HH searches: **CMS Experimental Overview**

LHC Higgs WG 20th Workshop

Bruno Alves, for the CMS Collaboration

Indico

- rates and kinematics
- interference

- **lower energy scales**
- **benchmark points**:

Production \rightarrow **HH** \rightarrow **Decay** • ggF, VBF and VHH production

- Large variety of HH channels
 - trade-off between selection purity and branching ratio

Non-res. Run2 Combination

* Assumes NWA and SM Higgs BR bbττ: JHEP 11 (2021) 057 bbbb: PRB 842 (2023) 137392 **CMS** Preliminary low my - JHE ···· expected ·>HY(>bb) X>HY(>bb) bb bb merged-jet - Sub. observed arrow Width appr. Assumes SM H BR Narrow Width app $m_x = 1000 \text{ GeV} (\times 10^1)$ $m_x = 400 \text{ GeV} (\times 10^{10})$ Assumes SM H BR 101 ----- expected $m_x = 450 \text{ GeV} (\times 10^6)$ 10 — observed $m_{\chi} = 1200 \text{ GeV} (\times 10^6)$ $m_{\chi} = 500 \text{ GeV} (\times 10^2)$ 10 m_x = 1400 GeV (× 10²) m_x = 550 GeV (× 10⁻²) 10 m_x = 1600 GeV (× 10⁻²) m_x = 600 GeV (× 10⁻⁶) 10^{-} m_x = 1800 GeV (× 10⁻⁶) $m_{\chi} = 700 \text{ GeV} (\times 10^{-10})$ 10 $m_{\chi} = 800 \text{ GeV} (\times 10^{-14})$ m_x = 2000 GeV (× 10⁻¹⁰) 10 $m_{\chi} = 900 \text{ GeV} (\times 10^{-18})$ 10-12 m_X = 1000 GeV (× 10⁻²²) 10⁻¹⁵ 10³ 10² 10³ 10⁴ M_Y (GeV)

7

VHH $(\rightarrow 4b)$

• VHH for the 1st time at CMS

- ~110 events expected (before H) decay to b's, without selection)
- Complementary to ggF and VBF!
 - especially for $4 < k_{\lambda} < 7$
 - because xsec comparable to ggF and VBF HH
- 4 channels: 0/1/2 leptons and invis.
- **59 categories**: resolv./bosted, m_{нн}, #b-jets, signal- and tt-enhancement
- BDT and NN classifiers are used as signal vs bkg. discriminants
 - BDT defines regions sensitive to anomalous k_{λ} or $k_{2\nu}$ hypoth.

(X→)HH→bbWW

- 2 channels: 1 or 2 *l*'s
- **τ veto**: orthogonality wrt. bbtt
- data-driven DY estimated w/ dedicated CRs
- t, tt and W+jets shape from MC, normalized w/ ML fit

- DNN multi-classifier to separate signals vs. main bkg components
 - the resonant analysis uses a parameterized DNN
- Signal extraction from 1D fit of **DNN** score
 - 2¹ channel in the resonant analysis uses instead a DNN vs. estimated^{*} m_{HH} 2D fit (considering the 2 neutrinos)

*Heavy Mass Estimator

Run3 and beyond

- k_{λ} , X \rightarrow HH/Y and EFT will be further constrained in the near future • **new HH decay** channels are being explored

 - stats are still a limiting factor
 - but ggF theory uncert. may become important in the future
 - consider H + HH combinations⁺
- we are close to SM HH sensitivity and k_{2v}=0 was excluded • Run-3 is an opportunity for improvement before the HL-LHC • improved trigger strategy will boost HH searches
- We should consider going beyond NWA • interesting inputs from theorists on HH res/non-res interf. effects

	hb	1.6	vs = 13, 13.6 TeV	5	LATT	
b	Efficien	1.6 1.4 1.2	$\begin{array}{c} \text{CMS} \\ \text{Simulation Preliminary} \\ \text{HH} \rightarrow \text{4b with } \kappa_{\lambda} = 1 \\ \text{Run 3 2023 HH trigger } \epsilon(\text{HH} \rightarrow \text{4b}) = 82\% \\ $	Efficiency	$1.2 \begin{bmatrix} - & - \\ - & - \\ - & - \end{bmatrix}$	relin 2τ _r
	ger	1		ger	1	
	Trig	0.8		Lrig	0.8	
		0.6		F	0.6	
		0.4			0.4	_
		0.2	Event selection: ≥ 4 jets with $p_T > 30$ GeV and $ \eta < 2.5$		0.2	_
		0	200 300 400 500 600 700 800 900 1000		0 20	0
	CERN-	CMS	S-DP-2023-050 m _{HH} ^{Reco} (GeV)			

*see S. di Noi's talk @ this workshop

Backup

HH→4b boosted ggF VBF

- 2 AK8 jets w/ p_T(H) > 300GeV
- Background: 85% QCD, 15% ttbar
- PNet tagger for AK8 jets
 - discriminate QCD vs. b-jets
 - provides 4x improvement in bkg. rejection over DeepAK8-MD
 - p_T-dependent calibration performed w/ data and QCD-enriched MC
- PNet regressed jet mass m_{PNet}
 - improved bkg. rejection wrt m_{SD}
- ggF and VBF categories use PNet tagger
 - ggF also uses BDT, which has 2x better bkg. rejection wrt. cuts
- Simultaneous ML fit in all ggF and VBF categories, plus CRs (QCD and tt)
 - ggF: fit to PNet mass of one bb cand.
 - VBF: fit to m_{HH}

- optimized categories based on modified mass and ggF/VBF BDTs
- dedicated "ttH killer" DNN
- Signal extracted from unbinned 2D m_{xx} vs. m_{bb} parametric fit
 - m_{yy} : sum of gaussians
 - m_{ii}: double crystal-ball + gaus.
 - HH+Η̈́ combination: constrain κ_t w/ ttH phase-space

- - binary DNN for EFT benchmarks

- $H \rightarrow ZZ$ taken from HIG-19-001
- Select 2 extra jets w/ highest DeepCSV score
- "Fake" non-prompt leptons estimated from data
 - sources: $e \rightarrow \gamma$ conversion, misrec. jets, HF decays
 - measure fake rate in Z + 1I + 2jets region
 - apply fake rate in Z + 2I + 2jets region
- Signal vs bkg. discrimination w/ BDT being fed full b-tagger distribution of jets
 - year- and channel-dependent training

HH→bbtt [ggF][VBF]

- ID with DeepJet and DeepTau
- 3 channels based on τ DM
- Categories: resolved, boosted and **VBF-like**
- Multi-classification approach to increase analysis sensitivity in the **VBF** category
 - 2 signal + 3 bkg. classes
- Fit the DNN score
 - most important features: DeepJet scores, inv. masses and many kinematic variables
 - two discriminators to enable inference on the entire dataset
 - ten networks per discriminator trained with 10-fold stratified cross-validation

- 3 categories: 2 Tight (DeepJet) AK8 tags, 2 Loose AK8 tags and semiresolved (2 AK4 + 1 AK8)
- 2 control regions (orthogonal DeepJet tag)
- QCD and ttbar+jets bkgs. estimated from MC and data "reduced mass" m_{red} sidebands
 - m_{red} mitigates fluctuations by JER and mass resolutions
- 2D binned fit to (m_{lead jet}, m_{red})

- ttbar bkg. w/ 3 categories: fullymerged bqq, semi-merged bq and other
 - estimated from MC + corrections based on leptonic data regions
- QCD estimated in 2D regions of PNet score for H/Y→bb candidates
 - not the same regions used for ttbar
 - PNet provides 4x improvement in bkg. rejection over DeepJet-MD

Events/bin

 Signal extraction via fit to inv. mass of two leading AK8 jets and soft drop mass of "Y-jet"

- ttH-killer removes resonant background
- Use $m_{jj\gamma\gamma}$ m_{jj} $m_{\gamma\gamma}$ instead of $m_{jj\gamma\gamma}$
- Multiclass BDT discriminates signal from non-res. bkg. in 6 different m_x/ m_y ranges
 - defined based on "boost factor"*
- Categories are defined my maximizing the Punzi FOM on top of the BDT's output
- Signal extracted from unbinned 2D m_{xx} vs. m_{bb} parametric fit
 - m_{yy} : sum of gaussians
 - m_{jj}: double crystal-ball + gaussian
 - polynomials, exp. or power law for background

$X \rightarrow HH \rightarrow bb + leptons$ (boosted) Resonant

- Covers 2 final states:
 - $bbWW^* \rightarrow bb\ell vqq$
 - bbWW and bbtt \rightarrow bb $\ell\ell$ (cleaner)
- Bkgs.: ttbar, QCD, W/Z+jets
- H→bb w/ AK8 jet + substructure
- No W* mass constraints since it is off-shell
- Categorize based on DeepAK8-MD WPs
 - 1? channel: add N-subjetiness categ.
- 4 indep. bkg. component templates based crs on #gen quarks within ΔR<0.8 of the bb
 jet:
 - m_t bkg.: 3 quarks (from top decay)
 - m_w bkg.: 2 quarks (from W/Z decay)
 - lost t/W bkg.: 1 quark
 - q/g bkg.: 0 quarks
- 2 CRs w/ and wo/ top contribution
- Simultaneous 2D fit in the m_{bb} - m_{HH} plane

HH \rightarrow Multilepton (4V, 2V2 τ , 4 τ) ggF [VBF] Res

- 7.7% BR in total
- 7 channels, depending on multipl. of hadronic τ , electrons and muons
- Train 3 BDTs (spin0/2, nonres) per channel, parameterized on EFT benchmarks and resonance mass
- Background estimation
 - fakes: fake factor method
- lepton charge flip: non data
 irred. + photon conversion: from MC ^a PDT / channel + 2 CRs
 • ML fit inputs: **1 BDT / channel + 2 CRs**
 - full stats used for BDT training
- 2 CRs to constrain WZ and ZZ bkgs.

α(ggHH) [pb]

*adapted from this ⁺τ-embeding

CMS Internal links

