NLO+PS study of bbH background to HH production

Javier Mazzitelli

Based on: S. Manzoni, E. Mazzeo, JM, M. Wiesemann and M. Zaro, JHEP 09 (2023), 179 [arXiv:2307.09992 [hep-ph]]

PAUL SCHERRER INSTITUT

Higgs WG general meeting, November 14th 2023

Introduction

- Lots of recent progress on the theoretical predictions for HH production ...
- ... but we need a good description of the backgrounds as well!

Fully differential higher-order corrections are crucial

The bbH background

- Typically interested in this column to have a decent number of signal events
- Single Higgs production in association with a bottom pair is an irreducible background to all $H(\rightarrow b\overline{b})H(\rightarrow xx)$ searches
- Working in the 4FS (massive b's) we have two different types of contributions:

00000000

00000000

 $\mathcal{O}(\alpha_s^2 y_b^2)$

Top-Yukawa contribution currently simulated using ggF NNLOPS

Only LO accurate in 2 jets configuration

A 'conservative' 100% uncertainty is assigned to this background, also motivated by disagreement with data in other analyses

The bbH background

• This is not a small contribution when compared to the signal!

	High mass BDT tight	High mass BDT loose	Low mass BDT tight	Low mass BDT loose
Continuum background	$4.9^{+1.1}_{-1.3}$	$9.5^{+1.5}_{-1.7}$	$3.7^{+0.9}_{-1.1}$	$24.9^{+2.3}_{-2.5}$
Single Higgs boson background	$0.67^{+0.29}_{-0.13}$	$1.6^{+0.6}_{-0.2}$	$0.23^{+0.09}_{-0.03}$	$1.40^{+0.33}_{-0.16}$
ggF+bbH	$0.26^{+0.28}_{-0.16}$	$0.4^{+0.5}_{-0.2}$	$0.07^{+0.08}_{-0.04}$	$0.27^{+0.27}_{-0.16}$
$t\bar{t}H$	$0.19^{+0.03}_{-0.03}$	$0.49^{+0.09}_{-0.07}$	$0.107^{+0.022}_{-0.017}$	$0.75^{+0.13}_{-0.11}$
ZH	$0.142^{+0.035}_{-0.025}$	$0.48^{+0.09}_{-0.07}$	$0.040^{+0.020}_{-0.014}$	$0.27^{+0.06}_{-0.04}$
Rest	$0.074^{+0.032}_{-0.014}$	$0.16_{-0.03}^{+0.07}$	$0.012^{+0.008}_{-0.004}$	$0.111^{+0.030}_{-0.012}$
SM $HH(\kappa_{\lambda} = 1)$ signal	$0.87^{+0.10}_{-0.18}$	$0.37^{+0.04}_{-0.07}$	$0.049^{+0.006}_{-0.010}$	$0.078^{+0.008}_{-0.015}$
ggF	$0.86^{+0.10}_{-0.18}$	$0.35^{+0.04}_{-0.07}$	$0.046^{+0.006}_{-0.010}$	$0.072^{+0.008}_{-0.015}$
VBF	$(12.6^{+1.3}_{-1.2}) \cdot 10^{-3}$	$(16.1^{+1.4}_{-1.2}) \cdot 10^{-3}$	$(3.2^{+0.4}_{-0.4}) \cdot 10^{-3}$	$(6.9^{+0.5}_{-0.6}) \cdot 10^{-3}$
Alternative $HH(\kappa_{\lambda} = 10)$ signal	$6.5^{+1.0}_{-0.8}$	$3.6^{+0.6}_{-0.4}$	$4.5^{+0.7}_{-0.6}$	$8.5^{+1.3}_{-1.0}$
Data	2	17	5	14

 $b\overline{b}\gamma\gamma$ search [from ATLAS analysis 2112.11876]

- A better description will be necessary for future experimental measurements
- This motivates the use of NLO predictions for the $b\overline{b}H$ background

bbH at **NLO**

- NLO corrections to bbH have been computed within MadGraph5_aMC@NLO [Deutschmann, Maltoni, Wiesemann, Zaro, 1808.01660]
- Both bottom and top Yukawa contributions, and their interference, have been included
- Top Yukawa contributions computed in the heavy top limit (HTL)

- Top Yukawa contribution dominant, while y_t - y_b interference subleading
- Large K-factors (~2-3), with strong dependence on the fiducial cuts
- Still sizeable scale uncertainties, especially for the y_t contribution
- From a LO comparison, the HTL seems to be a reliable approximation

No specific analysis targeting the HH signal region No study on the matching to parton showers

→ Topic of this talk

Setup

• We follow the approach of 1808.01660 $\begin{cases} b\overline{b}H \text{ at NLO in QCD} \\ Massive bottoms (4FS) \\ HTL \text{ for } y_t \text{ contributions} \end{cases}$

- We set m_b =4.92GeV, m_t =172.5GeV, m_H =125GeV, use NNPDF31_nlo_as_0118_nf_4
- Central scale (renorm/fact/shower): $H_T/4 = 1/4 \, \sum \, m_T(i)$
- We consider Higgs decays to two photons
- For simplicity, we generate the ${y_{\rm b}}^2$ and ${y_t}^2$ distributions (interference subleading)
- We consider the following set of cuts, inspired in HH \rightarrow b $\overline{b}\gamma\gamma$ analysis:

```
Anti-kT jets with R=0.4, p_T(j)>25GeV, |\eta(j)|<2.5
b-tagged if at least one B hadron among constituents
Exactly 2 b jets and 2 photons required
The b-jets must satisfy: 80GeV<m(b<sub>1</sub>,b<sub>2</sub>)<140GeV
The photons must satisfy: 105GeV<m(\gamma_1, \gamma_2)<160GeV, |\eta(\gamma_i)|<2.37
p_T(\gamma_1)/m(\gamma_1, \gamma_2)>0.35, p_T(\gamma_2)/m(\gamma_1, \gamma_2)>0.25
```

We consider $m_{2b2\gamma}^* = m_{2b2\gamma} - m(b_1, b_2) - m(\gamma_1, \gamma_2) + 2 m_H$ and the three possibilities: $m_{2b2\gamma}^* < 350 \text{GeV}, m_{2b2\gamma}^* < 500 \text{GeV}$ and $\text{no-}m_{2b2\gamma}^*$ cut

Fiducial cuts

Total cross sections

Simulation similar to what is currently used by ATLAS

- Di-Higgs signal and bbH background are of similar size
- Relative y_t/y_b contributions change with cuts, top-Yukawa piece is always dominant
- Still sizeable scale uncertainties, especially for the y_t piece
- Differences in fiducial cross sections between PY8 and HW7 are smaller than scale uncertainties
- Top-Yukawa contribution in the 4FS about 2 times smaller than prediction obtained with ggF NNLOPS
- Rates in ggF NNLOPS sample are largely affected by secondary bottom emissions from shower

	1			I				
Cut	Contr.	Run	LO	NLO	$\delta \mu_{R,F}$	δQ_{sh}	(-2 IO)	
					1.00		$(y_t \text{ LO})$	signai
No cut	y_b^2	PY8	561	849	$^{+18\%}_{-20\%}$	$^{+0\%}_{+0\%}$		
		HW7	561	851		$^{+0\%}_{+0\%}$	4867	
	y_t^2	PY8	655	1565	$^{+61\%}_{-35\%}$	$^{+0\%}_{+0\%}$	_	82.1
		HW7	655	1578		+0% +0%	g→ bb:	02.1
	sum	PY8	1217	2414	$^{+46\%}_{-29\%}$	+0% +0%	2140	
		HW7	1216	2429	2370	+0% +0%		
	y_b^2	PY8	3.15	4.22	+15% -15%	+10% -4%		
		HW7	2.59	4.08	-1570	+8%	29.9	
E:d outo	0	PY8	8.24	18.1	+58%	$^{-12\%}_{+10\%}$		22.7
Fid. cuts	y_t^2	HW7	6.83	16.6	-34%	-1% +4%	$g \rightarrow b\overline{b}$:	22.1
	sum	PY8	11.4	22.3	+50%	$^{-5\%}_{+10\%}$	17.2	
		HW7	9.42	20.7	-30%	$^{-6\%}_{+4\%}$		
		PV8	3 11	4 15	+15%	$\frac{-6\%}{+11\%}$		
Fid. cuts + $m^{\star}_{2b2\gamma} < 500 \mathrm{GeV}$	y_b^2	HW7	2.56	4.02	-15%	$^{-4\%}_{+8\%}$	22.3	
	y_t^2		5.22	10.2	+60%	$^{-13\%}_{+12\%}$	22.0	
			J.JJ 4 91	12.0	-34%	$^{-8\%}_{+5\%}$	$a \rightarrow b\bar{b}$	15.7
			4.51	11.5	+49%	-5% +12%	13.3	
	sum	PY8	8.44	16.5	-29%	-7%	10.0	
		HW7	6.86	15.3	1 = 07	-7%		
Fid. cuts + $m^{\star}_{2b2\gamma} < 350 \mathrm{GeV}$	y_b^2	PY8	2.71	3.65	$^{+15\%}_{-16\%}$	$^{+9\%}_{-4\%}$		
		HW7	2.22	3.54		$^{+8\%}_{-15\%}$	11.5	
	y_t^2	PY8	2.32	5.78	$^{+61\%}_{-34\%}$	$^{+13\%}_{-9\%}$. =	2.84
		HW7	1.88	5.43		$^{+5\%}_{-3\%}$	$g \rightarrow b\overline{b}$:	2.01
	sum	PY8	5.03	9.43	+44% -27%	$^{+12\%}_{-7\%}$	6.82	
		HW7	4.10	8.97	2170	+6% -8%		
[]] ··]	• •	1				070	1	1

[all cross section numbers in ab]

Differential distributions

• Top Yukawa contribution prefers harder H/b jet, due to contributions with hard gluon recoiling against H

- Nice agreement in the shapes obtained with PY8 and HW7 $\,$

Differential distributions

- Top and bottom Yukawa contributions prefer different values of $m_{2b2\gamma}$

• The y_t piece prefers larger invariant masses, associated with configuration with hard gluon recoiling against H

• Shape difference explains different relative y_t/y_b contributions when invariant mass cut is applied

Effect of $g \rightarrow bb$ splittings in NNLOPS sample

We studied the NNLOPS sample in the fiducial region after showering:

• Vast majority of events have exactly 2 bottom quarks \implies single large-angle $g \rightarrow b\overline{b}$ splitting

Are the emitted b's soft and falling inside additional hard light jets?

- Invariant mass of $b\overline{b}$ system quite close to the required window for the 2 b-jets invariant mass
- Most events don't have additional light jets

9

Impact on HH searches

- Result from ggF NNLOPS close to upper uncertainty band of NLO 4FS
- Larger differences for low invariant masses
- Size and uncertainties of this background are reduced in our NLO 4FS calculation

Positive impact on HH searches

• We have propagated the new NLO 4FS rates to an ATLAS search in the $2b2\gamma$ channel [2112.11876] as well as the $2b2\tau$ channel [2209.10910]

Rescaled NNLOPS sample to NLO 4FS rates

- Subtlety: NNLOPS sample also used for b-jet mistagging estimate! Only rescale the true b-jet contribution (80% of the full sample)
- We also replace the 100% uncertainty by the NLO 4FS scale uncertainties

Improvement in XS limits	Current	HL-LHC		
$2\mathrm{b}2\gamma$	$\sim 2\%$	$\sim 5\%$		
$2b2\tau$	~10%	$\sim \! 20\%$		

Larger improvement in $2b2\tau$ due to analysis being less stat. dominated, plus larger relative contribution from single Higgs background

Summary and Outlook

- $b\overline{b}H$ production is an irreducible background to searches with at least one $H \rightarrow b\overline{b}$
- + Current simulation of y_t contribution (ggF 5FS) only LO, O(100\%) uncertainty
- We presented an NLO+PS study for $b\overline{b}H$, including both y_t and y_b contributions, working in the 4FS, in a fiducial region typically used in HH searches
- Large corrections, sizeable uncertainties, especially for y_t piece (about +60%-35%)
- Results in the 4FS are smaller than the ones obtained in with ggF NNLOPS 5FS
- ggF NNLOPS largely influenced by g→bb̄ splittings in the shower potentially inducing a double counting
- We estimated the effect of using the new NLO 4FS sample in HH searches
- Significant improvement in XS limits, depending on channel and luminosity
- Looking forward to seeing this MC being used in LHC analyses!

Thanks!