

Recent mass, width and CP results from ATLAS and CMS

on behalf of ATLAS/CMS Collaborations

20th Workshop of the LHC Higgs Working Group

13/11/2023

Overview

Higgs boson discovery was announced on the 4th of July 2012.

Since then, much effort has been put into determining its properties

\sqrt{s} Production cross section (in pb) for $m_H = 125 \text{GeV}$						
(TeV)						
	ggF	VBF	WH	ZH	$t ar{t} H$	total
1.96	$0.95^{+17\%}_{-17\%}$	$0.065^{+8\%}_{-7\%}$	$0.13^{+8\%}_{-8\%}$	$0.079^{+8\%}_{-8\%}$	$0.004^{+10\%}_{-10\%}$	1.23
7	$16.9^{+5.5\%}_{-7.6\%}$	$1.24^{+2.2\%}_{-2.2\%}$	$0.58^{+2.2\%}_{-2.3\%}$	$0.34^{+3.1\%}_{-3.0\%}$	$0.09^{+5.6\%}_{-10.2\%}$	19.1
8	$21.4^{+5.4\%}_{-7.6\%}$	$1.60^{+2.1\%}_{-2.1\%}$	$0.70^{+2.1\%}_{-2.2\%}$	$0.42^{+3.4\%}_{-2.9\%}$	$0.13^{+5.9\%}_{-10.1\%}$	24.2
13	$48.6^{+5.6\%}_{-7.4\%}$	$3.78^{+2.1\%}_{-2.1\%}$	$1.37^{+2.0\%}_{-2.0\%}$	$0.88^{+4.1\%}_{-3.5\%}$	$0.50^{+6.8\%}_{-9.9\%}$	55.1
14	$54.7^{+5.6\%}_{-7.4\%}$	$4.28^{+2.1\%}_{-2.1\%}$	$1.51^{+1.8\%}_{-1.9\%}$	$0.99^{+4.1\%}_{-3.7\%}$	$0.61^{+6.9\%}_{-9.8\%}$	62.1

H_{BR} @ m_H = 125 GeV

Istituto Mazionale di Fisica Nucleare Sezione di Roma

R.L. Workman *et al.* (Particle Data Group), Prog. Theor. Exp. Phys. **2022**, 083C01 (2022)

Overview

Higgs boson discovery was announced on the 4th of July 2012.

Since then, much effort has been put into determining its properties

	H _{BR}	@ m _H = 125	5 GeV
	Dec y channel	Branching ratio	Rel_upcort_inty
\sqrt{s} Production cross section (in pb) for $m_H = 125 \text{ GeV}$ (TeV)	$H \to \gamma \gamma$	$2.27 imes 10^{-3}$	2.1%
ggF VBF WH ZH $t\bar{t}H$ total	$H \rightarrow ZZ$	$2.62 imes 10^{-2}$	$\pm 1.5\%$
$1.96 0.95^{+17\%}_{-17\%} 0.065^{+8\%}_{-7\%} 0.13^{+8\%}_{-8\%} 0.079^{+8\%}_{-8\%} 0.004^{+10\%}_{-10\%} 1.23$	$H \rightarrow W^+ W^-$	$2.14 imes 10^{-1}$	$\pm 1.5\%$
$7 16.9^{+5.5\%}_{-7.6\%} \ 1.24^{+2.2\%}_{-2.2\%} \ 0.58^{+2.2\%}_{-2.3\%} \ 0.34^{+3.1\%}_{-3.0\%} \ 0.09^{+5.6\%}_{-10.2\%} \ 19.1$	$H \to \tau^+ \tau^-$	6.27×10^{-2}	$\pm 1.6\%$
The Higgs boson mass is one of the	most impo	ortant free pa	arameters of
the Standard Model.	H ightarrow c ar c	$2.89 imes 10^{-2}$	+5.5% -2.0%
$14 54.7^{+5.6\%}_{-7.4\%} \ 4.28^{+2.1\%}_{-2.1\%} \ 1.51^{+1.8\%}_{-1.9\%} \ 0.99^{+4.1\%}_{-3.7\%} \ 0.61^{+6.9\%}_{-9.8\%} \ 62.1$	$H \to Z \gamma$	$1.53 imes 10^{-3}$	$\pm 5.8\%$
	TT		

It is crucial to properly determine its value since it could be used to put constraint on all the others Higgs boson properties (e.g cross section, branching ratio)

Overview

Higgs boson discovery was announced on the 4th of July 2012.

Since then, much effort has been put into determining its properties Phys. Rev. Lett. 114 (2015) 191803

		m _н = 12	5.09 GeV ±	0.24 GeV
Due due tien en en tien (in 1) (105 0 - 37	Decay channel	Branching ratio	Rel. uncertainty
\sqrt{s} Production cross section (in pb) for r (TeV)	$m_H = 125 \text{ GeV}$	$H \to \gamma \gamma$	2.27×10^{-3}	2.1%
ggF VBF WH ZH	$tar{t}H$ total	$H \to 7.7$	2.62×10^{-2}	L1 50Z
$1.96 \ 0.95^{+17\%}_{-17\%} \ 0.065^{+8\%}_{-7\%} \ 0.13^{+8\%}_{-8\%} \ 0.079^{+8\%}_{-8\%}$	$0.004^{+10\%}_{-10\%}$ 1.2	Best fit v	alue fro	m Run 1
$7 16.9^{+5.5\%}_{-7.6\%} \ 1.24^{+2.2\%}_{-2.2\%} \ 0.58^{+2.2\%}_{-2.3\%} \ 0.34^{+3.1\%}_{-3.0\%}$	$0.09^{+5.6\%}_{-10.2\%}$ 19.1	$H \to \tau^+ \tau^-$	6.27×10^{-2}	$\pm 1.6\%$
8 $21.4^{+5.4\%}_{-7.6\%} 1.60^{+2.1\%}_{-2.1\%} 0.70^{+2.1\%}_{-2.2\%} 0.42^{+3.4\%}_{-2.9\%}$	$0.13^{+5.9\%}_{-10.1\%}$ 24.2	$H ightarrow b ar{b}$		+1.2%
13 $48.6^{+5.6\%}_{-7.4\%} 3.78^{+2.1\%}_{-2.1\%} 1.37^{+2.0\%}_{-2.0\%} 0.88^{+4.1\%}_{-3.5\%}$	$0.50^{+6.8\%}_{-9.9\%}$ 55.1	$H \rightarrow c\bar{c}$	$(\Gamma \Gamma)$	-1.3% +5.5%
14 54.7 $^{+5.6\%}_{-7.4\%}$ 4.28 $^{+2.1\%}_{-2.1\%}$ 1.51 $^{+1.8\%}_{-1.9\%}$ 0.99 $^{+4.1\%}_{-3.7\%}$	$0.61^{+6.9\%}_{-9.8\%}$ 62.1	$H \to Z\gamma$		$>$ $^{-2.0\%}_{\pm 5.8\%}$
		$H \to \mu^+ \mu^-$		$\pm 1.7\%$
			4 5	

Higgs boson mass measurement is performed using $H \rightarrow ZZ^* \rightarrow 4\ell$ and $H \rightarrow \gamma\gamma$, thanks to their mass resolution (1-2%) and complete reconstruction of the final state.

5

Higgs boson mass measurement is performed using $H \rightarrow ZZ^* \rightarrow 4\ell$ and $H \rightarrow \gamma\gamma$, thanks to their mass resolution (1-2%) and complete reconstruction of the final state.

- Implemented beam spot constraint to improve muon reconstruction
- Per-event mass resolution used to categorise events into 9 mutually exclusive bins

Higgs boson mass measurement is performed using $H \rightarrow ZZ^* \rightarrow 4\ell$ and $H \rightarrow \gamma\gamma$, thanks to their mass resolution (1-2%) and complete reconstruction of the final state.

- Implemented beam spot constraint to improve muon reconstruction
- Per-event mass resolution used to categorise events into 9 mutually exclusive bins
- m_H single channel best measurement

$m_H = 125.08 \pm 0.12 \ [\pm 0.10(stat) \pm 0.05(syst)] \ GeV$

Higgs boson mass measurement is performed using $H \rightarrow ZZ^* \rightarrow 4\ell$ and $H \rightarrow \gamma\gamma$, thanks to their mass resolution (1-2%) and complete reconstruction of the final state.

- ME discriminant combined with p_T and η of the 4-lepton system in a DNN discriminant
- Per-event mass resolution estimated by using a quantile regression neural network

Higgs boson mass measurement is performed using $H \rightarrow ZZ^* \rightarrow 4\ell$ and $H \rightarrow \gamma \gamma$, thanks to their mass resolution (1-2%) and complete reconstruction of the final state.

 $m_H = 124.94 \pm 0.18 \ [\pm 0.17(stat) \pm 0.03(syst)] \ GeV$

Higgs boson mass measurement is performed using $H \rightarrow ZZ^* \rightarrow 4\ell$ and $H \rightarrow \gamma\gamma$, thanks to their mass resolution (1-2%) and complete reconstruction of the final state.

Improved photon energy scale adding correction as a function of $E_{\rm T}$

Source	Impact $[MeV]$
Photon energy scale	83
$Z \to e^+ e^-$ calibration	59
$E_{\rm T}$ -dependent electron energy scale	44
$e^{\pm} \to \gamma$ extrapolation	30
Conversion modelling	24
Signal–background interference	26
Resolution	15
Background model	14
Selection of the diphoton production vertex	5
Signal model	1
Total	90

 $m_H = 125.22 \pm 0.14 \ [\pm 0.11(stat) \pm 0.09(syst)] \ GeV$

Higgs boson mass measurement is performed using $H \rightarrow ZZ^* \rightarrow 4\ell$ and $H \rightarrow \gamma\gamma$, thanks to their mass resolution (1-2%) and complete reconstruction of the final state.

 $m_H = 125.11 \pm 0.11 \ [\pm 0.09(stat) \pm 0.06(syst)] \ GeV$

Higgs boson mass measurement is performed using $H \rightarrow ZZ^* \rightarrow 4\ell$ and $H \rightarrow \gamma\gamma$, thanks to their mass resolution (1-2%) and complete reconstruction of the final state.

Most **CMS** recent result on Higgs mass [**36 fb**⁻¹]

Source	Contribution (GeV)
Electron energy scale and resolution corrections	0.10
Residual $p_{\rm T}$ dependence of the photon energy scale	0.11
Modelling of the material budget	0.03
Nonuniformity of the light collection	0.11
Total systematic uncertainty	0.18
Statistical uncertainty	0.18
Total uncertainty	0.26

Higgs boson mass measurement is performed using $H \rightarrow ZZ^* \rightarrow 4\ell$ and $H \rightarrow \gamma \gamma$, thanks to their mass resolution (1-2%) and complete reconstruction of the final state. 35.9 fb⁻¹ (13 TeV) CMS Events / GeV 20000 All categories Most **CMS** recent result Data S+B fit on Higgs mass [36 fb⁻¹] B component ±1σ ±2 σ Contribution (GeV) Source 15000 Electron energy scale and resolution corrections 0.10 10000 Residual $p_{\rm T}$ dependence of the photon energy scale 0.11 Modelling of the material budget 0.03 5000 Nonuniformity of the light collection 0.11 Total systematic uncertainty 0.18 <u>Phys. Lett. B 805 (2020) 135425</u>

 $m_H = 125.78 \pm 0.26 \ [\pm 0.18(stat) \pm 0.18(syst)] \ GeV$

Statistical uncertainty

Total uncertainty

F. Errico, 20th Workshop of the LHC Higgs Working Group

B component subtracted

160

180

170 m_{yy} (GeV)

600

400

-200 -400

100

110

120

130

140

150

0.18

0.26

Higgs boson mass measurement is performed using $H \rightarrow ZZ^* \rightarrow 4\ell$ and $H \rightarrow \gamma\gamma$, thanks to their mass resolution (1-2%) and complete reconstruction of the final state.

 $m_H = 125.38 \pm 0.14 \ [\pm 0.11(stat) \pm 0.08(syst)] \ GeV$

Predicted precisely within the SM: 4.07 MeV*

Differences with this value could be hints of modifications of the H boson couplings to the SM particles and/or a test for invisible decays

Due to its small value, difficulties in directly measuring it. Measured in the $H \rightarrow ZZ$ channel, full Run 2 data, comparing on-shell and off-shell production, in different decay channels

*R.L. Workman et al. (Particle Data Group), Prog. Theor. Exp. Phys. 2022, 083C01 (2022)

16

Difficulties in directly measuring the width (4.07 MeV^{*}) due to detector resolution.

Measured in the $H \rightarrow ZZ$ channel, full Run 2 data, comparing on-shell and off-shell production, in different decay channels

ohysletb.2023.138223

17

Difficulties in directly measuring the width (4.07 MeV^{*}) due to detector resolution.

Measured in the $H \rightarrow ZZ$ channel, full Run 2 data, comparing on-shell and off-shell production, in different decay channels

Looking for anomalous Higgs boson couplings to vector bosons

$$\mathcal{A}(\text{HVV}) \sim \left[a_1^{\text{VV}} + \frac{\kappa_1^{\text{VV}} q_1^2 + \kappa_2^{\text{VV}} q_2^2}{\left(\Lambda_1^{\text{VV}}\right)^2} \right] m_{\text{V1}}^2 \epsilon_{\text{V1}}^* \epsilon_{\text{V2}}^* + a_2^{\text{VV}} f_{\mu\nu}^{*(1)} f^{*(2)\mu\nu} + a_3^{\text{VV}} f_{\mu\nu}^{*(1)} \tilde{f}^{*(2)\mu\nu}$$

18

Looking for anomalous Higgs boson couplings to vector bosons

$$\mathcal{A}(\text{HVV}) \sim \begin{bmatrix} a_1^{\text{VV}} + \frac{\kappa_1^{\text{VV}} q_1^2 + \kappa_2^{\text{VV}} q_2^2}{\left(\Lambda_1^{\text{VV}}\right)^2} \end{bmatrix} m_{\text{V1}}^2 \epsilon_{\text{V1}}^* \epsilon_{\text{V2}}^* + a_2^{\text{VV}} f_{\mu\nu}^{*(1)} f^{*(2)\mu\nu} + a_3^{\text{VV}} f_{\mu\nu}^{*(1)} \tilde{f}^{*(2)\mu\nu}$$
CP odd - AC
(the only no-zero term)

19

20

Istituto Nazionale di Fisica Nucleare

Looking for anomalous Higgs boson couplings to vector bosons

$$\mathcal{A}(\text{HVV}) \sim \left[a_1^{\text{VV}} + \frac{\kappa_1^{\text{VV}} q_1^2 + \kappa_2^{\text{VV}} q_2^2}{\left(\Lambda_1^{\text{VV}}\right)^2} \right] m_{\text{V1}}^2 \epsilon_{\text{V1}}^* \epsilon_{\text{V2}}^* + a_2^{\text{VV}} f_{\mu\nu}^{*(1)} f^{*(2)\mu\nu} + a_3^{\text{VV}} f_{\mu\nu}^{*(1)} \tilde{f}^{*(2)\mu\nu}$$

Looking for anomalous Higgs boson couplings to vector bosons

SM vs EFT model

Δφ_{jj} sensitive to anomalous couplings between H and V

22

stituto Nazionale di Fisica Nucleare 🛛 🗛

Looking for anomalous Higgs boson couplings to vector bosons

Looking for anomalous Higgs boson couplings to fermions

$$\mathcal{L}_{t\bar{t}H} = \frac{m_t}{v} \bar{\psi}_t (\kappa_t + i\gamma_5 \tilde{\kappa}_t) \psi_t H$$

23

Looking for anomalous Higgs boson couplings to fermions

$$\mathcal{L}_{t\bar{t}H} = \frac{m_{t}}{v} \bar{\psi}_{t} (\kappa_{t} + i\gamma_{5}\tilde{\kappa}_{t}) \psi_{t} H$$
CP even Yukawa
Coupling (SM)
CP odd Yukawa

24

25

stituto Nazionale di Fisica Nucleare

Looking for anomalous Higgs boson couplings to fermions

Conclusion

Higgs boson properties, measured by the ATLAS and CMS collaborations have been presented.

The Higgs boson mass, free parameter of the SM, is known with a precision of the order to 0.1%

- ATLAS best results (from full Run 2 combination): m_H = 125.11±0.11 MeV
- CMS best results (from HZZ full Run 2): $m_H = 125.08 \pm 0.12$ MeV

The best width measurement is extracted comparing on-shell with off-shell decay region:

• ATLAS (4L +2L2v): $\Gamma = 4.5^{+3.3} M_{\odot} V$

• CMS (4L only):
$$\Gamma_{H} = 4.5^{+5.5}_{-2.5} MeV$$

 $\Gamma_{H} = 2.9^{+2.3}_{-1.7} MeV$

No indication of anomalous couplings with fermions or vector bosons.

26

Backup

Higgs boson mass measurement is performed using $H \rightarrow ZZ^* \rightarrow 4\ell$ and $H \rightarrow \gamma\gamma$, thanks to their mass resolution (1-2%) and complete reconstruction of the final state.

 $m_H = 124.94 \pm 0.18 \ [\pm 0.17(stat) \pm 0.03(syst)] \ GeV$

28

Higgs boson mass measurement is performed using $H \rightarrow ZZ^* \rightarrow 4\ell$ and $H \rightarrow \gamma\gamma$, thanks to their mass resolution (1-2%) and complete reconstruction of the final state.

Most **ATLAS** recent result on Higgs mass [**139** fb⁻¹]

- Signal-background discrimination enhanced employing a NN (D_{NN})
- Event-level m₄₁ resolution estimated using a QRNN
- Signal parametrisation improved profits of the new discriminant D_{NN}

 $m_{H} = 124.99 \pm 0.19 \ [\pm 0.18(stat) \pm 0.04(syst)] \ GeV$

Higgs boson mass measurement is performed using $H \rightarrow ZZ^* \rightarrow 4\ell$ and $H \rightarrow \gamma\gamma$, thanks to their mass resolution (1-2%) and complete reconstruction of the final state.

Most **CMS** recent result on Higgs mass [**36 fb**⁻¹]

- Energy calibration profits of multivariate regression technique
- Residual differences between data and MC corrected with an ad-hoc multi-step method
- Event classification performed according to the production mode, mass resolution and the predicted signal-to-background ratio

 $m_H = 125.78 \pm 0.26 \ [\pm 0.18(stat) \pm 0.18(syst)] \ GeV$

TEILUTE VALUE Sezione di Roma

30

1. Main systematic uncertainties

	ATLAS	CMS
Η→γγ	 Zee calibration: 59 MeV E_T correction: 44 MeV Non-uniformity of the light collection: 30 MeV 	 Electron energy scale and resolution 0.05 - 0.3% -> 100 MeV Residual pT dependence of the energy scale correction 0.075 - 0.15% -> 110 MeV Non-uniformity of the light
		collection 0.16-0.45% —> 110 MeV
H→ZZ*→4ℓ	 muon momentum scale 28 MeV electron energy scale 19 MeV 	 4-lepton mass scale 0.03 - 0.15% (different for different final state) 4-lepton mass resolution 3-10%

31

Difficulties in directly measuring the width (4.07 MeV*) due to detector resolution.

Measured in the $H \rightarrow ZZ$ channel, full Run 2 data, comparing on-shell and off-shell production, in different decay channels

32

Nat.

Phys

(2022) 1329

33

Difficulties in directly measuring the width (4.07 MeV*) due to detector resolution.

Measured in the $H \rightarrow ZZ$ channel, full Run 2 data, comparing on-shell and off-shell production, in different decay channels

F. Errico, 20th Workshop of the LHC Higgs Working Group

ATLAS-CONF-2022-068

F. Errico, 20th Workshop of the LHC Higgs Working Group

Difficulties in directly measuring the width (4.07 MeV*) due to detector resolution.

Measured in the $H \rightarrow ZZ$ channel, full Run 2 data, comparing on-shell and off-shell production, in different decay channels

35

Difficulties in directly measuring the width (4.07 MeV*) due to detector resolution.

Measured in the $H \rightarrow ZZ$ channel, full Run 2 data, comparing on-shell and off-shell production, in different decay channels

F. Errico, 20th Workshop of the LHC Higgs Working Group

ATLAS-CONF-2022-068

37

38

39

F. Errico, 20th Workshop of the LHC Higgs Working Group

Nature 607, pages 52-59 (2022)

 $(\kappa_c < 7.6 @ 95 CL)$

Nature 607, pages 52-59 (2022)

F. Errico, 20th Workshop of the LHC Higgs Working Group

CMS

Istituto Nazionale di Fisica Nucleare 🗛 Sezione di Roi

 $-0.6 < \kappa_{\lambda} < 6.6$

 $-1.24 < \kappa_{\lambda} < 6.49$

 $-1.24 < \kappa_{\lambda} < 6.49$

 $-0.4 < \kappa_{\lambda} < 6.3$

Istituto Nazionale di Fisica Nucleare

44

Istituto Nazionale di Fisica Nucleare ATLAS

Sezione di Rom

$$\tilde{c}_{zz} = -\frac{s_{\rm w}^2 c_{\rm w}^2}{2\pi\alpha} a_3. \qquad f_{a3} = \frac{|a_3|^2 \sigma_3}{|a_1|^2 \sigma_1 + |a_2|^2 \sigma_2 + |a_3|^2 \sigma_3 + |\kappa_1|^2 \sigma_{\Lambda 1} + |\kappa_1^{Z\gamma}|^2 \sigma_{\Lambda 1}^{Z\gamma}} \, \operatorname{sgn}\left(\frac{a_3}{a_1}\right),$$

45

stituto Nazionale di Fisica Nucleare

Looking for anomalous Higgs boson couplings to vector bosons

Looking for anomalous Higgs boson couplings to fermions

$\mathcal{L}_{t\bar{t}H} = -\kappa'_t y_t \phi \bar{\psi_t} (\cos \alpha + i\gamma_5 \sin \alpha) \psi_t$

Istituto Nazionale di Fisica Nucleare 🗛