

Search for $X \to SH$ in $VV\tau\tau$ final state with the ATLAS detector

Babar Ali (Czech Technical University in Prague, IEAP) On behalf of the ATLAS Collaboration

> LHCHWG November 15th 2023

ggF $X \rightarrow SH$ production

- DiHiggs production is rare in the Standard Model (SM) $\sigma_{ggF}^{HH} \approx 31^{+6.7\%}_{-23.2\%}$ fb @ $\sqrt{s} = 13$ TeV
- Physics beyond the Standard Model (BSM) can enhance the HH production with additional scalar particles
- BSM scenarios tested include 2HDM, 2HDM+S, MSSM, NMSSM et. al.
- The models hypothesize the existence of a new scalar singlet S
 - $X \rightarrow SH, SS$, where X is heavy CP-even scalar boson

- Signature based search in mass range $500 < m_X < 1500$ GeV and $200 < m_S < 500$
 - * $S \rightarrow VV$ decays assumed to have the same relative coupling as a SM-Higgs
 - $H \rightarrow \tau \tau$, where τ -leptons decay hadronically
- First of its kind using 140 fb⁻¹ data & competitive with $VVbb, VV\gamma\gamma, bb\tau\tau, bbbb$ in high mass

Phys. Lett. B800 (2020) 135103 Phys. Rev. D92 (2015) 092004

Event selection

- Based on $S \rightarrow VV$ decay, three final states are selected

 $S \to WW \to 1\ell + 2\tau$

Exactly one light lepton Two hadronic taus with opposite-sign At least two jets

 $S \to WW \to 2\ell + 2\tau$

Exactly two light leptons with opposite-sign Two hadronic taus with opposite-sign $|m_{\ell\ell} - m_Z| > 10 \text{ GeV}$ $m_{\ell\ell} > 12 \text{ GeV}$

$S \to ZZ \to 2\ell + 2\tau$

Exactly two light leptons with opposite-sign Two hadronic taus with opposite-sign $|m_{\ell\ell} - m_Z| < 10 \text{ GeV}$ $m_{\ell\ell} > 12 \text{ GeV}$

In all three channels:

- Require 0 b-tagged jets
- Light leptons $p_T > 10~{\rm GeV}$ and $\tau_{\rm had}~p_T > 20~{\rm GeV}$
- $\Delta R(\tau_0, \tau_1) \leq 2$
- Trigger on single lepton or dilepton triggers (only single lepton trigger in $S \rightarrow WW \rightarrow 1\ell + 2\tau$)

Monte Carlo simulation

- Signal events are generated in generic 2HDM+S model
 - Kinematic parameters are model-independent
 - Results can be interpreted in other BSM models
 - Leading-order accuracy with Pythia-8 generator
- Heavy scalar X constrained to decay only into S and H
 - * S decays to WW or ZZ bosons,
 - H decays to a pair of $au_{
 m had}$ leptons
 - * Fully and semi-leptonic decays of WW
 - Only two-lepton final state in ZZ decays
- Eighteen mass points are considered
- SM non-resonant ggF HH production to study the theory systematics

Xmass(GeV)

Multivariate discriminant

ATLAS

 $250 - 1\ell + 2\tau_{had}$ SR

Post-Fit

√s = 13 TeV, 140 fb⁻¹

 $X \rightarrow SH \rightarrow WW\tau_{had}\tau_{had}$

300

200

150

100

50

1.25

0.75

. 0.5⊑ 0

20

40

60

80

100

Data / Pred

Data

Others

---- X(500)→S(300)H ---- X(1250)→S(300)H

∎tīV

ttH

- Boosted Decision Trees (BDT) are employed to separate the signal from all the backgrounds
- Parameterised BDT method is used to simplify the training procedure Events / 20 GeV
 - Parametrisation in m_X for given m_S
 - Generated m_X mass as an input parameter
 - m_X values of background events are randomly assigned to match signal
- BDT training is performed separately in three channels with four m_S mass points (12 different **BDTs trained**)

Variable	Definition	$\frac{WW}{1\ell 2\tau_{\rm had}}$	$\frac{WW}{2\ell 2\tau_{\rm had}}$	$\frac{ZZ}{2\ell 2\tau_{\rm had}}$
$m_{\rm X, truth}$	generated mass of generated X particle	×	×	×
$\Delta R(au au,\ell_0)$	angular distance between the leading lepton and the $\tau\tau$ system	×	×	×
$\min(\Delta R(\tau \tau, \mathbf{j}))$	minimum angular distance between a jet and the $\tau\tau$ system	×	-	-
$\Delta R(\ell,\ell)$	angular distance between two leptons	-	×	×
$\Delta \phi(\tau \tau, E_T^{\text{miss}})$	azimuthal angle between the $\tau\tau$ system and E_T^{miss}	×	×	×
$E_T^{\text{miss}} + \Sigma p_{\mathrm{T}}(\text{jets})$	sum of E_T^{miss} momentum and p_T of jets	-	-	×
$p_{\mathrm{T} au 0}$	leading tau-lepton $p_{\rm T}$	×	×	×
$m_{ au au}$	visible invariant mass of the $\tau\tau$ system	×	×	×
$m_{\ell\ell}$	invariant mass of the dilepton system	-	×	-
$\min(\Delta R(\ell,\mathrm{j})$	minimum angular distance between a jet and the lepton	×	-	-
$\min(\Delta R(\mathrm{j},\mathrm{j}))$	minimum angular distance between two jets	×	-	-
$p_{\mathrm{T} au 1}$	subleading τ -lepton $p_{\rm T}$	×	×	×
$m_{ m T}^W$	transverse mass calculated from the lepton(s) and E_T^{miss} in the event	×	×	×
dilep_type	dilepton type: one of $\mu\mu$, $e\mu$, μe , ee	-	×	-

Background modelling

- Fake τ_{had} background is validated in a dedicated region (two same-sign τ_{had})
- Leading source of systematic uncertainty from real au_{had} subtraction ($^{+7.5}_{-12}$ %)

Babar Ali - LHCHWG2023

BDT output

Limits on $X \rightarrow SH$

- Observed and expected limits on $\sigma(X \rightarrow SH)$ for all three channels combined
- Combined limit is dominated by $WW1\ell^2\tau$ channel and improved 26% 53% by other channels
- Impact of total systematic uncertainty is between 2% and 14%
- Best expected limit is 85 fb for $m_X = 1250$, $m_S = 300 \text{ GeV}$

 $72 < \sigma(pp \rightarrow X \rightarrow SH) < 542 \, fb$

- Limits on $\sigma(X \to SH \to WW\tau\tau)$ from combination of $WW1\ell^2\tau$ and $WW2\ell^2\tau$ channels, and $\sigma(X \to SH \to ZZ\tau\tau)$
- Maximum possible values allowed for cross-section of $(X \rightarrow SH \rightarrow WW\tau\tau)$ and $(X \rightarrow SH \rightarrow ZZ\tau\tau)$ processes in the NMSSM parameter space
- Parameter scan using <u>NMSSMTOOLS</u> by the NMSSM group of <u>LHCHXSWG3</u>
 - Measurements of Higgs boson properties
 - Searches for supersymmetry
 - B-meson physics
 - Searches for dark matter
- Observed limits approach the allowed cross-sections in the low- m_X and low- m_S part of the NMSSM parameter space

m_s+m_x/25 [GeV]

- Maximum allowed $\sigma(X \rightarrow SH) \times BR$
- Parameter scan using <u>NMSSMTOOLS</u> by the NMSSM group of <u>LHCHXSWG3</u>
 - Measurements of Higgs boson properties
 - Searches for supersymmetry
 - B-meson physics
 - Searches for dark matter
- NMSSM scan for $VV\tau\tau$ is compatible with other scans using $X \to SH \to bbbb$, $bb\tau\tau$ and $bb\gamma\gamma$ final states
- Still room for $VV\tau\tau$ to set constraints on BSM models

Summary

- Search for $X \to SH \to VV\tau\tau$ using 140 fb⁻¹ proton-proton data
- Explored X mass ranges from 500 to 1500 GeV, with S mass in the range from 200 to 400 GeV
- No excess of events was observed beyond the SM expectation
- Observed limit on $\sigma(X \to SH)$ is between 72 542 fb for SM-like $S \to VV$ decay
- Dominant by $SH \rightarrow WW \ 1\ell + 2\tau$ channel
- NMSSSM scans: observed limits approach the allowed cross-section at low mass points
- Improvements in low mass regions including Run-3 data will provide further constraints

Backup

Babar Ali - LHCHWG2023

- Observed and expected 2D limits on $\sigma(X \to SH \to WW\tau\tau)$ from combination of $WW1\ell^2\tau$ and $WW2\ell^2\tau$ channels, and for $\sigma(X \to SH \to ZZ\tau\tau)$
- Each mass point limit is compared to the limits obtained using the BDTs trained for the (lower or upper) neighbouring mass values and found to be consistent within 15%
 - Interpolating the limits between mass points is unnecessary

• Observed and expected limits on $\sigma(X \to SH \to VV\tau\tau)$

m_X	m_S	Combined	$\sigma(pp \to X \to SH)$ [fb]	$\mid \sigma(pp \to X)$	$\sigma(pp \to X \to WW\tau\tau)$ [fb] $\mid \sigma(pp \to X \to ZZ\tau\tau)$ [f		$\rightarrow ZZ\tau\tau$) [fb]
(GeV)	(GeV)	Observed	Expected	Observed	Expected	Observed	Expected
500	200	400	391^{+170}_{-110}	19	18^{+8}_{-5}	27	28^{+13}_{-8}
750	200	182	168_{-47}^{+74}	8.8	$8^{+3.5}_{-2}$	14	16^{+7}_{-4}
1000	200	110	110^{+49}_{-31}	5.3	5^{+2}_{-1}	12	13_{-4}^{+6}
1250	200	112	100_{-28}^{+46}	5.4	5^{+2}_{-1}	12	13_{-4}^{+6}
1500	200	131	132_{-37}^{+62}	6.4	6^{+3}_{-2}	14	18^{+9}_{-5}
500	300	538	672^{+290}_{-190}	26	31_{-9}^{+13}	33	42^{+19}_{-12}
750	300	115	192_{-54}^{+83}	5.3	9^{+4}_{-2}	11	13_{-4}^{+6}
1000	300	88.6	108_{-30}^{+48}	4.3	5^{+2}_{-1}	6.3	8^{+4}_{-2}
1250	300	82.6	85^{+38}_{-24}	3.6	4^{+2}_{-1}	8.4	8^{+4}_{-2}
1500	300	85.4	107^{+49}_{-30}	3.7	5^{+2}_{-1}	10	10^{+5}_{-3}
750	400	202	245_{-68}^{+107}	8.4	10^{+4}_{-3}	10	14_{-4}^{+6}
1000	400	101	139_{-39}^{+62}	4.2	$5^{+2}_{-1.5}$	6	8^{+4}_{-2}
1250	400	71.7	103_{-29}^{+46}	2.8	4^{+2}_{-1}	6	6.5^{+3}_{-2}
1500	400	85.1	116^{+53}_{-32}	3.1	4.5^{+2}_{-1}	8.9	8^{+4}_{-2}
750	500	387	312^{+135}_{-87}	16	11^{+5}_{-3}	13	$16^{+8}_{-4.5}$
1000	500	138	147^{+65}_{-41}	5.5	$5^{+2}_{-1.5}$	6.5	9^{+4}_{-2}
1250	500	77	105_{-29}^{+47}	2.8	4^{+2}_{-1}	6.2	7^{+3}_{-2}
1500	500	85.9	109^{+50}_{-31}	3	4^{+2}_{-1}	8	8^{+4}_{-2}

• Event yields in all three channels

Process	$WW1\ell 2 au_{ m had}$	$WW2\ell 2\tau_{\rm had}$	$ZZ2\ell 2 au_{ m had}$
$t\bar{t}H$	2.6 ± 0.3	0.50 ± 0.06	0.035 ± 0.004
$t\bar{t}V$	3.4 ± 0.4	0.58 ± 0.07	0.10 ± 0.02
Others	15.6 ± 3.0	2.1 ± 0.4	4.7 ± 0.8
Diboson	135.1 ± 15.5	11.1 ± 1.3	55.0 ± 6.1
Fake $\tau_{\rm had}$	312.4 ± 21.5	30.1 ± 3.7	77.8 ± 9.0
Total background	468.6 ± 19.3	44.0 ± 3.9	138.0 ± 9.1
Data	464	40	138