

NLO electroweak corrections for di-Higgs production

20th Workshop of the LHC Higgs Working Group, 2023

Kay Schönwald — in collaboration with Joshua Davies, Matthias Steinhauser and Hantian Zhang CERN, November 14, 2023

University of Zürich Based on: [JHEP 08 (2022) 259, JHEP 06 (2023) 063, JHEP 10 (2023) 033]

Introduction

Electroweak Corrections to Di-Higgs Production

Large- m_t Expansion

Beyond the Large- m_t Expansion

Conclusions and Outlook

Introduction

• Standard Model Higgs potential:

$$V(H)=rac{1}{2}m_H^2H^2+\lambda vH^3+rac{\lambda}{4}H^4$$
, where $\lambda=m_H^2/(2v^2)pprox 0.13.$

- Want to measure λ , to determine if V(H) is consistent with nature.
 - Challenging! Cross-section $\approx 10^{-3} \times H$ prod.
 - $-1.24 < \lambda/\lambda_{SM} < 6.49$ [CMS '22] ; $-0.6 < \lambda/\lambda_{SM} < 6.6$ [Atlas '22]
- λ appears in various production channels:

• Gluon fusion - dominant, 10x

• VBF

- $t\bar{t}$ associated production
- *H*-strahlung

1

• Leading order (1 loop) partonic amplitude:

- $\mathcal{F}_{\textit{tri}}$ contains the dependence on λ at LO
- Form factors:
 - LO: known exactly

[Glover, van der Bij '88]

- Beyond LO... no fully-exact (analytic) results to date
 - QCD: numerical evaluation, expansion in various kinematic limits
 - EW: first steps: this work (heavy top expansion, high-energy expansion)

[Davies, Mishima, Schönwald, Steinhauser, Zhang '22]

• see also Yuakwa corrections in (partial) HTL

[Mühlleitner,Schlenk,Spira '22]

gg ightarrow HH Beyond LO

NLO QCD:

- large-*m*_t
- numeric
- large- m_t + threshold exp. Padé
- high-energy expansion
- small-*p*_T expansion + high-energy expansion

NNLO QCD:

- large-*m*_t virtuals [de Florian, Mazzitelli '13] [Grigo, Hoff, Steinhauser '15, Davies; Steinhauser '19]
- HTL+numeric real ("FTapprox") [Grazzini, Heinrich, Jones, Kallweit, Kerner, Lindert, Mazzitelli '18]
- large-*m*_t reals [Davies, Herren, Mishima, Steinhauser '19 '21]
- light fermion corrections at $p_T = 0$

N3LO QCD:

- Wilson coefficient C_{HH}
- HTL

[Dawson, Dittmaier, Spira '98] [Grigo, Hoff, Melnikov, Steinhauser '13]
 [Borowka, Greiner, Heinrich, Jones, Kerner, Schlenk, Schubert, Zirke '16]
 [Baglio, Campanario, Glaus, Mühlleitner, Spira, Streicher '19]

[Gröber, Maier, Rauh '17]

[Davies, Mishima, Steinhauser, Wellmann '18,'19] [Bonciani, Degrassi, Giardino, Gröber '18]

[Bagnaschi, Degrassi, Gröber '23]

[Davies, Schönwald, Steinhauser '23]

[Spira '16; Gerlach, Herren, Steinhauser '18]

3

gg ightarrow HH Beyond LO

Total cross section (14TeV):

	σ_{LO}	σ_{NLO}	σ_{NNLO}
B-i HTL	—	$38.32^{+18.1\%}_{-14.9\%}$	$39.58^{+1.4\%}_{-4.7\%}$
FTapprox	—	$34.25^{+14.7\%}_{-13.2\%}$	$36.69^{+2.1\%}_{-4.9\%}$
Full	$19.85^{+27.6\%}_{-20.5\%}$	$32.88^{+13.5\%}_{-12.5\%}$	_

[Borowka, Greiner, Heinrich, Jones, Kerner '16]

Electroweak Corrections to Di-Higgs Production

Full Electroweak Corrections in the Large- m_t Expansion

- Sample Feynman diagrams involving:
 - SM fields: {t, b, H, γ , Z, W^{\pm} , χ , ϕ^{\pm} }
 - ghosts: $\{u^{\gamma}, u^{Z}, u^{\pm}\}$

Goal: obtain analytic expressions in the large- m_t expansion

Large- m_t Expansion and Renormalization

- Expand and calculate in general R_{ξ} gauge with qgraf [Nogueira '93], tapir [Gerlach, Herren, Lang '23], q2e&exp [Harlander, Seidensticker, Steinhauser '97-'99], form [Ruijl, Ueda, Vermaseren '17], LiteRed [Lee '12] and MATAD [Steinhauser '01].
- Expansion hierarchy: $m_t^2 \gg \xi_W m_W^2, \xi_Z m_Z^2 \gg s, t, m_H^2, m_W^2, m_Z^2$

- We renormalize the input parameters {e, m_W, m_Z, m_t, m_H} and the Higgs wave function on-shell and transform to the G_μ scheme.
 - ξ_W , ξ_Z , μ^2 cancel analytically

LO Matrix Elements for $gg \rightarrow HH$

 \tilde{U}_{ggHH} up to different expansion orders in $1/m_t$. Different expansion orders normalized to m_t^0 . We see a nice convergence up to roughly $\sqrt{s} = 2m_t \approx 350$, GeV.

NLO Electroweak Matrix Elements for $gg \rightarrow HH$

 \tilde{U}_{ggHH} up to different expansion orders in $1/m_t$. We do not see such a nice convergence at NLO.

Different expansion orders normalized to m_t^0 .

NLO Electroweak Matrix Elements for $gg \rightarrow HH$

$$\mathcal{M} = \frac{1}{8^2 2^2} \sum_{\text{col pol}} \left| \mathcal{A} \right|^2 = \frac{1}{16} \left(X_0^{ggHH} \right)^2 \tilde{U}_{ggHH}$$

Cut through *W*-*t*-*b* affects convergence of the large- m_t expansion: $m_t + m_b + m_W \approx 250 \text{ GeV}$

We can restore convergence by excluding diagrams with W-t-b cuts.

NLO Electroweak Matrix Elements for $gg \rightarrow Hg$

Graphs contributing to $gg \rightarrow Hg$.

We observe a nice convergence at NLO.

Different expansion orders in $1/m_t$.

Beyond the Large- m_t Expansion

- QCD corrections can be effectively covered by combining the expansions in:
 - the large-*m_t* limit

NLO \mathcal{V}_{fin}

- the high-energy limit [Davies, Mishima, Steinhauser, Wellmann '18]
- forward kinematics $(p_T
 ightarrow 0 \text{ or } t
 ightarrow 0)$ [Bonciani, Degrassi, Giardino, Gröber '18; Davies, Mishima, Schönwald, Steinhauser '23]

[Davies, Mishima, Schönwald, Steinhauser, JHEP 06 (2023)]

based on 56 expansion terms in the high-energy and 5 terms in the small-t expansion

[Davies, Schönwald, Steinhauser, Phys.Lett.B 845 (2023)] Light fermion contributions to $gg \to HH$ at NNLO for t=0.

NNLO corrections are needed to address top mass scheme uncertainty. 1

First steps to NNLO

Beyond the Large- m_t Expansion – High Energy Expansion

- Start with diagrams with internally propagating Higgs:
 - expansion parameter not small $\alpha_t = \alpha m_t^2 / (2s_W^2 m_W^2) \sim \alpha_s / 2$
 - only planar integrals contribute in this subset

Beyond the Large- m_t Expansion – High Energy Expansion

Analytic high-energy expansion:

- Expansion hierarchy: $s,t\gg m_t^2pprox (m_H^2)^{int}\gg (m_H^2)^{ext}$
- We get a system of differential equations for 140 master integrals

$$\frac{\partial}{\partial m_t^2} \vec{l} = M(s, t, m_t^2, \epsilon) \cdot \vec{l}, \quad \text{with } \vec{l} = (l_1, \dots, l_{140})$$

• Plug in power-log ansatz for each master integral

$$I_n = \sum_{i=-2}^{0} \sum_{j=-1}^{60} \sum_{k=0}^{i+4} c_n^{ijk}(s,t) \epsilon^i (m_t^2)^j \ln^k(m_t^2)$$

- Solve the system of linear equations for a small set of boundary constants with Kira and FireFly [Klappert, Lange, Maierhöfer, Usovitsch '21] .
- Solve boundary master integrals in the asymptotic limit $m_t \rightarrow 0$ with Mellin-Barnes methods and symbolic summation using Asy [Pak, Smirnov '11], MB.m [Czakon '05], HarmonicSums [Ablinger '10] and Sigma [Schneider '07].

Beyond the Large- m_t Expansion – High Energy Expansion

$$\mathcal{A}^{\mu\nu} = T_1^{\mu\nu} F_{box1} + T_2^{\mu\nu} F_{box2}$$

- We benchmark against the expansion to $O(m_H^4, \delta^3, m_t^{116})$, with $\delta = 1 - m_H/m_t$.
- Convergence of different expansion orders at fixed p_T = 200 GeV.

Conclusions and Outlook

Conclusions and Outlook

Conslusions:

- We have calculated full NLO electroweak corrections to $gg \rightarrow HH$ in the large- m_t expansion.
 - The convergence of these expansions is hindered by *W*-*t*-*b* cuts.
 - We estimate the the EW corrections can reach a few tens of percent corrections in this region.
- We have calculated parts of the leading-Yukawa corrections in the high-energy region and see a good convergence of our approach.

Conclusions and Outlook

Conslusions:

- We have calculated full NLO electroweak corrections to $gg \rightarrow HH$ in the large- m_t expansion.
 - The convergence of these expansions is hindered by *W*-*t*-*b* cuts.
 - We estimate the the EW corrections can reach a few tens of percent corrections in this region.
- We have calculated parts of the leading-Yukawa corrections in the high-energy region and see a good convergence of our approach.

Outlook:

- Calculate the full EW corrections in the
 - 1. high-energy expansion.
 - 2. small-t expansion.
- Provide a numerical program, which can be incorporated into Monte-Carlo studies.

Backup

Padé-Improved High-Energy Expansion

The master integrals for both methods are computed as an expansion in $m_t \ll s, |t|$.

The expansions diverge for $\sqrt{s} \sim 750$ GeV ("A"), $\sqrt{s} \sim 1000$ GeV ("B").

The situation can be improved using Padé Approximants:

• Approximate a function using a rational polynomial

$$f(x) \approx \frac{a_0 + a_1 x + a_2 x^2 + \dots + a_n x^n}{1 + b_1 x + b_2 x^2 + \dots + b_m x^m}$$

where a_i, b_j coefficients are fixed by the series coefficients of f(x).

We compute a set of various Padé Approximants:

- combine to give a central value and error estimates
- a deeper input expansion \Rightarrow larger $n + m \Rightarrow$ smaller error
- here, m_t^{120} expansion allows for very high-order Padé Approximants

Master Integrals Results

$$\cos(heta)=rac{s+2t-2m_h^2}{s\sqrt{1-4m_h^2/s}}$$

- Fixed order m_t expansions diverge at $\sqrt{s} \sim 1000 \, {\rm GeV}.$
- The Padé approximation extends the range of validity.

$$p_T^2 = \frac{tu - m_h^4}{s}$$

- Lower order Padé approximantions cannot reach low values of p_T.
- For QCD corrections expansions up to m_t^{32} were available: $p_T \gtrsim 150 \text{ GeV}$
- With expansions up to m_t^{120} we reach: $p_T\gtrsim 120~{
 m GeV}.$
- Error estimate from Padé approximations is reliable.

$$p_T^2 = \frac{tu - m_h^4}{s}$$

- Lower order Padé approximantions cannot reach low values of p_T.
- For QCD corrections expansions up to m_t^{32} were available: $p_T \gtrsim 150 \text{ GeV}$
- With expansions up to m_t^{120} we reach: $p_T\gtrsim 120~{
 m GeV}.$
- Error estimate from Padé approximations is reliable.

$$p_T^2 = \frac{tu - m_h^4}{s}$$

- Lower order Padé approximantions cannot reach low values of p_T.
- For QCD corrections expansions up to m_t^{32} were available: $p_T \gtrsim 150 \text{ GeV}$
- With expansions up to m_t^{120} we reach: $p_T\gtrsim 120~{
 m GeV}.$
- Error estimate from Padé approximations is reliable.

Padé Improvement

$$p_T^2 = \frac{tu - m_h^4}{s}$$

- Lower order Padé approximantions cannot reach low values of p_T.
- For QCD corrections expansions up to m_t^{32} were available: $p_T \gtrsim 150 \text{ GeV}$
- With expansions up to m_t^{120} we reach: $p_T\gtrsim 120~{
 m GeV}.$
- Error estimate from Padé approximations is reliable.

Approach A:

- middle line massless $m_H^{\rm int} \approx 0$
- calculated in the context of QCD corrections [Davies, Mishima, Steinhauser, Wellmann '18, '19]

Approach B:

• middle line massive $m_H^{\rm int} \approx m_t$

Comparison with Approach A

Approach A: threshold at $\sqrt{s} = 2m_t = 346 \text{ GeV}$ Approach B: threshold at $\sqrt{s} = 3m_t = 519 \text{ GeV}$

Comparison with Approach A

Approach A: threshold at $\sqrt{s} = 2m_t = 346 \text{ GeV}$ Approach B: threshold at $\sqrt{s} = 3m_t = 519 \text{ GeV}$