
Exotic Higgs decays An update from the sub-working group

Verena Martinez Outschoorn (ATLAS), Alexis Kalogeropoulos (CMS), Andrea Thamm (Theory), Brian Shuve (Theory), Carlos Vázquez Sierra (LHCb) 😪

The 20th workshop of the LHC Higgs working group @ CERN

Introduction

The goal of the **Exotic Higgs decay sub-group** is to **inform, aggregate, and make** recommendations for studies of decays of SM Higgs to beyond Standard Model states.

- Theory: Brian Shuve (Harvey Mudd College), Andrea Thamm (University of Massachusetts)
- ATLAS: Verena Martinez (University of Massachusetts)
- CMS: Alexis Kalogeropoulos (Kansas State University)
- LHCb: Carlos Vázquez Sierra (Instituto Galego de Física de Altas Enerxías)

This talk

- Focus on **selected experimental results** since last workshop in 2022.
- Present ideas and discuss potential activities for 2024 and future runs.

Some **EXP/TH highlights,** not covered in this talk due to time constraints \mathbf{S} :

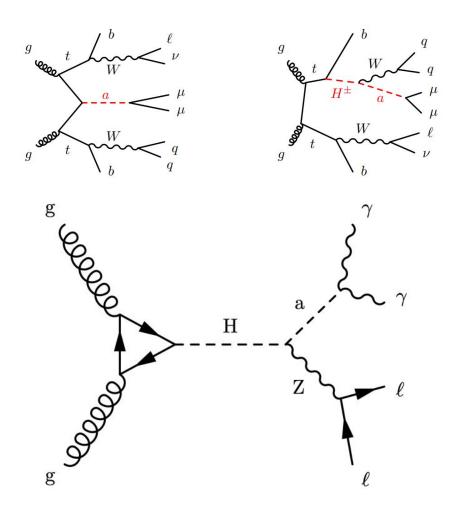
- ATLAS: Exclusive Higgs decays into γ{ω/K*} [PLB 847 (2023) 138292]
- ATLAS: Search for a new Z' gauge boson in 4µ decays [JHEP 07 (2023) 90]
- Dark showers using data scouting [2303.04167]
- Trigger-level track reconstruction for exotic signatures [2211.05720]
- Exotic Higgs decays in VBF + γ [2306.01901]
- Higgs coupling deviations [2202.01228]

This talk

Emerging jet probes of strongly interacting dark sectors

15 Nov 2023, 11:30

🕓 15m


♀ 31/3-004 - IT Amphitheatre (CERN)

Speaker

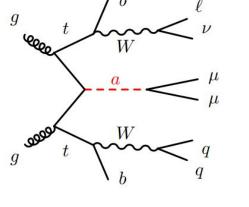
Losé Francisco Zurita (IFIC - Univ. of Valen...

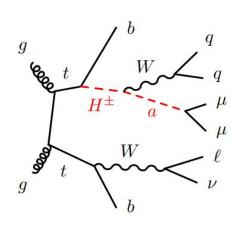
Higgs coupling deviations [2202.01228]

 WG3 BSM Higgs Parallel

New pseudoscalar associated production

ATLAS [2304.14247], 27 Apr '23
CMS [2311.00130], 31 Oct '23 (2)


Associated production with top-quark pair ATLAS [2304.14247], 27 Apr '23


139 fb⁻¹ of Run 2 **ATLAS** data.

f High m($\mu\mu$) resolution.

Two signal models (right):

- 120 < m(**H**[±]) < 160 GeV
- 15 < m(**a**) < 72 GeV

tta, a→μμ

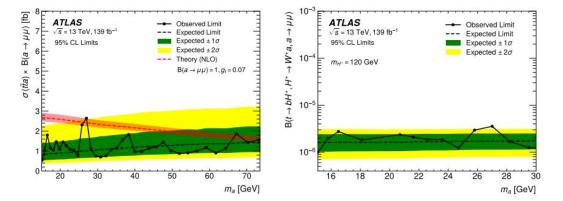
tt, t→bH[±], H[±]→Wa, a→μμ

Final states consisting of $\mu\mu$ + lepton from the <u>only leptonic W decay</u> ($\mu\mu\mu$, $\mu\mue$):

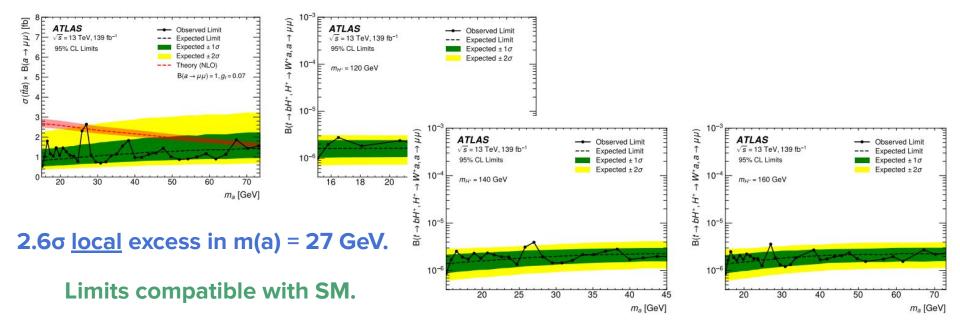
- Single-lepton triggers: low pT (~26 GeV) + isolation, or high pT + loosened ID.
- **pT requirements** for **e** (>27 GeV), **μ** (>10 GeV *at least*), and **jets** (>20 GeV),
- **Other requirements** (isolation, η, vertex quality, ID) considered as well.

Signal region:

- SR defined for $\mu\mu\mu$ and $\mu\mu e$, above Y and below Z.
- Require 3 jets and 1 b-jet present only one W decays leptonically.


Background contributions:

- Dominated by ttZ with Z decaying into low-mass μμ.
- Other subleading components considered.
- Normalization of ttZ from data (CR), others from simulation.

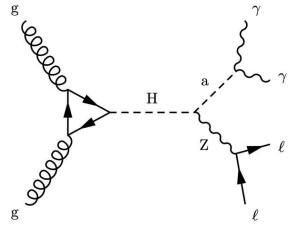

Signal µµ mass modelled with a double Crystal-Ball function, parameters from MC.

Systematics dominated by μ ID efficiency and modelling of the ttZ background.

UL@95% in production x-sections for the two benchmarks, after fit to $m(\mu\mu)$:

UL@95% in production x-sections for the two benchmarks, after fit to $m(\mu\mu)$:

Associated production with a Z boson CMS [2311.00130], 31 Oct '23


arXiv:2311.00130

Associated production with a Z boson

138 fb⁻¹ of Run 2 **CMS** data, search in **1** < **m(a)** < **30 GeV**.

Signal simulated samples:

- ggF H→aZ→γγII @ LO (incl. leptonic τ decays),
- Steps of 1 (5) GeV in m(a) of 1-10 (10-30) GeV,
- Other production modes **negligible** after selection.

H→aZ, <mark>a→γγ</mark>, Z→ee/μμ

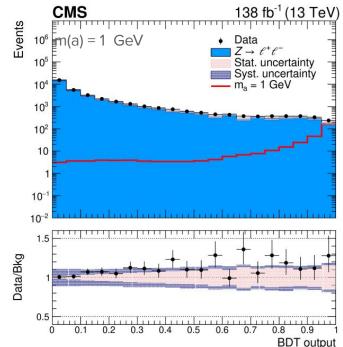
Background simulated samples: DY Z+jets @ LO, jets are misidentified as γ.

Leading μ(e) with **pT>20(25) GeV**, isolation with FSR recovery to exclude leptons from hadronic decays. **Photons** are required to have **pT>10 GeV**.

Za candidates require 95<m(ll $\gamma\gamma$)<180 GeV and $\Delta R(l,\gamma)$ >0.4.

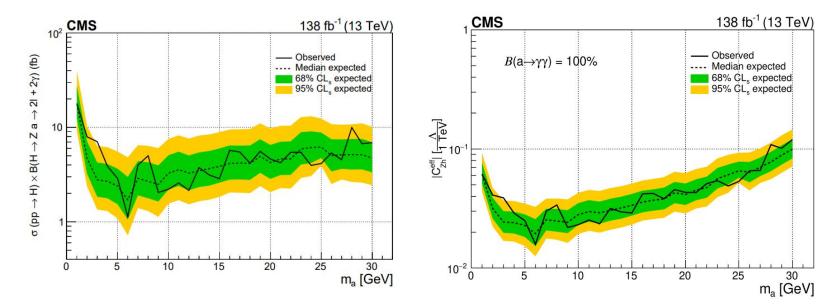
Associated production with a Z boson

Signal-to-background separation with **BDT uniform in m(llγγ)**, trained with pT, isolations, angular separations and calorimetry variables.


Unbinned ML fit to 95<m(llγγ)<180 GeV:

- **Signal**: n Gaussians (n<5) from MC,
- **Background**: Gaussian with falling spectrum function (turn-on-peak) of various functional forms.

Dominant systematic uncertainties: photon and **electron energy resolutions.**


Event categorization as a

function of the BDT output:

Associated production with a Z boson

UL@95% CL on ZH eff. coupling with B($a \rightarrow \gamma \gamma$)=1, and on production x-sections:

SM compatible, excess for m(a)=3 GeV of 2.6 (1.3) σ local (global) significance.

New pseudoscalar pair production

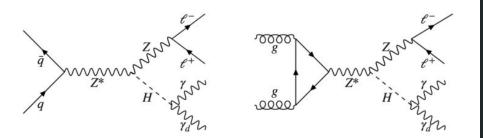
• ATLAS H→aa→4γ, 18 Àug '23

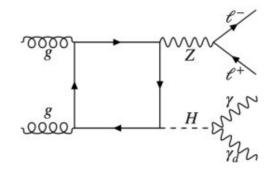
• CMS H→aa→bb{μμ/ττ} 3 Mar '23

WEDNESDAY, 15 NOVEMBER

11:00 \rightarrow 12:30 WG3 BSM Higgs Parallel: Morning 2

11:00

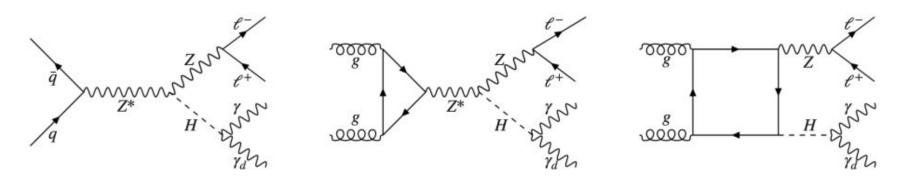

Search for $h ightarrow aa ightarrow 2\mu 2b/2b2 au$ with the CMS experiment


Speaker: Pallabi Das (Princeton University (US))

11:15

Search for $h ightarrow aa ightarrow 4\gamma$ with the ATLAS experiment

Speaker: Peter Kramer (Johannes Gutenberg Universitaet Mainz (DE))


Dark photons from Higgs decays in ZH production

ATLAS, 22 Dec '22, [JHEP07(2023)133]

Dark photons from Higgs decays in ZH production

Search for ee/ $\mu\mu$ (Z) + isolated γ - E_{T}^{miss} (γ_{d}):

- 139 fb⁻¹ of Run 2 **ATLAS** data, in $m(\gamma_d) < 40$ GeV.
- Search on E_T^{miss} from $H \rightarrow \gamma \gamma_d$ with $E\gamma = m(H)/2 @ H c.o.m$.
- **Single-lepton** trigger (low pT + isolation || high pT + no ID),
- **Di-lepton trigger** (looser ID, complement to single-lepton),

JHEP 07 (2023) 133

Dark photons from Higgs decays in ZH production

Signal MC @ LO: ZH with pT(ee/ $\mu\mu$)>10 GeV, H+ $\gamma\gamma_d$ from HV Pythia for six m(γ_d).

Most relevant backgrounds:

- Irreducible backgrounds from VVγ (V=W/Z) with V decaying leptonically.
- Dominant backgrounds, from fake
 E_T^{miss}, are reducible: undetected, mis-id particles, or hadronic jets partially decaying outside of acc.

Table 3: Optimised kinematic selections defining the signal region for $\ell^+\ell^-+\gamma+E_T^{miss}$.

Two same flavour, opposite sign, medium ID and loose isolated leptons, with leading $p_{\rm T} > 27$ GeV, sub-leading $p_{\rm T} > 20$ GeV

Veto events with additional lepton(s) with loose ID and $p_T > 10 \text{ GeV}$

76 GeV $< m_{\ell\ell} < 116$ GeV

Only one tight ID, tight isolation photon with $E_{\rm T}^{\gamma} > 25$ GeV

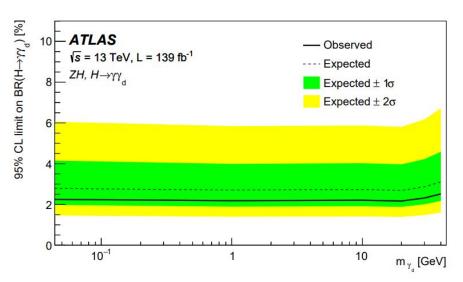
 $E_{\rm T}^{\rm miss} > 60 \text{ GeV}$ with $\Delta \phi(\vec{E}_{\rm T}^{\rm miss}, \vec{p}_{\rm T}^{\ell\ell\gamma}) > 2.4 \text{ rad}$

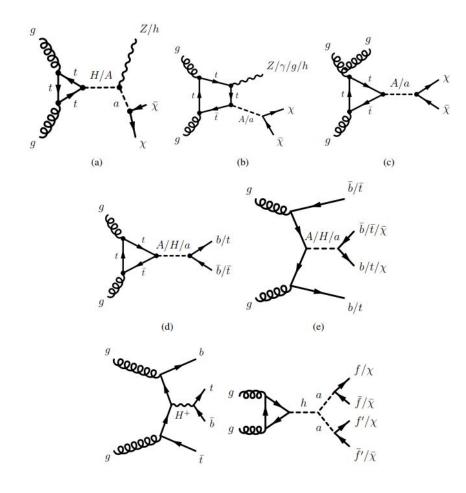
 $m_{\ell\ell\gamma} > 100 \text{ GeV}$

 $N_{jet} \le 2$, with $p_T^{jet} > 30$ GeV, $|\eta| < 4.5$

Veto events with *b*-jet(s)

+ **BDT** using E_T^{miss} significance, transverse kinematic variables, m(II) and m(II γ).


Dark photons from Higgs decays in ZH production


Background treatment:

- Fake E_T^{miss} background estimated with data-driven (ABCD) methods,
- Irreducible background adjusted with a dedicated CR,
- Rest of backgrounds estimated from simulation.

Dominant systematic uncertainties from energy resolutions and fake E_{T}^{miss} shapes.

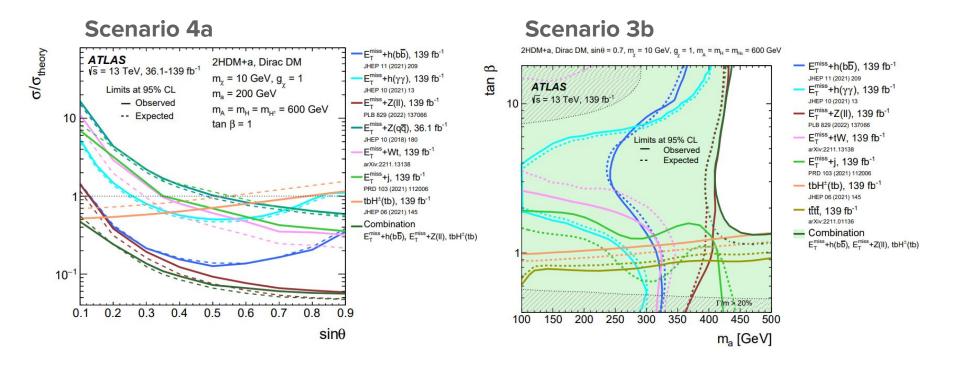
UL@95 C.L. on B($H \rightarrow \gamma \gamma_d$) from binned ML fit in SR to the BDT response:

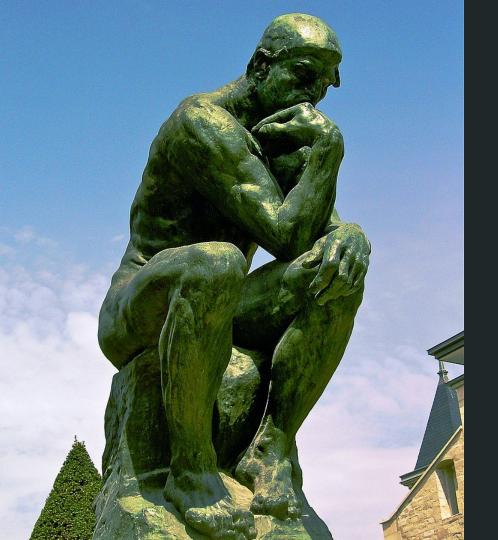
2HDM+a interpretation from dark matter results

ATLAS, 1 Jun '23, [2306.00641]

2HDM+a interpretation from dark matter results

Various Run 2 ATLAS 139 fb⁻¹ dark matter searches interpreted in 2HDM+a:


Scenario			Fixed	Varied parameter			
		$\sin \theta$	m_A [GeV]	ma [GeV]	m_{χ} [GeV]	$\tan\beta$	
1	a	0.35	_	_	10	1.0	(
	b	0.70	-	-	10	1.0	(m_a, m_A)
2	a	0.35	-	250	10	-	(
	b	0.70	-	250	10	_	$(m_A, \tan\beta) =$
3	a	0.35	600	-	10	_	(0)
	b	0.70	600	_	10	-	$(m_a, \tan\beta)$
4	a	_	600	200	10	1.0	-:- 0
	b	_	1000	350	10	1.0	$\sin \theta$
5		0.35	1000	400	-	1.0	m_{χ}
6		0.35	1200	-	-	1.0	(m_a, m_{χ})


Statistical combination of the								
analyses → results for the different								
scenarios.								

Analysis/Scenario	1a	1b	2a	2b	3a	3b	4a	4b	5	6
$E_{\mathrm{T}}^{\mathrm{miss}} + Z(\ell\ell)$ [74]	x	x	X	x	х	х	X	x	х	
$E_{\rm T}^{\rm miss} + h(b\bar{b})$ [75]	X	X	X	X	Х	х	х	X	X	X
$E_{\rm T}^{\rm miss} + h(\gamma\gamma)$ [84]	x	x			x	х	X	X		
$E_{\mathrm{T}}^{\mathrm{miss}} + h(\tau\tau)$ [78]	X			х						
$E_{\rm T}^{\rm miss} + tW$ [77]	X	X	X	X	X	Х	X	X		
$E_{\rm T}^{\rm miss} + j$ [45]	x	X			х	Х	х	X		
$h \rightarrow \text{invisible [86]}$	X	Х			X					x
$E_{\rm T}^{\rm miss} + Z(q\bar{q})$ [126]	х						X	X		
$E_{\mathrm{T}}^{\mathrm{miss}} + b\bar{b}$ [127]							Х	Х		
$E_{\rm T}^{\rm miss} + t\bar{t}$ [127, 128]							Х	X		
<i>tītī</i> [85]	х	X	X	X	X	X	X	X	X	
$tbH^{\pm}(tb)$ [76]	х	X	X	X	Х	Х	Х	X	X	
$h \rightarrow aa \rightarrow f\bar{f}f'\bar{f}'$ [79–83]										X

arXiv:2306.00641

2HDM+a interpretation from dark matter results

Ideas and plans for the future

Proposed activities for next year

Increase our activity: regular meetings, common projects. Starting point may be to produce a document with summaries and suggestions:

- Review of current experimental results from Runs 1 and 2,
- Suggestions for Run 3, and prospects for the future, e.g. HL-LHC.

Proposed activities for next year

Increase our activity: regular meetings, common projects. Starting point may be to produce a document with summaries and suggestions:

- Review of current experimental results from Runs 1 and 2,
- Suggestions for Run 3, and prospects for the future, e.g. HL-LHC.

But, we would like to provide a document beyond a review article:

- Suggest common benchmarks for searches,
- Identify synergies with other sub-working groups,
- And also with **other working groups**, e.g. LLPC LLPs WG and DM WG.
- BSM Higgs decays involving LLPs, semi-visible decays, MET-rich decays, etc.
- Joint sub-working group + other sub-working groups/WGs workshops?

Thanks for your attention!