Recent couplings and crosssection measurements from ATLAS and CMS

Kunlin Ran on behalf of ATLAS/CMS Collaborations DESY

The 20th Workshop of the LHC Higgs Working Group, 13.11.2023

Introduction

- Higgs: scaler field giving mass to elementary particles, central feature of SM
- H coupling can be precisely predicted once all masses/types of particles known
- Since H discovery, its measured properties (mass, quantum numbers, couplings) are consistent with SM in an unprecedented accuracy

• Summarize recent couplings and XS measurements from ATLAS/CMS since last year!

$H \rightarrow ZZ^* \rightarrow 4l, H \rightarrow \gamma\gamma$

Small BR

Fully reconstructed final states, excellent mass resolution Great photon/lepton RECO/ID efficiencies Large signal-to-background ratio Golden channels for characterizing H!

- Measurements of inclusive and differential cross sections for the Higgs boson production and decay to fourleptons in proton-proton collisions at $\sqrt{s} = 13$ TeV [JHEP 08 (2023) 040]
- Measurement of the $H \rightarrow \gamma \gamma$ and $H \rightarrow ZZ^* \rightarrow 4l$ cross-sections in pp collisions at $\sqrt{s} = 13.6$ TeV with the ATLAS detector [arXiv:2306.11379]
- Model-independent search for the presence of new physics in events including $H \rightarrow \gamma \gamma$ with $\sqrt{s} = 13$ TeV pp data recorded by the ATLAS detector at the LHC [JHEP 07 (2023) 176]
- Evidence of off-shell Higgs boson production from ZZ leptonic decay channels and constraints on its total width with the ATLAS detector [Phys. Lett. B 846 (2023) 138223]

Run 2 $H \rightarrow ZZ \rightarrow 4l$ inclusive/differential XS at CMS [JHEP 08 (2023) 040]

- Fiducial phase space
 - Complementary to characterize H production/decay
 - Less model-dependence to match detector acceptance and reco-level selections, corrected for detector effects (unfolding)
 - > Allowing direct comparison with latest/wide variety of predictions (**insensitive to theory errors**)
- Inclusive: $\sigma_{\text{fid}} = 2.73 \pm 0.26 \text{ fb} = 2.73 \pm 0.22(stat) \pm 0.15(syst) \text{ fb}$, agree with SM (2.86 ± 0.15 fb)
 - Improved with latest CMS Run 2 calibrations → ~40% reduction of dominant lepton RECO/selection efficiency systs wrt previous analysis
- (Double-)Differential: sensitive to H production and decay to 4I → comprehensive characterization of final states and fiducial phase space
 - Particularly include ME: Sensitive to anomalous HVV couplings (ie D_{0-}^{dec}), valuable test of SM/BSM
- Constrain κ_{λ} , κ_{b} , κ_{c} in p_{T}^{H} : alternative and complementary approach with differential information

DESY. | Recent couplings and cross-section measurements from ATLAS and CMS | Kunlin Ran, 13.11.2023

g(q)

Run 3 $H \rightarrow \gamma\gamma$ and $H \rightarrow ZZ^* \rightarrow 4l$ XS at ATLAS [arXiv:2306.11379]

- First $H \rightarrow \gamma \gamma$, $H \rightarrow ZZ^* \rightarrow 4l$ XS measurements in Run 3 with new world-record $\sqrt{s} = 13.6$ TeV!
- Fit observable: $m_{\gamma\gamma}$ or m_{4l}

- Fiducial → Total XS: assuming SM acceptances and BR
 - *γγ/ZZ* compatible (p-value = 20%)

	γγ	41	Combination	SM
$\sigma(pp \rightarrow H)$ [pb]	67^{+12}_{-11}	46 <u>+</u> 12	58.2 <u>+</u> 8.7	59.9 <u>+</u> 2.6

$H \rightarrow WW$

Second largest BR (21%, <u>LHCHXS</u>)

One of the most sensitive channels to fully characterize H properties!

- Measurements of differential cross sections of Higgs boson production through gluon fusion in the $H \rightarrow WW^* \rightarrow ev\mu v$ final state at $\sqrt{s} = 13$ TeV with the ATLAS detector [Eur. Phys. J. C 83 (2023) 774]
- Fiducial and differential cross-section measurements for the vector-boson-fusion production of the Higgs boson in the $H \rightarrow WW^* \rightarrow ev\mu v$ decay channel at 13 TeV with the ATLAS detector [Phys. Rev. D 108, 072003]
- Measurements of the Higgs boson production cross section and couplings in the WW boson pair decay channel in proton-proton collisions at $\sqrt{s} = 13$ TeV [Eur. Phys. J. C 83 (2023) 667]
- Constraints on anomalous Higgs boson couplings from its production and decay in the WW channel [CMS-PAS-HIG-22-008]

Run 2 ggF $H \rightarrow WW^* \rightarrow e\nu\mu\nu$ differential XS at ATLAS [Eur. Phys. J. C 83 (2023) 774]

- $H \rightarrow WW^* \rightarrow e\nu\mu\nu$
 - ν in W decay \rightarrow impossible to fully reconstruct final states ;-(
 - Lower bkg in lepton final states \rightarrow competitive with cleaner $\gamma\gamma/ZZ!$;-)
 - ggF production: good sensitivity in full $p_T^H \rightarrow$ more comprehensive than boosted hadronic final states
 - Other modes fixed as bkg
 - **DF lepton final states** \rightarrow avoid **Drell-Yan** bkg; $N_i \leq 1 \rightarrow$ avoid **top** bkg
- Improvements comparing to previous analysis
 - More data, more differential variables
 - Previously used counting approach to subtract bkg \rightarrow Now fit to kinematic variable (m_T): sensitivity improved, more comprehensive syst treatments

Run 2 VBF $H \rightarrow WW^* \rightarrow e\nu\mu\nu$ fiducial/differential XS at ATLAS [Phys. Rev. D 108, 072003]

- VBF: second most H production (3.78 pb, <u>LHCHXS</u>) with large Δy_{ii} , m_{ii} ; Directly probe H-V coupling
 - Others modes as bkg

- $\sigma_{fid} = 1.68 \pm 0.33(stat) \pm 0.23(syst)$ fb, consistent with SM
- Constrain d-6 operators in EFT to probe anomalous couplings
- **Improvement** wrt previous VBF coupling analysis: **selections optimizied** to maximize sig significance in fiducial/differential regions, to minimize sig modelling/bkg uncertainties

$H \rightarrow \tau \tau$

Largest BR (6%, <u>LHCHXS</u>) of H to leptonic decays Unique opportunity to study Yukawa coupling

- Measurement of the highly Lorentz-boosted Higgs boson cross section in the decay mode of a pair of τ leptons in proton-proton collisions at $\sqrt{s} = 13$ TeV [CMS-PAS-HIG-21-017]
- Search for dark matter produced in association with a Higgs boson decaying to tau leptons at $\sqrt{s} = 13$ TeV with the ATLAS detector [JHEP 09 (2023) 189]
- Searches for lepton-flavour-violating decays of the Higgs boson into $e\tau$ and $\mu\tau$ in $\sqrt{s} = 13$ TeV pp collisions with the ATLAS detector [JHEP 07 (2023) 166]
 - Search for the lepton-flavor violating decay of the Higgs boson and additional Higgs bosons in the $e\mu$ final state in protonproton collisions at $\sqrt{s} = 13$ TeV [Phys. Rev. D 108 (2023) 072004]

Run 2 boosted $H \rightarrow \tau \tau$ **XS at CMS** [CMS-PAS-HIG-21-017]

- Measure **boosted** $H \rightarrow \tau \tau$ XS for the **first time!** Sensitive to BSM
 - $p_T^H > 250 \text{ GeV}, \Delta R_{\tau\tau} < 0.8; \tau \text{ decay: } \mu \tau_h, e \tau_h, \tau_h \tau_h, e \mu$
- Collimated τ_h pair \rightarrow Single jet: dedicated algorithm to resolve
 - > Clustered in a large-R jet \rightarrow Reversed for two sub-jets consistent with $\tau \rightarrow$ identify τ_h and reject bkg (HPS algorithm)
- Categorization: multi-class NN
- $\mu = 1.64^{+0.68}_{-0.54}$, **3.5** σ (**2.2** σ) significance
- $\sigma_{fid} = 1.96^{+0.86}_{-0.69}$ fb, consistent with SM (1.20 \pm 0.20 fb); Differential XS measured in p_T^H , p_T^{j1}

Largest BR (58%, <u>LHCHXS</u>)

Fully reconstructed

Overwhelmed by QCD background

ttH/tH good t in

Yukawa coupling with the heaviest fermion, sensitive to test SM/BSM

Probe H-V/t coupling and interference in tH

Sensitive to the relative sign of κ_t/κ_V

- Measurement of the Higgs boson production via vector boson fusion and its decay into bottom quarks in protonproton collisions at $\sqrt{s} = 13$ TeV [arXiv:2308.01253]
- Search for boosted Higgs bosons produced via vector boson fusion in the $H \rightarrow b\bar{b}$ decay mode using LHC proton-proton collision data at $\sqrt{s} = 13$ TeV [CMS-PAS-HIG-21-020]
- Measurement of high-momentum Higgs boson production in association with a vector boson in the *qqbb* final state with the ATLAS detector [ATLAS-CONF-2023-067]
- Measurement of the ttH and tH production rates in the $H \rightarrow b\bar{b}$ decay channel with 138 fb⁻¹ of proton-proton collision data at $\sqrt{s} = 13$ TeV [CMS-PAS-HIG-19-011]

Run 2 VBF $H \rightarrow bb$ coupling at CMS [arXiv:2308.01253]

Run 2 boosted VBF $H \rightarrow bb$ at CMS [CMS-PAS-HIG-21-020]

- When $p_T^H > 450$ GeV, dominant ggF production fraction decreases from 87% to 50%
- ▶ Measure boosted VBF $H \rightarrow bb$ for the first time ($p_T^H > 450$ GeV)!
- **Boosted** *bb*: single large-R jet, efficient b-tagging, reduced bkg and improved m_{bb} resolution wrt resolved
 - *bb* pair isolated by **DEEPDOUBLEBVL-V2 jet tagger**, improving sig significance by a factor of 2 wrt <u>previous search</u>
 - Most powerful to explore H at high pT! Not only the first boosted VBF measurement, but also the most precise boosted ggF measurement to date!

Run 2 boosted V(qq)H(bb) at ATLAS [ATLAS-CONF-2023-067]

V(lep)H(bb): most sensitive for *H* → *bb* observation [ATLAS, <u>CMS]</u>

Effective triggers, suppress large QCD bkg

First V(qq)H(bb) measurement at high p_T^H ! Larger $B(V \rightarrow qq)$, sensitive to new physics

• Both large-R jets, efficient W/Z, $H \rightarrow bb$ tagging algorithms

Bkg: dominant data-driven QCD, others modeled by MC

Run 2 ttH/tH(bb) at CMS [CMS-PAS-HIG-19-011]

ttH/tH(bb): directly probe H - t/b coupling

Challenge: combinatorial bkg with **multiple b jets** \rightarrow **no unambiguous way to reconstruct** $m_H \rightarrow$ **ANNs** approach

$$\mu_{ttH} = 0.33 \pm 0.26 (\pm 0.17(stat) \pm 0.21(syst))$$

 $\mu_{tH} < 14.6 \ (19.3^{+9.2}_{-6.0})$ at 95% CL

Improvements wrt previous analyses: Cover **all** $t\bar{t}$ **decays**; ANN approach; **Improved b-tagging**; Latest $t\bar{t} + b\bar{b}$ bkg modelling

Rare process; Higgs to invisible decay

- Determining the relative sign of the Higgs boson couplings to W and Z bosons using VBF WH production with the ATLAS detector [ATLAS-CONF-2023-057]
- Evidence for the Higgs boson decay to a Z boson and a photon at the LHC [arXiv:2309.03501]
- A search for decays of the Higgs boson to invisible particles in events with a top-antitop quark pair or a vector boson in proton-proton collisions at $\sqrt{s} = 13$ TeV [Eur. Phys. J. C 83 (2023) 933]
- Combination of searches for invisible decays of the Higgs boson using 139 fb⁻¹ of proton-proton collision data at $\sqrt{s} = 13$ TeV collected with the ATLAS experiment [Phys. Lett. B 842 (2023) 137963]
- Exotic Higgs decay
 - Search for exotic Higgs boson decays to a pair of pseudoscalars in the $\mu\mu bb$ and $\tau\tau bb$ final states in proton-proton collisions with the CMS experiment [CMS-PAS-HIG-22-007]
 - Search for an exotic decay of the Higgs boson into a Z boson and a pseudoscalar particle in proton-proton collisions at $\sqrt{s} = 13$ TeV [arXiv:2311.00130]

Relative sign of the κ_W/κ_Z determination in VBF WH at ATLAS [ATLAS-CONF-2023-057]

- Relative sign of κ_W/κ_Z is nearly unconstrained in current H coupling measurements
- VBF WH: constructive interference for negative κ_W/κ_Z → Enhancement in high pT → Sensitive to the sign at tree level, no further loop assumptions!
- Final state: $qq \rightarrow qqW(\rightarrow l\nu)H(\rightarrow bb)$

- With Run 2 data, $\mu_{\lambda_{WZ}=1} < 11.2 (9.4)$ at 95% CL, no excess above SM
- Negative sign of $\kappa_W / \kappa_Z (\lambda_{WZ} = -1)$ excluded with significance > 8σ !

$H \rightarrow Z\gamma$ evidence at the LHC [arXiv:2309.03501]

- $H \rightarrow Z\gamma$: rare decay, not observed; Sensitive to BSM via loops
- **Combine** ATLAS + CMS Run 2 $H \rightarrow Z(\rightarrow ll)\gamma$ analyses
- > 3.4 σ significance, first evidence!

Run 2 VH/ttH to invisible search at CMS [Eur. Phys. J. C 83 (2023) 933]

- **H** \rightarrow inv: $H \rightarrow ZZ^* \rightarrow 4\nu$ is the only decay in SM, <u>BR = 0.1%</u>
- VH/ttH: fully hadronic final states, first time at CMS
 - Boosted/Resolved ttH; Resolved VH complementing previous boosted search
- **DM** comprises **most of matter in universe**, while its nature is unknown
 - Possible candidate: WIMP (weakly interacting massive particle)

> Interpretation: Higgs as a portal between DM and SM particles for m_{DM} in [0.1 GeV, $m_H/2$] \rightarrow Complementary to direct light DM searches

H → inv combination at ATLAS [Phys. Lett. B 842 (2023) 137963]

Run 1 + Run 2 combination: Most sensitive direct constraints in ATLAS

Summary

- Since Higgs discovery, its measured properties are consistent with SM in an unprecedented accuracy
- Summarized recent couplings and XS measurements from ATLAS/CMS since last year!
- $H \rightarrow \gamma \gamma, H \rightarrow ZZ^* \rightarrow 4l$
 - Total/Fiducial XS firstly measured with early Run 3 data at ATLAS!
- $H \rightarrow WW$
 - ggF/VBF differential XS measured at ATLAS, coupling properties probed at CMS
- $H \rightarrow \tau \tau$: Measured boosted XS for the first time at CMS!
- $H \rightarrow bb$
 - Measured boosted VBF $H \rightarrow bb$ for the first time at CMS, most precise boosted ggF results to date!
 - First V(qq)H(bb) measurement at high p_T^H at ATLAS!
 - CMS released ttH/tH coupling results
- Rare process; Higgs to invisible decay
 - ATLAS excluded negative sign of κ_W/κ_Z ($\lambda_{WZ} = -1$) with significance > 8σ !
 - Observed first evidence of $H \rightarrow Z\gamma$ by combining ATLAS/CMS analyses!
 - Fully hadronic final states of VH/ttH to inv. particles measured first time at CMS
 - Most sensitive direct constraints of H \rightarrow inv obtained in ATLAS by combing Run 1 + 2 datasets

• Stay tuned with more exciting results!

Search for new physics in $H \rightarrow \gamma \gamma$ **at ATLAS [JHEP 07 (2023) 176]**

- Most analyses have certain model assumptions, either targeting a Higgs production or a BSM process
- Large fraction of signals may populate SR probed by SM measurements, while unknown BSM Higgs production can be outside those regions

- ► Model-independent search for new physics in $H \rightarrow \gamma \gamma$ in Run 2 at ATLAS
- Sensitivity of $H \rightarrow \gamma \gamma$ competitive: Better m_H resolution \rightarrow Relatively small bkg
- SR: defined to cover a wide range of signatures in association with Higgs (e, μ, τ_{had}, γ, MET, (b-)jets) with simple and mostly inclusive selections → Minimize model dependence

Target	Region	Detector level
Heavy	$\geq 3b$	$n_{b-\text{iet}} \ge 3,85\% \text{ WP}$
flavour	$\geq 4b$	$n_{b-\text{jet}} \ge 4,85\% \text{ WP}$
	≥4j	$n_{\text{jet}} \ge 4, \eta_{\text{jet}} < 2.5$
High jet	≥6j	$n_{\rm jet} \ge 6, \eta_{\rm jet} < 2.5$
	≥8j	$n_{\rm jet} \ge 8, \eta_{\rm jet} < 2.5$
activity	$H_{\rm T} > 500 {\rm GeV}$	$H_{\rm T} > 500 { m GeV}$
	$H_{\rm T} > 1000 {\rm ~GeV}$	$H_{\rm T} > 1000 { m ~GeV}$
	$H_{\rm T} > 1500 {\rm ~GeV}$	$H_{\rm T} > 1500 { m ~GeV}$
$E_{\mathrm{T}}^{\mathrm{miss}}$	$E_{\rm T}^{\rm miss}$ >100 GeV	$E_{\rm T}^{\rm miss} > 100 {\rm GeV}$
	$E_{\rm T}^{\rm miss}$ >200 GeV	$E_{\rm T}^{\rm miss} > 200 {\rm GeV}$
	$E_{\rm T}^{\rm miss}$ >300 GeV	$E_{\rm T}^{\rm miss} > 300 {\rm ~GeV}$
Тор	lb	$n_{\ell=e,\mu} \ge 1, n_{b-jet} \ge 1,70\% \text{ WP}$
	t _{lep}	$n_{\ell=e,\mu} = 1, n_{\text{jet}} = n_{b-\text{jet}} = 1,$ 70% WP
	t _{had}	$n_{\ell=e,\mu} = 0, n_{\text{jet}} = 3, n_{b\text{-jet}} = 1,$ 70% WP, BDT _{top} > 0.9
Lepton	≥1ℓ	$n_{\ell=e,\mu} \ge 1$
	2ℓ	$ee, \mu\mu, \text{ or } e\mu$
	2 <i>ℓ</i> -Z	$ee, \mu\mu, e\mu; m_{\ell\ell} - m_Z > 10 \text{ GeV}$ for same-flavour leptons
	SS-2ℓ	<i>ee</i> , $\mu\mu$, or $e\mu$ with same charge
	$\geq 3\ell$	$n_{\ell=e,\mu} \ge 3$
	$\geq 2\tau$	$n_{\tau,\text{had}} \ge 2$
Photon	$1\gamma - m_{\gamma\gamma}^{12}$	$n_{\gamma} \geq 3, m_{\gamma\gamma}$ defined with γ_1, γ_2
	$1\gamma - m_{\gamma\gamma}^{23}$	$n_{\gamma} \geq 3, m_{\gamma\gamma}$ defined with γ_2, γ_3

Search for new physics in $H \rightarrow \gamma \gamma$ **at ATLAS [JHEP 07 (2023) 176]**

- The same bkg modelling strategy applied to most SR: fit analytic functions of $m_{\gamma\gamma}$ in data
 - Exception in $\geq 3l$ SR : no sufficient statistics constraining bkg \rightarrow event count
- Measure σ(pp → H → γγ) (detector-level) for all SR, no significant excesses above SM; Detector efficiencies for several BSM benchmarks also performed to convert σ to particle-level

Run 2 $H \rightarrow ZZ \rightarrow 4l$ inclusive/differential XS at CMS [JHEP 08 (2023) 040]

- $H \rightarrow ZZ \rightarrow 4l$: Fully reconstructed; Large sig-to-bkg ratio \rightarrow one of the pillars for characterizing H!
- Fiducial
 - Complementary to characterize H production/decay
 - Less model-dependence to match detector acceptance and reco-level selections, corrected for detector effects (unfolding)
 - > Allowing direct comparison with latest/wide variety of predictions (insensitive to theory errors)

$p_{\mathrm{T}} > 20 \mathrm{GeV}$				
$p_{\mathrm{T}} > 10 \mathrm{GeV}$				
$p_{\mathrm{T}} > 7(5) \mathrm{GeV}$				
$ \eta <$ 2.5 (2.4)				
$< 0.35 p_{\mathrm{T}}$				
Event topology				
Existence of at least two same-flavor OS lepton pairs, where leptons satisfy criteria above				
$40 < m_{Z_1} < 120 \text{GeV}$				
$12 < m_{Z_2}^2 < 120 \text{GeV}$				
$\Delta R(\ell_i, \ell_j) > 0.02$ for any $i \neq j$				
$m_{\ell^+\ell'^-} > 4\mathrm{GeV}$				
$105 < m_{4\ell} < 160{ m GeV}$				

Requirements for the $H \rightarrow ZZ \rightarrow 4\ell$ fiducial phase space

Run 2 H inclusive/differential XS in $H \rightarrow ZZ \rightarrow 4l$ at CMS

- Inclusive: $\sigma_{\text{fid}} = 2.73 \pm 0.26 \text{ fb} = 2.73 \pm 0.22(stat) \pm 0.15(syst) \text{ fb}$, agree with SM (2.86 ± 0.15 fb)
 - Analysis improved with latest CMS Run 2 calibrations → ~40% reduction of leading lepton RECO/selection efficiency systs
- Output (Double-)Differential: sensitive to H production and decay to 4I → comprehensive characterization of final states and fiducial phase space

Page 27

Run 2 ggF $H \rightarrow WW^* \rightarrow ev\mu v$ differential XS at ATLAS [Eur. Phys. J. C 83 (2023) 774]

- $H \rightarrow WW$: one of the most sensitive channel to fully characterize H properties
 - Second largest BR (21%, LHCHXS) ;-)
 - v in W decay \rightarrow impossible to fully reconstruct final states ;-(
 - ggF $H \rightarrow WW$: good sensitivity in full $p_T^H \rightarrow$ more comprehensive than boosted $H \rightarrow bb$
 - Lower bkg than $H \rightarrow bb$ in lepton final states \rightarrow competitive with cleaner $\gamma\gamma/ZZ!$
 - $e\nu\mu\nu$ final states: avoid large Drell-Yan bkg (SF)

Fiducial phase space: $N_j \leq 1 \rightarrow$ avoid large top bkg;

Category	$N_{\text{jet},(p_{\text{T}}>30 \text{ GeV})} = 0$ $N_{\text{jet},(p_{\text{T}}>30 \text{ GeV})} = 1$			
	Exactly two isolated leptons $(\ell = e, \mu)$ with opposite charge $p_{\rm T}^{\rm lead} > 22 GeV$, $p_{\rm T}^{\rm sublead} > 15 GeV$			
Pre-Selection	$ \eta_e < 2.5, \ \eta_\mu < 2.5, \ p_{\rm T}^{\rm jet} > 30 GeV$			
	$m_{\ell\ell} > 10 GeV$			
	$E_{\rm T}^{\rm miss, \ track} > 20 GeV$			
Background rejection	$N_{b\text{-jet},(p_{\mathrm{T}}>20\mathrm{GeV})} = 0$			
	$\Delta \phi_{\ell\ell,E_{\rm T}^{\rm miss}} > \pi/2 \qquad \qquad \max(m_{\rm T}^{\ell}) > 50 GeV$			
	$p_{\rm T}^{\ell\ell} > 30 GeV$ $m_{\tau \tau} < m_Z - 25 GeV$			
	$m_{\rm T} > 80 GeV$			
$H \rightarrow WW^* \rightarrow \ell \nu \ell \nu$	$m_{\ell\ell} < 55 GeV$			
topology	$\ \Delta \phi_{\ell\ell} < 1.8$			

Run 2 ggF $H \rightarrow WW^* \rightarrow ev\mu v$ differential XS at ATLAS [Eur. Phys. J. C 83 (2023) 774]

- $H \rightarrow WW$: important decay states to fully characterize H properties
 - Though ν in W decay \rightarrow impossible to fully reconstruct final states; While large BR \rightarrow competitive with cleaner $\gamma\gamma/ZZ$!
 - ggF $H \rightarrow WW$: good sensitivity for detailed study in full $p_T^H \rightarrow$ more comprehensive than boosted $H \rightarrow bb$
 - $e\nu\mu\nu$ final states: avoid large Drell-Yan bkg
- Fiducial phase space: $N_i \le 1 \rightarrow$ avoid top bkg; VBF, VH fixed to SM
- (Double-)differential variable: H, jet kinematic sensitive to production; Leptonic kinematic sensitive to WW decay
 - *p*^{*H*}_{*T*}: balanced by soft quark/gluon emission → test non-perturbative effects, soft-gluon emission modelling, loop effects sensitive to H-b/c Yukawa couplings in low *p*^{*H*}_{*T*} regions; High *p*^{*H*}_{*T*} sensitive to perturbative QCD effects, BSM contributions
 - N_j ; $|y_{j0}|$: Hard gluon/quark emission modelling, probe higher order QCD contributions
 - Leptonic kinematic: Sensitive to WW decay; y_{ll}: sensitive to PDF; cos θ*: longitudinally boost-invariant, sensitive to spin structure of diparticle pairs

Run 2 anomalous H couplings constraints in $H \rightarrow WW$ at CMS [CMS-PAS-HIG-22-008]

- H quantum numbers consistent with SM: $J^{PC} = 0^{++}$; While small anomalous couplings not ruled out
- \blacktriangleright New analysis: study tensor structure of Hgg/HVV coupling in BSM, search for anomalous effects

$$A(HV^{1}V^{2}) \sim \left| a_{1}^{VV} + \frac{\kappa_{1}^{VV} q_{V1}^{2} + \kappa_{2}^{VV} q_{V2}^{2}}{\left(\Lambda_{1}^{VV}\right)^{2}} \right| m_{V1}^{2} \epsilon_{V1}^{*} \epsilon_{V2}^{*} + \frac{1}{v} a_{2}^{VV} f_{\mu\nu}^{*(1)} f^{*(2),\mu\nu} + \frac{1}{v} a_{3}^{VV} f_{\mu\nu}^{*(1)} \tilde{f}^{*(2),\mu\nu} + \frac{1}{v} a_{3}^{VV} f_{\mu\nu}^{*(2),\mu\nu} + \frac{1}{v} a_{3}^{VV} f_{\mu\nu}^{*(1)} \tilde{f}^{*(2),\mu\nu} + \frac{1}{v} a_{3}^{VV}$$

- > Fractional contribution of anomalous couplings: $f_{ai} = \frac{|a_i|^2 \sigma_i}{\sum_i |a_i|^2 \sigma_i} \operatorname{sign}\left(\frac{a_i}{a_1}\right)$
- Target: ggF, VBF, VH with DF lepton final states
- Jet kinematic information combined using ME techniques \rightarrow increase sensitivity to anomalous effects

- Interpret HVV couplings in SMEFT, measured simultaneously
- All consistent with SM, significantly surpass the previous analysis [Phys. Lett. B 759 (2016) 672] in precision and coverage

Run 2 LFV search of $H \rightarrow e\tau$ or $\mu\tau$ at ATLAS [JHEP 07 (2023) 166]

- Neutrino oscillation observation → LFV realized, lepton flavor not an exact symmetry → BSM contribute to flavor changing dynamics
- Direct search of $H \rightarrow e\tau$ or $\mu\tau$: most stringent bounds on LFV
 - Final state: $l\tau_{l'}$, $l\tau_h$; $l\tau_{l'}$: only DF leptons to avoid large Drell-Yan bkg
- MVA developed to improve sensitivity

Run 2 LFV search of $H \rightarrow e\tau$ or $\mu\tau$ at ATLAS [JHEP 07 (2023) 166]

- $B(H \rightarrow e\tau) < 0.20\%$ (0.12%), $B(H \rightarrow \mu\tau) < 0.18\%$ (0.09%) at 95% CL with MC template bkg method, consistent with SM within 2.1 σ
- $B(H \to \mu\tau) B(H \to e\tau) = (0.25 \pm 0.10)\%$ in $l\tau_{l'}$ with symmetry bkg method (prompt-lepton bkg are symmetric under exchange of e/μ), compatible with 0 within 2.5σ

- Observed results more stringent by a factor of 2.5 (1.6) than previous $H \rightarrow e\tau (H \rightarrow \mu\tau)$ analysis, expected results improved by a factor of 3.1 (4.1)
 - Significantly more sophisticated analysis methods besides larger dataset: lepton assignment in the H rest frame of $l\tau_{l'}$ channel, symmetry bkg method, VBF category, more advanced MVA classifiers, improved τ ID

Run 2 LFV search of SM H and additional H in eµ final states at CMS [Phys. Rev. D 108 (2023) 072004]

- $B(H \rightarrow e\mu)$ can be indirectly obtained from $\mu \rightarrow e\gamma$ search, while assume SM $Y_{\mu\mu}$, Y_{ee} and the flavor changing neutral current dominated by H \rightarrow Direct search is important!
- Analysis optimized for ggF/VBF, $B(H \rightarrow e\mu) < 4.4(4.7) \times 10^{-5}$ at 95% CL

No excess observed; Most stringent from direct searches!

• Search for additional H with $m_X < 2m_W$ in LFV is important to constrain Type III 2HDM \rightarrow First direct LFV search for m_X in [110, 160] GeV

> Largest excess: $m_X = 146$ GeV, 3.8σ (2.8σ) local (global) significance, more data needed to clarify the nature of excess

Run 2 $H \rightarrow a_1 a_1 \rightarrow \mu \mu b b / \tau \tau b b$ at CMS [CMS-PAS-HIG-22-007]

- H to BSM particles not ruled out → leeway for new physics, crucial to examine SM extensions (ie. 2HDM + S)
- Phase space: ggF, VBF, $H \rightarrow a_1 a_1 \rightarrow \mu \mu b b / \tau \tau b b$, pseudoscalar a_1 in [12, 60] GeV
 - $\tau\tau bb$: large BR; Final state: $\tau_l \tau_h$ or $\tau_l \tau_l$ with DF leptons
 - $\mu\mu bb$: smaller BR, while excellent muon RECO efficiency and $m_{\mu\mu}$ resolution \rightarrow competitive to $\tau\tau bb^{r}$
- $B(H \rightarrow a_1 a_1)$: dependent to types of 2HDM + S, m_{a1} , tan β
- Most stringent limits to date! Significant improvements wrt earlier measurements
 - $\mu\mu bb$: more thorough studies of sig properties; $\tau\tau bb$: benefit from DNN based categorization

Run 2 $H \rightarrow Za$ search at CMS [arXiv:2311.00130]

- ALPs: Axion-like particles, used to address strong CP problem, can also explain observed <u>anomaly in μ magnetic moment</u>
- $H \rightarrow Z(\rightarrow ll)a(\rightarrow \gamma\gamma)$, m_a in [1, 30] GeV: complementary and first search of this channel for ALPs at LHC
- Upper limits set on $\sigma(pp \to H)B(H \to Za \to 2l + 2\gamma)$
 - Excess above bkg observed at $m_a = 3$ GeV with 2.6 σ (1.3 σ) local (global) significance
 - Interpreted into EFT parameter of ALPs: C_{ZH}^{eff}/Λ

