$		$p_{\tau}^{\nu} \ge 400 \text{ GeV}$
	≥ 2 -jet, $m_{j} \ge 1000 \text{ GeV}, p_{T}^{H} \ge 200 \text{ GeV}$	•	$1.69 \begin{array}{c} +0.67 \\ -0.57 \end{array} \left(\begin{array}{c} +0.61 \\ -0.52 \end{array} , \begin{array}{c} +0.28 \\ -0.23 \end{array} \right)$		$75 \le p_{_T}^{_V} < 150$ Ge
	n ^V < 150 GeV	•	1 7E +0.82 (+0.80 +0.16)	<i>gg/qq →Hll/vv</i> (bb	$150 \le p_{\tau}^{\nu} < 250 \text{ G}$
qq→HIv (γγ)	$p_T^{V} \ge 150 \text{ GeV}$		1.75 -0.73 (-0.72 · -0.09) 1.65 +1.12 (+1.11 +0.13)		$250 \le p_{_{T}}^{_{V}} < 400 \text{ G}$
			-0.90 (-0.89 ; -0.107		$p_{\tau}^{v} \ge 400 \text{ GeV}$
gg/qq →HII/ νν (γγ	$p_{T}^{\nu} < 150 \text{ GeV}$	-	0.64 +0.88 (+0.87 ,+0.13)		$p_{\tau}^{H} < 120 \text{ GeV}$
	$p_{T}^{V} \ge 150 \text{ GeV}$		0.39 ^{+1.10} _{-0.92} (^{+1.08} _{-0.91} , ^{+0.21} _{-0.18})		$120 \le p_{\tau}^{H} < 200 \text{ G}$
	<i>p</i> ^{<i>H</i>} < 60 GeV	4	0.83 +0.82 (+0.81 +0.11)	ttH (bb)	$200 \le p_{\tau}^{\scriptscriptstyle H} < 300~{\rm G}$
	$60 \le p^{H} < 120 \text{ GeV}$		0.81 +0.60 (+0.59 +0.08)		$300 \le p_{_T}^{_H} < 450~{\rm G}$
t t Η (γγ)	$120 \le p_{\perp}^{\mu} < 200 \text{ GeV}$		0.65 + 0.64 + 0.63 + 0.13 = 0.65 + 0.64 + 0.63 + 0.13 = 0.51 + 0.64 + 0.63 + 0.13 = 0.51 +		$p_{_{T}}^{\scriptscriptstyle H} > 450~{ m GeV}$
	200 ≤ p ^H ₊ < 300 GeV	-	1.23 + 0.81 (+0.80 + 0.11)		
	<i>p</i> ^{<i>H</i>} ₇ ≥ 300 GeV	-	1.17 + 0.96 (+0.95 + 0.16)	gg →H, $t\bar{t}H$ (µµ)	
			-0.75 (-0.74 / -0.127	<i>qq →Hqq</i> , VH (μμ	I)
tH (γγ)	H		2.06 ^{+4.13} (^{+3.94} , ^{+1.22})		
			0.05 +0.97 (+0.88 +0.41)	-8	-b -4
H(Z y)			2.05 _0.93 (_0.87 , _0.33)	$gg \rightarrow H$ (bb)	$450 \le p_T^H < 650 \text{ G}$
	-6 -4 -2 0	2 4 6	8 10		<i>p</i> ₇ ≥ 650 GeV
-	- · - ·	$\sigma x BR$ normalize	ed to SM value	-40 -30) –20

qq →Hqq (γγ)

ttH (үү)

tH (yy)

SMEFT impact on STXS bins and decay

- Impact of Wilson coefficients can be visualised-> Value of ci scaled appropriately for plotting.
- 33 WCs plotted, remaining are subleading.
- Impact of quadratic terms significant for WH,ZH and tH.

O_{HG}

·-- H

ANN ANN

20th Worksh

...

O_{uH}

STXS sensitivity study

- 50 Wilson coefficients have a non-negligible impact on STXS bins.
- Not all the parameters can be constrained directly in the Warsaw basis, need to identify sensitive directions that can be reasonably constrained.
- Principal component analysis on information matrix:

 $H_{SMEFT} = P^T H_{\mu} P$

- Full eigenvector basis-> Negligible correlation, hard to interpret.
- Fit basis-> Higher correlation, easy to interpret -> 19 directions

- $c_{eH_{33}}$ and $c_{eH_{22}}$ can be individually measured from the corresponding Higgs channels that enter the combination.
- c_{HG} , c_{tG} and c_{tH} are constrained by gg*F* and *ttH* production.
- c_{HW} , c_{HWB} , c_{HB} , impact on branching ratios of the $H \rightarrow \gamma \gamma$ and $H \rightarrow Z\gamma$ decay.

inc: breakdown into production modes is not available $(H \rightarrow \mu^+ \mu^$ and $H \rightarrow Z\gamma$).

Linear+quadratic STXS SMEFT results

• Significant impact of quadratic terms for different parameters:

e^[1]_{ttH}=1.0

e^[2]=5.0

ATLAS-CONF-2023-052

• ZH directions significantly affected + tH ($e_{ttH}^{[3]}$)

 $e_{ZH}^{[1]}=0.4$

 $e_{7H}^{[2]}=4.0$

- Double minima structure observed for several parameters.
 - For now treating difference between $1/\Lambda^2$ and $1/\Lambda^4$ as magnitude indicator of effect missing SM-Dim8 interference.

- Next steps:
 - Collect & implement available dim-8 calculations (=incomplete but growing set)
 - 2. Develop a more sophisticated strategy to quote truncation uncertainty using partial calculations

Validity of Gaussian approximation

- Alternative likelihood function, based on a multivariate Gaussian approximation of the STXS measurements instead of the full measurement, built from the information provided in the paper.
- Make available digitally all information needed to reproduce.
- It represents reasonably good approximation of the full likelihood.

- Premise of EFT is that measurements can be mapped *a posteriori* to put constraints on UV-complete models
- SMEFT constraints can be rotated into 2HDM models using inputs from the theory community Paper
- Relevant Wilson coefficients (free parameters of SMEFT Lagrangian) can be expressed in terms of 2HDM parameters: $\mathscr{L}_{SMEFT} = \mathscr{L}_{SM} + \sum_{i=1}^{N_{d6}} \underbrace{c_i}_{\Lambda^2} O_i^{(6)} + \underbrace{Wilson \ coefficients}^{Wilson \ coefficients}$

SMEFT parameters	Type I	Type II	Lepton-specific	Flipped
$\frac{v^2 c_{tH}}{\Lambda^2}$	$-Y_t c_{\beta-\alpha}/\tan\beta$	$-Y_t c_{\beta-\alpha}/\tan\beta$	$-Y_t c_{\beta-\alpha}/\tan\beta$	$-Y_t c_{\beta-\alpha}/\tan\beta$
$\frac{v^2 c_{bH}}{\Lambda^2}$	$-Y_b c_{\beta-\alpha}/\tan\beta$	$Y_b c_{\beta-\alpha} \tan \beta$	$-Y_b c_{\beta-\alpha}/\tan\beta$	$Y_b c_{\beta-\alpha} \tan \beta$
$\frac{v^2 c_{eH,22}}{\Lambda^2}$	$-Y_{\mu}c_{\beta-\alpha}/\tan\beta$	$Y_{\mu}c_{\beta-\alpha}\tan\beta$	$Y_{\mu}c_{\beta-\alpha}\tan\beta$	$-Y_{\mu}c_{\beta-\alpha}/\tan\beta$
$\frac{v^2 c_{eH,33}}{\Lambda^2}$	$-Y_{\tau}c_{\beta-\alpha}/\tan\beta$	$-Y_{\tau}c_{\beta-\alpha}\tan\beta$	$Y_{\tau}c_{\beta-\alpha}\tan\beta$	$-Y_{\tau}c_{\beta-\alpha}/\tan\beta$
$\frac{v^2 c_H}{\Lambda^2}$	$c_{eta-lpha}^2 M_A^2/v^2$	$c_{eta-lpha}^2 M_A^2/v^2$	$c_{eta-lpha}^2 M_A^2/v^2$	$c_{eta-lpha}^2 M_A^2/v^2$

with Λ the SMEFT energy scale , ν the VEV, Y_i the Yukawa-couplings ($Y_i = \sqrt{2m_i}/\nu$), M_A is the common mass of the heavy decoupled scalars.

• Formulas valid in the limit of $cos(\beta - \alpha) \rightarrow 0$ (alignment limit), in agreement with EFT assumptions.

- Relevant coefficients parametrised as function of the 2HDM parameters.
- Linear expansion is performed.
- No constraints from vector boson couplings in SMEFT model (would occur in dim-8)-> relevant for constraining Type I at high *tanβ*
- Others: the region with flipped coupling sign does not appear (petal region)-> likelihood function in the EFT-based approach is approximately Gaussian and has a single maximum.

Mapping is affected by missing SMEFT dimension-8 operators:

• constraints from SMEFT parameters weaker than from k-parameters

Detailed comparison w.r.t kappa results in backup

Differential interpretation

Differential SMEFT interpretation

- Combination of p_T^H measurements from the $H \rightarrow \gamma \gamma$ and $H \rightarrow ZZ^*$ channels.
- Some operators are expected to have high impact in the tails of p_T^H distribution:
 - ★ c_{tG} : top-gluon interaction (additional amplitudes for ggH or tt*H* Higgs boson production + $H \rightarrow gg$).
 - ★ c_{HG} : Higgs gluon interaction (*H*gg vertex that modifies the ggH production cross-section as well as the *H* → gg).
 - ★ c_{tH} : Yukawa modifier for top quark (top-quark-loop mediated ggF, ttH, top-quark-loop amplitude contributing to the $H \rightarrow \gamma\gamma$ partial width + $H \rightarrow gg$).

Fiducial unfolded p_T^H from $H \to \gamma \gamma \& H \to 4l$

Differential SMEFT interpretation

- <u>ATLAS-CONF-2023-052</u> directions can be obtained with an eigenvector
- High correlation-> new basis and most sensitive directions can be obtained with an eigenvector decomposition.

STXS - differential comparison

- *ev*^[1] is mainly constrained by ggH slight degradation in differential expected since the measurements are inclusive in production mode.
- $ev^{[2]}$ and $ev^{[3]}$ constraints come from the remaining production modes which can be probed separately in the STXS framework.
- Differential cross-section measurements have less constraining power than STXS ones:
 - finer granularity + inclusive in production modes vs separation of the different production modes.

Global combination

ATLAS Global combination

S-PUB-2022-037 **HIGGS+EW** ATLAS Preliminary Best Fit Higgs 68 % CL \sqrt{s} =13 TeV, 36.1-139 fb⁻¹ EW 95 % CL linear SMEFT $\Lambda = 1$ TeV linear+quad. Previous round of Higgs combination Most stringent C^[1] HB,HW,HWB,HD,tW,tB used in the context of the ATLAS CHG constraints -0.04-0.020.02 0.04 0 Global combination $c^{[1]}_{2q2l} \ c^{[1]}_{4q}$ (Higgs + EW + EWPO results in Constrained by C_W backup) both diboson and *C_{Hq}*⁽³⁾ C_{bH} **VH** measurements C_{tG} Principal component analysis to -0.6 -0.4 -0.2 0.2 0.6 0 0.4 identify sensitive directions-> a *C*HB,HW,HWB,HD,tW,tB $C^{[3]}_{HB,HW,HWB,HD,tW,tB}$ $C^{[1]}_{H^{(1)},He}$ $c^{[1]}_{H^{(3)},II^{(1)}}$ modified basis of linear combinations of WCs is defined (7+17 coefficients) $\begin{array}{c} C^{[1]}_{Hu,Hd,Ht,Hq^{(1)}} \\ C^{[1]}_{Hu,Hd,Ht,Hq^{(1)}} \\ C^{[1]}_{top} \\ C^{[2]}_{2q2l} \end{array}$ Weakly constrained Sensitivity eigenvectors instead of -22 -1 1 fit directions-> n $c^{[4]}_{HB,HW,HWB,HD,tW,tB}$ original Wilson Coefficient. quadratic $\begin{array}{c} C_{uH,dH,H\square}^{[1]} \\ C_{uH,dH,H\square}^{[2]} \\ C_{HI^{(1)},He}^{[2]} \\ C_{HI^{(3)},II^{(1)}}^{[2]} \end{array}$ contributions are Linear and linear+quadratic results. large; validity of CeH CtH Complementary information. the constraints $c^{[2]}_{Hu,Hd,Ht,Hq^{(1)}} c^{[3]}_{2q2l} c^{[4]}_{2q2l}$ neglected higher order contributions -0.4 -0.2 0.2 0.4 15 -15 -10 -5 0 5 10 0.2 0.4 0.6 0 0.8 expected fractional Parameter Value

20th Workshop of LHC Higgs WG - 13-15/11/2023 Eleonora Rossi

contribution

Road towards Global Combination(s)

Several channels/data samples not yet included in current ATLAS EFT combination

- Within Higgs (w.r.t. 2023 Higgs combination)
 - Rare processes $H \rightarrow cc, VBF \rightarrow H\gamma$
 - Off-shell regions of $H \rightarrow WW$ and $H \rightarrow ZZ$
 - Angular observables sensitive to CP-odd operators (in both production & decay)
- Higgs pair production
 - First meeting to discuss LHC H+HH combination in EFT context on 29th March (<u>indico</u>) <u>LHC EFT</u> <u>HH Note</u>
 - First studies of HH fits in SMEFT already available (ATLAS <u>HH->4b</u> + <u>HH->bbyy</u> <u>talk by Elisabeth</u>)
- Outside Higgs many opportunities for combinations
 - with other processes: dibosons, top-quarks
 - Constraints from LEP/SLC precision data
 - Many potential challenges (besides harmonisations of SMEFT assumptions/tools)
 - $t\bar{t}$ signal = Higgs background-> coherent modelling of $t\bar{t}$ in Higgs?
 - experimental systematics across physics groups?
- Combination with CMS

Stay tuned!!!

Thanks for your attention!

Higgs combination

Decay channelTarget Production Modes $H \rightarrow \gamma\gamma$ ggF, VBF, WH, ZH, t $\bar{t}H$, tH $H \rightarrow ZZ^*$ ggF, VBF, WH, ZH, t $\bar{t}H(4\ell)$ $H \rightarrow WW^*$ ggF, VBF $H \rightarrow \tau\tau$ ggF, VBF, WH, ZH, t $\bar{t}H(\tau_{had}\tau_{had})$	 <i>L</i> [fb⁻¹] Operator groupin No strong tension Additional sensition input channels-> 	ig dictated by experimental sensitivity to physics. In swith the SM, 59% compatibility. In the $H \to \tau \tau$, $VBF, H \to b\bar{b}$ and $t\bar{t}H, H \to b\bar{b}$ c_{eH}, c_{dH} + independent constraints for $c_{top}^{[1]}$.
$H \rightarrow b\bar{b}$ WH, ZH VBF	• Sensitivity to the	most sensitive directions in each of the remaining groups
tīH	139 of the parameters	is in general improved by up to 70%.
Sizeable sensitivity to operators such Λ^4 in all of the measured parameters ATLAS Preliminary	uppressed by S. Previous combination	ATLAS Preliminary 68 % CL $\sqrt{s} = 13$ TeV, 139 fb ⁻¹ 95 % CL $m_H = 125.09$ GeV, $ y_H < 2.5$ Best Fit SMEFT $\Lambda = 1$ TeV
\sqrt{s} =13 TeV, 139 fb ⁻¹ m_H = 125.09 GeV, $ y_H $ < 2.5 SMEFT Λ = 1 TeV	$\begin{array}{c} $	$c_{HG, uG, uH}^{[1]} (\times 10)$
c ^[1] _{HG,uG,uH,top} (×10)		$C_{Hq}^{(3)}$
c ⁽³⁾ _{Hq}	10 directions	$c_{ton}^{[1]}$
$c_{HW,HB,HWB,HDD,uW,uB}^{[1]}$ -0.25 -0.2 -0.15 -0.1 -0.05 0 0.05 $c_{HW}^{[2]}$ HB HWB HDD UW UB	0.1 0.15 0.2 0.25	$c_{HJ^{(3)},IJ'}^{[1]}$ $c_{Hu,Hd,Hq^{(1)}}^{[1]}$
$c_{HuHdHa^{(1)}}^{[1]}$		C ^[2]
$c_{HG,uG,uH,top}^{[2]}$ -2 -1.5 -1 -0.5 0 0.5	5 1 1.5 2	$C_{HG, uG, uH}$ $C_{HW, HB, HWB, HDD, uW, uB, W}$ -3 -2 -1 0 1 2 3
<i>c</i> ^[3] _{<i>HW</i>,<i>HB</i>,<i>HWB</i>,<i>HDD</i>,<i>uW</i>,<i>uB</i>}		$C_{Hu,Hd,Hq^{(1)}}^{[2]}$
<i>c</i> ^[3] _{<i>HG</i>,<i>uG</i>,<i>uH</i>,top}		С ^[3] НW, HB, HWB, HDD, uW, uB, W
$c_{Hl^{(3)},ll'}^{[1]} \\ c_{Hl^{(1)},He}^{[1]} (\times 0.1) \\ \hline -10 \\ -8 \\ -6 \\ -4 \\ -2 \\ 0 \\ 2 \\ \hline 2 \\ -10 \\ -8 \\ -6 \\ -4 \\ -2 \\ 0 \\ 2 \\ -10 \\ -8 \\ -6 \\ -4 \\ -2 \\ 0 \\ 2 \\ -10 \\ -8 \\ -6 \\ -4 \\ -2 \\ 0 \\ 2 \\ -10 \\ -8 \\ -8 \\ -8 \\ -8 \\ -8 \\ -8 \\ -8 \\ -$	4 6 8 10	C_{eH} C_{dH} -10 -5 0 5 10
	0_052	Parameter Value

SMEFT parameterisation

SMEFT parameterisation

The impact of dim-6 CP-even operators is estimated using both MC truth and analytical predictions for all the Wilson coefficients that have numerically relevant contributions (62).

- Dimension-six operator effects are calculated:
 - at tree level using <u>SMEFTsim 3.0</u>.
 - for processes that are loop-induced in the SM, thus ggH and ggZH production, Higgs boson decays into gluons -> SMEFTatNLO.
 - Analytic formulas for $H \rightarrow \gamma \gamma$ including NLO EW corrections

and LEP observables.

- Theory uncertainties on SM predictions, no additional uncertainties on SMEFT.
- Acceptance corrections to account for kinematic differences between SM and SMEFT in Higgs boson decays on both **linear** and **linear+quadratic** terms.
- Effects of width changes of intermediate particles ("propagator corrections") included.

SMEFT impact on STXS bins and decay - fit basis

20th Workshop of LHC Higgs WG - 13-15/11/2023 Eleonora Rossi

STXS: acceptance corrections for HWW/H4l decays

- SMEFT operators can alter the kinematics of the Higgs boson decay products: acceptance differences between SM and SMEFT.
- For decay side, the acceptance effect is predominant in four-body decays but studies show effect also pronounced in some 2-body decays.
- Acceptance corrections for STXS interpretation have been included for H → WW* and H → 4l channels, linear and linear+quadratic results.
- Future: harmonised approach to acceptance possible in Run-3 with introduction of decay-side STXS definition.

20th Workshop of LHC Higgs WG - 13-15/11/2023 Eleonora Rossi

AS-CONF-2023-052

Linear STXS SMEFT results

ATLAS-CONF-2023-052

• Residual correlations present between $e_{ggF}^{[2]}$ and $e_{ttH}^{[1]}$ and $e_{ggF}^{[3]}$ and $e_{H\gamma\gamma,Z\gamma}^{[2]}$ and which are caused by a common sensitivity to *ttH* production and ggF $H \rightarrow \gamma\gamma$, respectively.

Linear+quadratic STXS SMEFT results

Operators in Warsaw basis: $c_{eH,22}$, $c_{eH,33}$, $c_{Hq}^{(3)}$ and c_{bH}

ATLAS-CONF-2023-052

Eigenvector group $H \rightarrow \gamma \gamma, Z \gamma$

20th Workshop of LHC Higgs WG - 13-15/11/2023 Eleonora Rossi

Linear+quadratic STXS SMEFT results

ATLAS-CONF-2023-052

Eigenvector group top

Eigenvector group overall normalization

(d) Eigenvector group $H \rightarrow ZZ^*$

• The most popular extension of Higgs Sector: two-Higgs doublet model

• Additional scalar doublet Φ_2 with VEV ν_2

- After symmetry breaking, four new bosons are predicted: 1 neutral CP-even Higgs bosons H, 1 neutral CP-odd Higgs boson A and 2 charged bosons H[±].
- Observed Higgs assumed to be *h*

- In order to avoid flavour changing neutral currents(FCNC) at tree level, an additional symmetry is imposed: one fermion couples with only one Higgs doublet — Four types of 2HDMs

- Free parameters: • $m_h, m_H, m_A, m_{H^{\pm}}$ and m_{12}^2 , the softly breaking term of Z2 symmetry
 - Angles α (mixing angle between the two neutral CP-even Higgs state) and β ($tan\beta =$
 - α and β determine the couplings to vector bosons and fermions;
 - *decoupling limit* assumed-> $m_H \gg v$ -> implies the alignment limit $cos(\beta \alpha) \ll 1$, *h* has SM-like couplings.

ATLAS-CONF-2023-052

All models: similar exclusion regions in the tan β , $\cos(\beta - \alpha)$ plane for low values (≤ 1) of tan β a small region is consistent with the Higgs boson production and decay rates.

ATLAS-CONF-2023-052

Type I:

In the large tan β region, for positive cos(β – α), the observed exclusion region is significantly larger than the expected one: values of the coupling strength modifiers to *b*, *t* quarks and *τ* leptons smaller than one and of the couplings to *W*, *Z* bosons larger than one are favoured.

ATLAS-CONF-2023-052

ATLAS-CONF-2023-052

- Relevant coefficients parametrised as function of the 2HDM parameters.
- Type I: no constraints from vector boson
 couplings in SMEFT model
 (would occur in dim-8)
- Others: the region with flipped coupling sign does not appear (petal region)-> likelihood function in the EFT-based approach is Gaussian and has a single maximum.

Mapping is affected by missing SMEFT dimension-8 operators:

• constraints from SMEFT parameters weaker than from k-parameters

SMEFT interpretation of off-shell H->ZZ

- Higgs boson decays to $ZZ \rightarrow 4\ell$ and $ZZ \rightarrow 2\ell 2\nu$ final states.
- Off-shell Higgs boson events offer the opportunity to probe a higher energy scale.

DiHiggs: $HH \rightarrow b\bar{b}b\bar{b}$

- Non-resonant HH production ggF production mode 4b decay channel (126 fb⁻¹). ^g
- Analysis categorisations to improve sensitivity to BSM physics.
- The interpretations are performed with two EFT frameworks, Higgs Effective Field Theory (HEFT) and SM Effective Field Theory (SMEFT).
- first LHC SMEFT interpretation for HH.

1D and 2D limits for the 5 Wilson

-9.3

-10.0

-0.97

 $c_{H\square}$

 C_{tH}

 c_{tG}

- The different BSM scenarios are considered re-weighting the SM non-resonant HH ggF sample.
 - coefficients: $c_{H'}c_{H\square'}$, $c_{tH'}c_{tG'}c_{HG}$. SMEFT@NLO linear+quadratic results, one WC at a time Parameter **Expected Constraint Observed Constraint** Upper Upper Lower Lower -20-2211 11 c_H -0.056-0.0670.060 0.049 c_{HG}

13.9

6.4

0.94

-8.9

-10.7

-1.12

14.5

6.2

1.15

.39

20th Workshop of LHC Higgs WG - 13-15/11/2023 Eleonora Rossi

arXív:2301.03212

ATLAS Global combination

ATL-PHYS-PUB-2022-037

Decay channel	Ta	rget Production Mc	odes \mathcal{L} [fb ⁻¹]	• ATLAS Higgs boson data (2021 combination)
$H \rightarrow \gamma \gamma$ $H \rightarrow ZZ^*$ $H \rightarrow WW^*$ $H \rightarrow \tau \tau$ $H \rightarrow b\bar{b}$	ggF, V ggF, V ggF, VBF, V	VBF, WH, ZH, tīH, VBF, WH, ZH, tīH(ggF, V WH, ZH, tīH($ au_{had} au$ WH, V	,tH 139 (4l) 139 /BF 139 /had) 139 ZH 139 /BF 126 ttH 139	 Higgs boson production and decay combined measurements in STXS bins Higgs Combination
Process $pp \rightarrow e^{\pm} \nu \mu^{\mp} \nu$ $pp \rightarrow \ell^{\pm} \nu \ell^{+} \ell^{-}$ $pp \rightarrow \ell^{+} \ell^{-} \ell^{+} \ell^{-}$ $pp \rightarrow \ell^{+} \ell^{-} j j$	Important phase $m_{\ell\ell} > 55 \text{ GeV},$ $m_{\ell\ell} \in (81, 101)$ $m_{4\ell} > 180 \text{ GeV},$ $m_{jj} > 1000 \text{ GeV}$	te space requirements $p_{T}^{jet} < 35 \text{ GeV}$) GeV V $eV, m_{\ell\ell} \in (81, 101) \text{ GeV}$	$\begin{array}{c} \text{Observable} \\ p_{\text{T}}^{\text{lead. lep.}} \\ m_{\text{T}}^{WZ} \\ m_{\text{T}}^{WZ} \\ m_{Z2} \\ \text{eV} \Delta \phi_{jj} \end{array}$	L [fb ⁻¹]WW,WZ,4l, Z,+2jets combination36ATLAS electroweak data36Differential cross-section measurements139for diboson and Z production via VBF
$ \begin{array}{ c c c c c c c c } \hline \hline Observable & M \\ \hline \hline C_Z & [MeV] & 249 \\ \hline R_\ell^0 & 20.7 \\ R_\ell^0 & 0.17 \\ \hline R_b^0 & 0.216 \\ A_{FB}^{0,\ell} & 0.07 \\ A_{FB}^{0,c} & 0.07 \\ A_{FB}^{0,b} & 0.09 \\ \hline \end{array} $	Teasurement 5.2 ± 2.3 767 ± 0.025 721 ± 0.0030 629 ± 0.00066 171 ± 0.0010 707 ± 0.0035 992 ± 0.0016	Prediction 2495.7 ± 1 20.758 ± 0.008 0.17223 ± 0.00003 0.21586 ± 0.00003 0.01718 ± 0.00037 0.0758 ± 0.0012 0.1062 ± 0.0016	Ratio 0.9998 ± 0.0010 1.0004 ± 0.0013 0.999 ± 0.017 1.0020 ± 0.0031 0.995 ± 0.062 0.932 ± 0.048 0.935 ± 0.021	 <u>Precision Electroweak Measurements</u> on the Z. Resonance Electroweak precision observables measured at LEP and SLC Eight pseudo observables describing the physics at the Z-pole are interpreted.

ATLAS Global combination

$$L(\mathbf{x}|\mathbf{c}, \boldsymbol{\theta}) = \frac{1}{\sqrt{(2\pi)^{n_{\text{bins}}} \det(V)}} \exp\left(-\frac{1}{2}\Delta \mathbf{x}^{\intercal}(\mathbf{c}, \boldsymbol{\theta}) V^{-1}\Delta \mathbf{x}(\mathbf{c}, \boldsymbol{\theta})\right)$$
$$\times \prod_{i}^{n_{\text{theo syst}}} f_i\left(\theta_{\text{theo syst},i}\right) \times \prod_{i}^{n_{\text{exp syst}}} f_i\left(\theta_{\text{exp syst},i}\right).$$

Multivariate gaussian

Process	Important phase space requirements	Observable	\mathcal{L} [fb ⁻¹]
$pp \to e^{\pm} v \mu^{\mp} v$	$m_{\ell\ell} > 55 \text{GeV}, p_{\text{T}}^{\text{jet}} < 35 \text{GeV}$	$p_{\rm T}^{\rm lead. lep.}$	36
$pp \rightarrow \ell^{\pm} \nu \ell^{+} \ell^{-}$	$m_{\ell\ell} \in (81, 101) \mathrm{GeV}$	m_{T}^{WZ}	36
$pp \to \ell^+ \ell^- \ell^+ \ell^-$	$m_{4\ell} > 180 \mathrm{GeV}$	m_{Z2}	139
$pp \to \ell^+ \ell^- jj$	$m_{jj} > 1000 \text{GeV}, m_{\ell\ell} \in (81, 101) \text{GeV}$	$\Delta \phi_{jj}$	139

ATLAS electroweak data

Differential cross-section measurements for diboson and Z production via VBF

SMEFTsim: "topU31" flavour symmetry"

20th Workshop of LHC Higgs WG - 13-15/11/2023 Eleonora Rossi

2

з

Δ¢..

m^{WZ} [GeV]

Ratio of partial decay widths Forward-backward asymmetry

- Tight limit provided by LEP-> only sensitive to a limited number of parameters.
- Parametrisation of EW pole observables only in the linear approximations:
 - Two different fit setups: Higgs+EW and Higgs+EW+EWPO
- The likelihood is modelled as a multivariate Gaussian, both theoretical and experimental uncertainties are included in the covariance matrix.

EWPD in the SMEFT to dimension eight

Observable	Measurement	Prediction	Ratio	 Electroweak precision observables measured
$ \Gamma_Z [MeV] \\ R^0_\ell \\ R^0_c \\ R^0_L \\ R^0_L $	2495.2 ± 2.3 20.767 \pm 0.025 0.1721 \pm 0.0030 0.21629 \pm 0.00066	2495.7 ± 1 20.758 \pm 0.008 0.17223 \pm 0.00003 0.21586 \pm 0.00003	$\begin{array}{c} 0.9998 \pm 0.0010 \\ 1.0004 \pm 0.0013 \\ 0.999 \pm 0.017 \\ 1.0020 \pm 0.0031 \end{array}$	 Electroweak precision observables measured at LEP and SLC Eight pseudo observables describing the abusics of the Z achaeve interval of the second second
$A_{FB}^{0,\ell}$ $A_{FB}^{0,c}$ $A_{FB}^{0,b}$ $A_{FB}^{0,b}$ $\sigma_{had}^{0} \text{ [pb]}$	$\begin{array}{l} 0.0171 \pm 0.0010 \\ 0.0707 \pm 0.0035 \\ 0.0992 \pm 0.0016 \\ 41488 \pm 6 \end{array}$	$\begin{array}{c} 0.01718 \pm 0.00037 \\ 0.0758 \pm 0.0012 \\ 0.1062 \pm 0.0016 \\ 41489 \pm 5 \end{array}$	$\begin{array}{c} 0.995 \pm 0.062 \\ 0.932 \pm 0.048 \\ 0.935 \pm 0.021 \\ 0.99998 \pm 0.00019 \end{array}$	 Measurement probed with high sensitivity O(1 - 0.01 %)

ATLAS Global combination

Impact of linear SMEFT parameterisation shown for bins along with corresponding measurement uncertainty

• Relative impact of linear SMEFT terms with Wilson coefficients c_{HG} , c_W , c_{tG} , c_{bH} , c_{tH} , and c_{eH} on the Higgs STXS cross sections and branching ratios.

ATLAS Global combination

• Additional sensitivity coming from EW measurements and EWPO, e.g. cW that cannot be disentangled using just $H \rightarrow \gamma \gamma$ decay.

ATLAS Global combinatio

Impact of linear SMEFT parameterisation shown for bins along with corresponding measurement uncertainty

EFT/SN

 \triangleleft

0.4

0.2

-0.2

0

ATLAS Global combination

=0.2

=0.5

^{Hq} =0.02 ^{Hq} =1.0

47

с^{ни}=1.0

c^{HQ}=1.0

• SMEFT impact on measurements shown in Warsaw basis and fit basis-> allows to understand the impact of the different fit directions on measurements.

Figure 18: Relative impact of the eigenvectors of the *HVV*, *Vff* operators on differential cross-sections of electroweak processes, the electroweak precision observables, and on the Higgs STXS cross sections and branching ratios. The corresponding selected coefficient values are shown on the right-hand side of the 20th Workshop of LHC Higgs WG ~ 13~17/11/2023

ATLAS Global combination: one at a time

ATL-PHYS-PUB-2022-037

ATLAS Global combination

HIGGS+EW

- Constraining 7 individual and 17 linear combinations of Wilson coefficients.
- Data overlap across datasets checked -> remove from the combination whenever relevant.
- Principal component analysis to identify sensitive directions-> a modified basis of linear combinations of WCs is defined.
- Sensitivity eigenvectors instead of original Wilson Coefficient.
- Linear and linear+quadratic results.

20th Workshop of LHC Higgs WG - 13-15/11/2023 Eleonora Rossi

S-PUB-2022-037

ATLAS Global combination

HIGGS+EW+EWPO

- Constraining 6 individual and 22 linear combinations of Wilson coefficients - linear only results.
- Several constraints driven by both ATLAS and LEP/SLD.
- Complementary information.
- Linear fits agree with the SM expectation for most fitted parameters, except for:
 - $c_{HVV,Vff}^{[4]} \rightarrow$ excess driven by a wellknown discrepancy in $A_{FB}^{0,b}$ from the SM expectation.

ATL-PHYS-PUB-2022-037

ATLAS Global combination: re-interpretation

arXív:2302.06660

- The open source **SMEFiT** has been used to reproduce the ATLAS EFT interpretation of LHC and LEP data.
- The SM and linear EFT cross-sections from the ATLAS measurement are taken and parse into the SMEFiT format adopting the same flavour assumptions for the fitting basis.
- Good agreement is obtained both in terms of central values and of the uncertainties of the fitted Wilson coefficients.
- Furthermore, similar agreement is obtained for the correlations between EFT coefficients.

