Di-Higgs production: ATLAS experimental overview

Elisabeth Petit on behalf of the ATLAS Collaboration

LHCHWG meeting 14th of November 2023

Summary of ATLAS results with full Run 2

Non-resonant production:

No longer preliminary New since last year

Decay channel	Target production mode	Reference	Release date
bbyy	ggF+VBF	arxiv:2310.12301	18-10-2023
bbττ	ggF+VBF*	JHEP 07 (2023) 040	22-09-2022
bbbb	ggF+VBF + EFT interpretation	Phys. Rev. D 108 (2023) 052003	09-01-2023
	VHH	Eur. Phys. J. C 83 (2023) 519	11-10-2022
bbWW dilepton	ggF+VBF	Phys. Lett. B 801 (2020) 135145	19-08-2019
bbll+ETmiss	ggF+VBF	arXiv:2310.11286	17-10-2023
	Non-resonant + single-		
Combination	Higgs	Phys. Lett. B 843 (2023) 137745	03-11-2023
Prospects	Non-resonant	ATL-PHYS-PUB-2022-053	08-11-2022

*VBF accounted for, but not specifically targeted

Run 2 Legacy paper: VBF included in training

- Upper limits on signal strength (μ):
 - 12% improvement wrt previous analysis
- Constraints on κ_{λ} and κ_{2V} :

- Improvement wrt previous analysis (same dataset):
 - κ_{λ} : 6%

-
$$\kappa_{2V}$$
: 17%

	Observed	median expected
$\mu_{_{VBF}}$	≤ 96	≤ 154
μ_{ggF}	≤ 4.1	≤ 5.3
$\mu_{ggF+VBF}$	≤ 4.0	≤ 5.0

\mathcal{F} HH \rightarrow bbbb, HH \rightarrow bby: EFT interpretation (1)

Benchmarks 3, 4, 5, 7 excluded at a 95% CL

\overrightarrow{F} HH \rightarrow bbbb, HH \rightarrow bby: EFT interpretation (2)

			Wilson Coefficient	Operator
SMEFT: Standard Model effective field theory			c_H	$(H^{\dagger}H)^3$
	- expansion of SM lagrangian with dim-6 of	$c_{H\square}$	$(H^{\dagger}H)\Box(H^{\dagger}H)$	
	includes 5 Wilson Coefficients	c_{tH}	$(H^{\dagger}H)(\bar{Q}\tilde{H}t)$	
	In SM: $C_{H} = C_{tH} = C_{tG} = C_{HG} = 0.$ coefficie	nts of O($1/\Lambda^2$)	c_{HG}	$H^{\dagger}HG^{A}_{\mu\nu}G^{\mu\nu}_{A}$
	$\mathscr{L}_{SMEFT} = C_{H_{D}}(H^{\dagger}H) P(H^{\dagger}H) + C_{H_{D}} (H^{\dagger}D_{u}H) ^{2} + C_{H}(H^{\dagger}H)^{3} + C_{t_{H}}(H^{\dagger}H q_{L}H^{c_{R}} + h.c) + C_{H_{G}}H^{\dagger}H tr(G_{uv})$	$G^{\mu\nu}$)+ $C_{tG}(q_L \sigma_{\mu\nu} T^a H^c t_R G^{\mu\nu})$	C_{tG}	$(Q\sigma' \ I \ t)HG_{\mu\nu}$

• HH $\rightarrow b\overline{b}b\overline{b}$:

Parameter	Expected Constraint		Observed Constraint		
	Lower	Upper	Lower	Upper	
c_H	-20	11	-22	11	
c_{HG}	-0.056	0.049	-0.067	0.060	
$c_{H\square}$	-9.3	13.9	-8.9	14.5	
c_{tH}	-10.0	6.4	-10.7	6.2	
c_{tG}	-0.97	0.94	-1.12	1.15	

• HH $\rightarrow b\overline{b}\gamma\gamma$:

Wilson coefficient	95% CL Observed	95% CL Expected
C _H	$\begin{bmatrix} -14.4, \ 6.2 \end{bmatrix}$	[-16.8, 9.7]
	[= 9.4, 10.2]	[-12.4, 15.7]

• No significant deviations from SM, best fit agrees with SM within 1σ

• HH $\rightarrow b\overline{b} + WW^*$, ZZ*, $\tau\tau \rightarrow b\overline{b} + 2$ opp. charge leptons + E_T^{miss}

• BDT for VBF:

DNN for ggF:

- 95% CL upper limits:
 - main syst in SR: background modelling, exp, signal normalisation
 - most sensitive bins: dominated by stat

HL-LHC Prospects

- Legacy 4b, non-legacy $b\overline{b}\tau\tau$ and $b\overline{b}\gamma\gamma$
- Expected significance:

Constraints on κ_{1} :

	Stat-only	Stat+Syst
YR2019	3.5σ	3.0σ
ATL-PHYS-PUB-2022-05	4.9σ	3.4σ

 YR2019
 [0.4 ; 1.7]
 [0.25 ; 1.9]

 ATL-PHYS-PUB-2022-05
 [0.7 ; 1.4]
 [0.5 ; 1.6]

Stat-only

ATLAS-only ~ previous ATLAS+CMS

Stat+Syst

FConclusion

- Most of legacy results available: 4b, $b\overline{b}\gamma\gamma$, $b\overline{b}ll$
 - a few more to go
- Legacy results optimised for both ggF and VBF signals
 - constraints on $\kappa_{\!_\lambda}$ and $\kappa_{\!_{2V}}$
 - EFT interpretations
- Expected limits and constraints at 95% CL:

No longer preliminary New since last year

Decay channel	Target production mode	μ _{нн}	Κ _λ	K _{2V}
bbyy	ggF+VBF	5.0	[-2.8 ; 7.8]	[-1.1;3.3]
bbττ	ggF+VBF*	3.9	[-3.1;10.2]	[-0.5 ; 2.7]
bbbb	ggF+VBF	8.1	[-5.4 ; 11.4]	[-0.1;2.1]
bbll+ETmiss	ggF+VBF	16.2	[-8.1; 15.5]	[-0.5; 2.7]

*VBF accounted for, but not specifically targeted

Back-up

Fraction of Events / 0.05 001 001 001 0.05

10⁰

10-2

Ō

10¹⊨

	Variable	Definition		
	p_{T}^{j} and η^{j}	Transverse momentum and pseudorap	-	
	$\Delta R(j, \gamma \gamma b \bar{b})$ and $\Delta \eta(j, \gamma \gamma b \bar{b})$	Angular and pseudorapidity separation $\gamma\gamma b\bar{b}$ system		
	m_{jj} and $\Delta \eta(j, j)$	Invariant mass and pseudorapidity sep	paration of the two VBF-jet candidates	
	$\Delta R(jj, \gamma \gamma b \bar{b})$ and $\Delta \eta(jj, \gamma \gamma b \bar{b})$	Angular and pseudorapidity separation the $\gamma\gamma b\bar{b}$ system	n between the VBF-jet candidate pair and	
	$p_{\rm T}^{\gamma\gamma b \bar{b} j j}, \eta^{\gamma\gamma b \bar{b} j j},$ and $m_{\gamma\gamma b \bar{b} j j}$	Transverse momentum, pseudorapidity by the VBF-jet candidate pair, the two	y, and invariant mass of the system formed o photons and the two <i>b</i> -tagged jets	
	H _T	Scalar sum of the $p_{\rm T}$ of the jets in the	event	_
ATLAS	b V, 140 fb ⁻¹ γ region	SM HH ggF HH ggF, $\kappa_{\lambda}=10$ HH VBF, $\kappa_{\lambda}=10$ HH VBF, $\kappa_{2v}=3$ Single H 	$10^{1} - ATLAS$ $\sqrt{s} = 13 \text{ TeV}, 140 \text{ fb}^{-1}$ $HH \rightarrow b\bar{b}\gamma\gamma$ $10^{0} - High \text{ mass region}$ $10^{0} - High - Hi$	SM HH ggF HH ggF, $\kappa_{\lambda}=10$ SM HH VBF HH VBF, $\kappa_{2V}=3$ Single H YY+jets + Data sidebands 0.6 0.8
		max VBF-jet tagger score		max VBF-jet tagger score

15

βbbγγ: BDT selection

- Kinematics of photon and jets
- Extra HH related variables: $m_{bb\gamma\gamma}^{*}$, $\Delta R_{\gamma\gamma}^{}$, $\Delta R_{bb}^{}$
- VBF related variables:
 - BDT to select the VBF jet
 - kinematics and b-tag score of 3rd and 4th jet

ggF $\kappa_1 = 5.6 + \text{VBF} \kappa_2 = 10$ at low-mass

- m_{ii} , $\Delta \eta_{ii}$, event-shape variables

Simultaneous unbinned maximum likelihood fit in all categories:

ATLAS

16

17

m_{γγ} [GeV]

bbγγ: Limits on EFT models (1)

♦ HEFT: Higgs effective field theory

- parameterized lagrangian allowing for deviations from SM

β bbγγ: Limits on EFT models (2)

- HEFT: Additionally search for benchmarks
 - represent distinct, representative kinematic shapes in 5D HEFT phase space

ybbγγ: Limits on EFT models (3)

- ◆ SMEFT: Standard Model effective field theory
 - expansion of SM lagrangian with dim-6 operators, includes 5 Wilson Coefficients

• Compared to HEFT:

- Less general. h is contained in SU(2) doublet (same as SM)
- More useful for global combination: many other LHC searches use SMEFT

Wilson coefficient	95% CL Observed	95% CL Expected		
c_H	$\begin{bmatrix} -14.4, \ 6.2 \end{bmatrix}$	[-16.8, 9.7]		
$c_{H_{\square}}$	$\begin{bmatrix} -9.4, 10.2 \end{bmatrix}$	[-12.4, 13.7]		

• Best fit agrees with SM within 1σ

bbyy: Variables for BDT event selection

Variable	Definition
Photon candidates	
$p_{\rm T}/m_{\gamma\gamma}$	Transverse momentum of each photon divided by the diphoton invariant mass $m_{\gamma\gamma}$
η and ϕ	Pseudorapidity and azimuthal angle of each photons
$\Delta R(\gamma_1,\gamma_2)$	Angular distance between the two photons
<i>b</i> -jet candidates	
<i>b</i> -tag status	Tightest fixed <i>b</i> -tag working point (60%, 70%, 77%) that each jet passes
p_{T}, η and ϕ	Transverse momentum, pseudorapidity and azimuthal angle of each jet
$p_{\mathrm{T}}^{bar{b}}$, $\eta_{bar{b}}$ and $\phi_{bar{b}}$	Transverse momentum, pseudorapidity and azimuthal angle of the two-b-jet system
$\Delta R(b_1, b_2)$	Angular distance between the two candidate <i>b</i> -jets
$m_{b\bar{b}}$	Invariant mass of the two candidate <i>b</i> -jets
Single topness	Variable used to identify $t \to Wb \to q\bar{q}'b$ decays. For the definition, see Eq.(??).
Other jets (only first two, if present, ranked by	discrete <i>b</i> -tagging score)
<i>b</i> -tag status	Tightest fixed <i>b</i> -tag working point (85% or none) that each jet passes
$p_{\mathrm{T}}, \eta \text{ and } \phi$	Transverse momentum, pseudorapidity and azimuthal angle of each jet
VBF-jet candidates	
$\Delta \eta(j_1, j_2), m_{jj}$	Pseudorapidity difference and invariant mass of the two jets
Event-level variables	
Transverse sphericity, planar flow, $p_{\rm T}$ balance	For the definitions, see Ref., Ref., and Eq. (??)
H_{T}	Scalar sum of the $p_{\rm T}$ of the jets in the event
$E_{\mathrm{T}}^{\mathrm{miss}}$ and ϕ^{miss}	Missing transverse momentum and its azimuthal angle
740 [*]	The 4-body invariant mass of the two photons and two candidate <i>b</i> -jets, $m_{b\bar{b}\gamma\gamma}^* =$
$m_{b\bar{b}\gamma\gamma}$	$m_{b\bar{b}\gamma\gamma} - (m_{b\bar{b}} - 125 \text{ GeV}) - (m_{\gamma\gamma} - 125 \text{ GeV})$

bby: Expected number of events

	High Mass 1	High Mass 2	High Mass 3	Low Mass 1	Low Mass 2	Low Mass 3	Low Mass 4
SM $HH(\kappa_{\lambda} = 1)$ signal	$0.26^{+0.03}_{-0.04}$	$0.194^{+0.021}_{-0.032}$	$0.84^{+0.10}_{-0.14}$	$0.048^{+0.007}_{-0.008}$	$0.038^{+0.004}_{-0.006}$	$0.039^{+0.004}_{-0.006}$	$0.032^{+0.004}_{-0.004}$
ggF	$0.25^{+0.03}_{-0.04}$	$0.188\substack{+0.021 \\ -0.032}$	$0.81^{+0.10}_{-0.14}$	$0.046^{+0.007}_{-0.008}$	$0.036^{+0.004}_{-0.006}$	$0.037^{+0.004}_{-0.006}$	$0.025^{+0.004}_{-0.004}$
$VBF \times 10^3$	$7.9^{+0.6}_{-0.5}$	$5.3^{+0.5}_{-0.4}$	29^{+4}_{-3}	$1.98^{+0.28}_{-0.24}$	$1.71^{+0.16}_{-0.14}$	$1.96^{+0.21}_{-0.19}$	$7.4^{+0.6}_{-0.5}$
Alternative $HH(\kappa_{\lambda} = 10)$ signal	$2.5^{+0.4}_{-0.3}$	$1.81^{+0.25}_{-0.20}$	$6.2^{+0.8}_{-0.6}$	$5.0^{+1.2}_{-0.9}$	$3.8^{+0.7}_{-0.5}$	$3.7^{+0.7}_{-0.6}$	$3.6^{+0.4}_{-0.4}$
ggF	$2.3^{+0.4}_{-0.3}$	$1.64^{+0.25}_{-0.19}$	$4.9^{+0.8}_{-0.6}$	$4.7^{+1.0}_{-0.8}$	$3.6^{+0.7}_{-0.6}$	$3.3^{+0.7}_{-0.5}$	$2.04^{+0.34}_{-0.27}$
VBF	$0.231^{+0.019}_{-0.017}$	$0.170^{+0.019}_{-0.017}$	$1.29^{+0.15}_{-0.14}$	$0.28\substack{+0.20 \\ -0.11}$	$0.23\substack{+0.23 \\ -0.12}$	$0.36\substack{+0.10 \\ -0.08}$	$1.57^{+0.17}_{-0.16}$
Alternative VBF $HH(\kappa_{2V} = 3)$ signal	$0.23^{+0.04}_{-0.04}$	$0.20_{-0.04}^{+0.05}$	$3.8^{+0.7}_{-0.6}$	$0.03^{+0.04}_{-0.02}$	$0.03^{+0.06}_{-0.02}$	$0.048^{+0.023}_{-0.015}$	$0.17\substack{+0.04 \\ -0.03}$
Single Higgs boson background	$1.5^{+0.5}_{-0.3}$	$0.48^{+0.21}_{-0.10}$	$0.57_{-0.14}^{+0.25}$	$1.72^{+0.31}_{-0.19}$	$0.53\substack{+0.08 \\ -0.06}$	$0.29\substack{+0.14 \\ -0.07}$	$0.16\substack{+0.06 \\ -0.03}$
ggF	$0.5^{+0.5}_{-0.2}$	$0.14^{+0.21}_{-0.09}$	$0.25^{+0.25}_{-0.12}$	$0.29^{+0.31}_{-0.15}$	$0.08^{+0.08}_{-0.04}$	$0.07^{+0.13}_{-0.06}$	$0.04^{+0.06}_{-0.03}$
$t\bar{t}H$	$0.302^{+0.034}_{-0.032}$	$0.069^{+0.009}_{-0.008}$	$0.063^{+0.008}_{-0.007}$	$0.77^{+0.09}_{-0.08}$	$0.214^{+0.029}_{-0.026}$	$0.100\substack{+0.012\\-0.012}$	$0.048^{+0.005}_{-0.005}$
ZH	$0.61^{+0.06}_{-0.05}$	$0.174^{+0.020}_{-0.016}$	$0.188\substack{+0.035\\-0.029}$	$0.49^{+0.05}_{-0.04}$	$0.149^{+0.028}_{-0.025}$	$0.069^{+0.033}_{-0.023}$	$0.028^{+0.010}_{-0.007}$
Rest	$0.17\substack{+0.08\\-0.04}$	$0.089^{+0.030}_{-0.016}$	$0.07^{+0.04}_{-0.02}$	$0.181\substack{+0.030\\-0.019}$	$0.089^{+0.016}_{-0.009}$	$0.046^{+0.007}_{-0.004}$	$0.039^{+0.008}_{-0.004}$
Continuum background	$11.3^{+1.5}_{-1.6}$	$3.2^{+0.8}_{-0.8}$	$2.8_{-0.8}^{+0.8}$	$37.2^{+2.9}_{-2.9}$	$10.8^{+1.5}_{-1.5}$	$4.4_{-1.0}^{+0.9}$	$1.1^{+0.5}_{-0.5}$
Total background	$12.8^{+1.6}_{-1.6}$	$3.7^{+0.9}_{-0.8}$	$3.4^{+0.8}_{-0.8}$	$38.9^{+2.9}_{-2.9}$	$11.3^{+1.5}_{-1.5}$	$4.7^{+0.9}_{-1.0}$	$1.3^{+0.5}_{-0.5}$
Data	12	4	1	29	8	5	4

bbyy: Systematic uncertainties

- Dominant systematic uncertainties in the expected μ_{HH} upper limit at 95% CL
 - relative variation of the expected upper limit when re-evaluating the profile likelihood ratio after fixing the nuisance parameter in question to its best-fit value, while all remaining nuisance parameters remain free to float

Systematic uncertainty source	Relative impact [%]
Experimental	
Photon energy resolution	0.4
Photon energy scale	0.1
Flavour tagging	0.1
Theoretical	
Factorisation and renormalisation scale	4.8
$\mathcal{B}(H \to \gamma \gamma, b \bar{b})$	0.2
Parton showering model	0.2
Heavy-flavour content	0.1
Background model (spurious signal)	0.1

bull+E^{miss}: Signal and Control Regions

- Used to constrain normalisation in SR
 - same lepton flavour:

 $m_{b\ell}$

 $\min\{\max(m_{b_0\ell_0}, m_{b_1\ell_1}), \max(m_{b_0\ell_1}, m_{b_1\ell_0})\}\$

DNN selection for ggF HH (1)

Variables	Input feature	Description
variaules.	same flavour	unity if final state leptons are <i>ee</i> or $\mu\mu$, zero otherwise
	$p_{\mathrm{T}}^{\ell}, p_{\mathrm{T}}^{b}$	transverse momenta of the leptons, <i>b</i> -tagged jets
	$m_{\ell\ell}, p_{\rm T}^{\ell\ell}$	invariant mass and the transverse momentum of the di-lepton system
	$m_{bb}, p_{\rm T}^{bb}$	invariant mass and the transverse momentum of the <i>b</i> -tagged jet pair system
	m_{T2}^{bb}	stransverse mass of the two <i>b</i> -tagged jets
	$\Delta \tilde{R_{\ell\ell}}, \Delta R_{bb}$	ΔR between the two leptons and two <i>b</i> -tagged jets
	$m_{b\ell}$	$\min\{\max(m_{b_0\ell_0}, m_{b_1\ell_1}), \max(m_{b_0\ell_1}, m_{b_1\ell_0})\}\$
	$\min \Delta R_{b\ell}$	minimum ΔR of all <i>b</i> -tagged jet and lepton combinations
	$m_{bb\ell\ell}$	invariant mass of the $bb\ell\ell$ system
	$E_{\rm T}^{\rm miss}$, $E_{\rm T}^{\rm miss}$ -sig	missing transverse energy and its significance
	$m_{\rm T}(\ell_0, E_{\rm T}^{\rm miss})$	transverse mass of the $p_{\rm T}$ -leading lepton with respect to $E_{\rm T}^{\rm miss}$
	$\min m_{\mathrm{T},\ell}$	minimum value of $m_{\rm T}(\ell_0, E_{\rm T}^{\rm miss})$ and $m_{\rm T}(\ell_1, E_{\rm T}^{\rm miss})$
	$H_{\mathrm{T2}}^{\mathrm{R}}$	measure for boostedness ¹ of the two Higgs bosons

Ξ

P_T^{b,lead}

Single Higgs

Other

250

300

/σ_{HH})

DNN selection for ggF HH (2)

BDT selection for VBFHH

• Variables:

Input feature	Description
$\eta_{\ell_0},\eta_{\ell_1},\phi_{\ell_0},\phi_{\ell_1},p_{\mathrm{T}}^{\ell_0},p_{\mathrm{T}}^{\ell_1}$	η , ϕ , $p_{\rm T}$ of the $p_{\rm T}$ -(sub)leading lepton
$\eta_{b_0}, \eta_{b_1}, \phi_{b_0}, \phi_{b_1}, p_{T}^{b_0}, p_{T}^{b_1}$	η , ϕ , $p_{\rm T}$ of the $p_{\rm T}$ -(sub)leading <i>b</i> -tagged jet
$\eta_{j_0}, \eta_{j_1}, \phi_{j_0}, \phi_{j_1}, p_{\mathrm{T}}^{j_0}, p_{\mathrm{T}}^{j_1}$	ϕ , η , $p_{\rm T}$ of the $p_{\rm T}$ -(sub)leading non <i>b</i> -tagged jet
$E_{\mathrm{T}}^{\mathrm{miss}}, \phi^{E_{\mathrm{T}}^{\mathrm{miss}}}, E_{\mathrm{T}}^{\mathrm{miss}}$ -sig	missing transverse energy, its ϕ and significance
$p_{\rm T}^{bb}, \Delta R_{bb}, \Delta \phi_{bb}, m_{bb}$	$p_{\rm T}$, ΔR , $\Delta \phi$ and invariant mass of di- <i>b</i> -jet system
$p_{\rm T}^{\ell\ell}, \Delta R_{\ell\ell}, \Delta \phi_{\ell\ell}, m_{\ell\ell}, \phi_{\rm centrality}^{\ell\ell}$	$p_{\rm T}, \Delta R, \Delta \phi, p_{\rm T}$ and centrality ¹ of di-leptons system
$p_{\rm T}^{bb\ell\ell}, m_{bb\ell\ell}$	$p_{\rm T}$ and invariant mass of the $bb\ell\ell$ system
$p_{\rm T}^{bb\ell\ell+E_{\rm T}^{\rm miss}}, m_{bb\ell\ell+E_{\rm T}^{\rm miss}}$	$p_{\rm T}$ and invariant mass of $bb\ell\ell + E_{\rm T}^{\rm miss}$ system
$n_{\ell\ell+E_{\mathrm{T}}^{\mathrm{miss}}}$	invariant mass of di-lepton + $E_{\rm T}^{\rm miss}$ system
$p_{\mathrm{T}}^{E_{\mathrm{T}}^{\mathrm{miss}}+\ell\ell}, \Delta\phi_{E_{\mathrm{T}}^{\mathrm{miss}},\ell\ell}$	$p_{\rm T}$ of and $\Delta \phi$ between $E_{\rm T}^{\rm miss}$ and di-lepton system
$p_{\rm T}^{\rm tot}$	$p_{\rm T}$ of $bb\ell\ell + E_{\rm T}^{\rm miss} + p_{\rm T}$ -leading and -sub-leading jet
n _{tot}	invariant mass of $bb\ell\ell + E_T^{miss} + p_T$ -leading and -sub-leading jet
n_t^{KLF}	Kalman fitter top-quark mass
$\min \Delta R_{\ell_0 j}, \min \Delta R_{\ell_1 j}$	minimum ΔR between $p_{\rm T}$ -(sub)leading ℓ -j couples
$\sum m_{\ell j}$	sum of the invariant masses of all ℓ +jet combinations
$\max p_{\mathrm{T}}^{jj}, \max m_{jj}$	maximum $p_{\rm T}$ and invariant mass of any two non <i>b</i> -tagged jets
$\max \Delta \eta_{jj}, \max \Delta \phi_{jj}$	maximum $\Delta \eta$ and $\Delta \phi$ between any two non <i>b</i> -tagged jets
$\min \Delta R_{b\ell}$	minimum ΔR of all <i>b</i> -tagged jet and lepton combinations
$N_{\text{forward jets}}, N_j$	number of forward jets, number of non <i>b</i> -tagged jets
n_{T2}^{bb}	stransverse mass of the two <i>b</i> -tagged jets
$n_{\rm coll}$	collinear mass (reconstruction of $m_{\tau\tau}$)
n _{MMC}	value of the MMC algorithm (reconstruction of $m_{\tau\tau}$)

bbll+E^{miss}: Systematic uncertainties

Uncertainty in region		ggF-SR 7	ggF-SR 6	ggF-SR 5	ggF-SR 4	ggF-SR 3	ggF-SR 2	ggF-SR 1
Total Standard Model expectation		550	363	209	123	60	39	15
Total statistical $(\sqrt{N_{exp}})$		±23	±19	±14	±11	± 8	±6	±4
Total Standard Model systematic		+28 -29	+19 -18	+13 -14	+10 -12	± 6	±5	± 4
Background normalization		+6 -11	+5 -8	+3.5 -5	+2.6 -3.2	+1.5 -1.8	+1.1 -1.3	+0.5 -0.6
Background theory		+40 -35	+32 -27	±21	+19 -20	±11	±7	± 6
Experimental		+40 -33	+27 -19	+13 -17	±9	+5 -6	± 4	±1.8
Fake extraction		±0.7	±0.5	± 0.4	±0.29	±0.11	±0.11	± 0.29
Signal normalization		+5 -6	±6	±6	±7	± 6	±6	+7 -8
Signal theory		+0.4 -1.3	+0.4 -1.5	+0.5 -1.5	+0.5 -1.8	+0.5 -1.5	+0.4 -1.5	+0.6 -1.9
Template statistics ±1		±11	±10	± 8	±5	+4 -4	+4 -3.5	+2.3 -2.1
-	Uncertainty in region		VBF-SR 5	VBF-SR 4	VBF-SR 3	VBF-SR 2	VBF-SR 1	
-	Total Standard Model expectation		3430	920	123	8.8	1.3	
-	Total statistical $(\sqrt{N_{exp}})$		±60	±30	±11	±3.0	±1.2	
	Total Standard Model systematic		±120	+40 -50	+11 -13	±1.7	+0.5 -0.6	
-	Background normalization		+40 -100	+11 -26	+2.3 -3.3	+0.20 -0.24	+0.09 -0.10	
	Background theory		+230 -170	+90 -80	+18 -15	+0.9 -1.0	+0.28 -0.4	
	Experimental		+170 -190	+70 -80	+16 -18	±1.4	+0.30 -0.5	
	Fake extraction		± 2.4	± 0.7	± 0.08	± 0.04	± 0	
	Signal normalization		+3.1 -3.4	+2.9 -3.2	+1.8 -1.9	+0.6 -0.7	± 0.4	
	Signal theory		±0.07	± 0.06	± 0.04	± 0.014	± 0.009	
	Template statistics		± 0	± 10	± 5	+1.5 -1.3	+0.26 -0.23	

HL-LHC projection

• Scenarios considered:

- A scenario where only statistical uncertainties are considered (No syst. unc.).
- A baseline scenario where relevant systematic uncertainties are scaled down, following the improvements expected with the larger HL-LHC dataset available [26]. The data-driven background uncertainties are also reduced according to the integrated luminosity. This consists in a 50% reduction of the bootstrap uncertainty at the HL-LHC, while the shape uncertainty is assumed to be identical to Run 2. Table 1 shows a summary of the considered uncertainty scale factors in this scenario.
- A scenario where Run 2 experimental uncertainties are considered but theoretical uncertainties associated to *HH* signals are halved (Theoretical unc. halved).
- A scenario where Run 2 experimental uncertainties are left unchanged (Run 2 syst. unc).

[•] Baseline scenario for systematics:

Systematic uncertainties	Scale factors for HL-LHC baseline scenario				
Theoretical uncertainty	0.5				
h-iet tagging efficiency	0.5	Scali		ng factors (sf)	
a jet tagging efficiency	0.5	Uncertainty scenario	Bootstrap unc.	Shape unc.	
	0.5	Pessimistic bkg. unc.	1.0	1.0	
Light-jet tagging efficiency	1.0	Conservative bkg. unc. 1 (fix bootstrap unc.)	1.0	0.2	
Jet energy scale and resolution	1.0	Conservative bkg. unc. 2 (fix shape unc.)	0.2	1.0	
Luminosity	0.6	Optimistic bkg. unc.	0.2	0.2	
Background bootstrap uncertainty	0.5				
Background shape uncertainty	1.0			29	