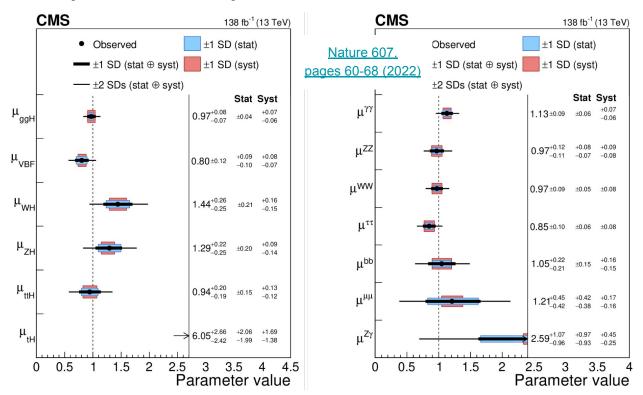
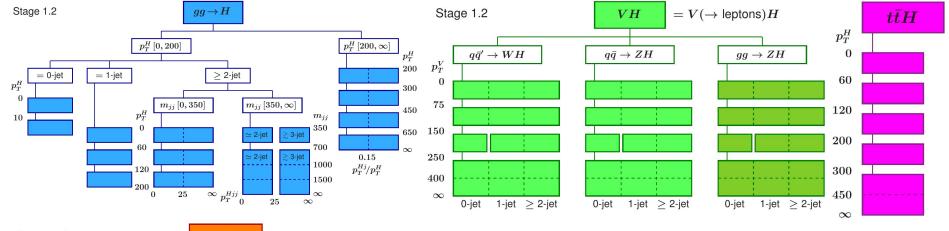
# STXS for Run 3 with focus on CP violation

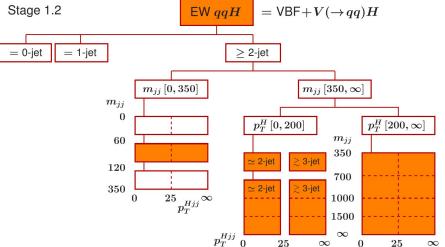

**Benedict Winter** 

universität freiburg





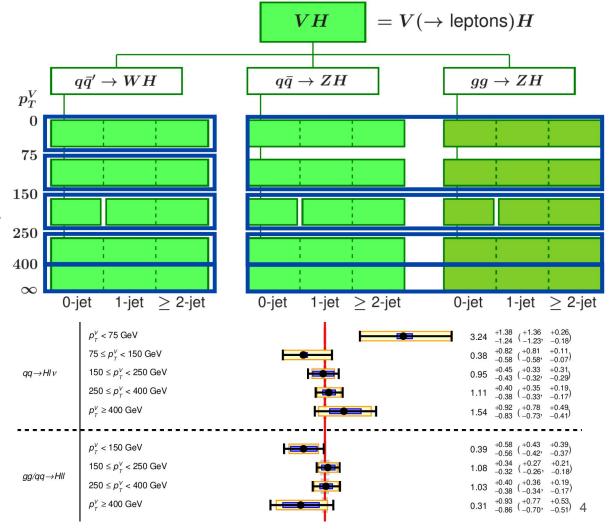

#### Simplified Template Cross Sections




STXS: Study production and decay rates per mode

Disclaimer: next slides show ATLAS <u>Nature 607</u>, <u>pages 52-59 (2022)</u>. No Run 2 CMS STXS combination yet afaik. ATLAS and CMS will have similar sensitivity

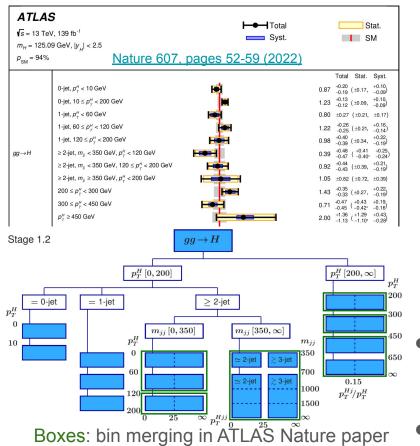
#### Simplified Template Cross Sections

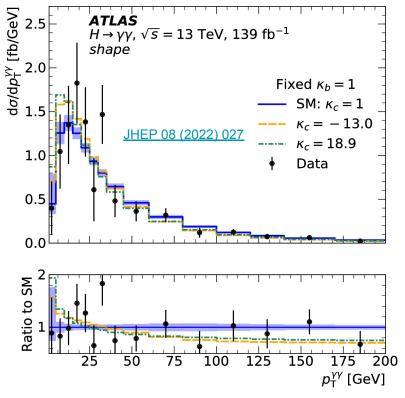





- Categorize Higgs production via key observables for each production mode
- Interpretation e.g. via EFT
- Same scheme for all decay channels and ATLAS/CMS, so can combine
- Discussions for Run 3 scheme will have to converge soon

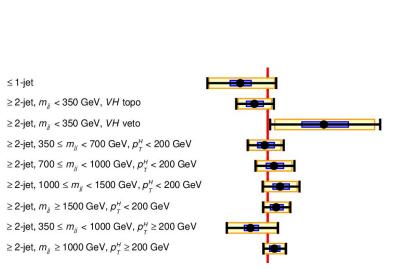
#### STXS for VH

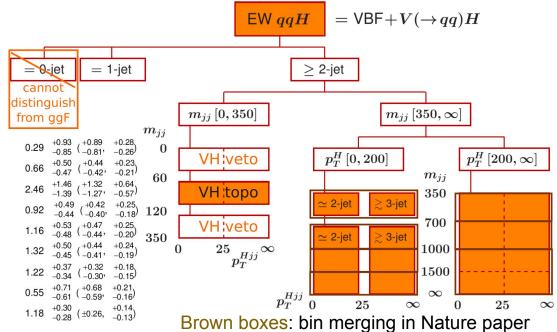

- Cannot distinguish  $qq \rightarrow H\ell\ell$  and  $gg \rightarrow H\ell\ell$  experimentally
- Already use all high p<sub>T</sub> bins.
  Define more to not run out?
- Split  $p_T^H$  instead of  $p_T^V$ ?
  - o  $p_T^V$  closer to  $Z(\rightarrow vv)H$ analysis ( $E_T^{miss}$  trigger)
  - o both hard to measure for  $H \rightarrow TT$  and  $H \rightarrow WW^*$




#### STXS for ttH and tH Stage 1.2 $t \bar{t} H$ $p_T^H$ $p_{-}^{H} < 60 \text{ GeV}$ $60 \le p_{_{T}}^{H} < 120 \text{ GeV}$ 60 $120 \le p_{_T}^H < 200 \text{ GeV}$ tTH. $200 \le p_{_T}^H < 300 \text{ GeV}$ 120 $300 \le p_{\tau}^{H} < 450 \text{ GeV}$ $p_{_T}^H \ge 450 \text{ GeV}$ 200 6 300+4.37 (+3.71 +2.30 -3.78 (-3.36, -1.72) tH 450 14 $\infty$

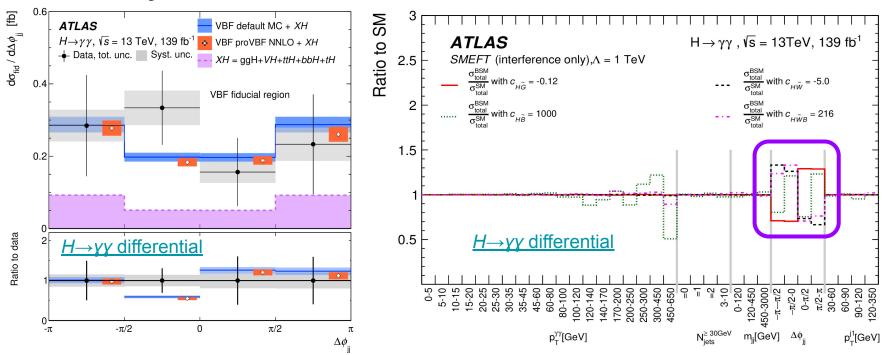
- Measure all ttH STXS bins quite precisely. Could use  $m_{ttH}$  but no clear advantage vs.  $p_{\mathsf{T}}^{\ \ H}$
- no *CP*-odd observable suitable for STXS to my knowledge. Would have to be "simple" and reconstructable for many Higgs decay modes
- Cannot bin Standard Model like phase space for tH before HL-LHC


#### STXS for ggF



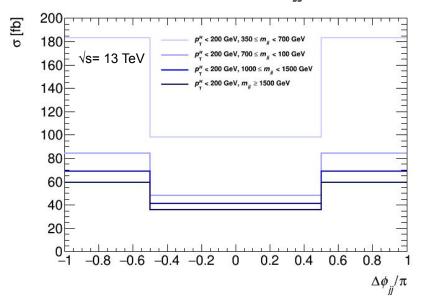


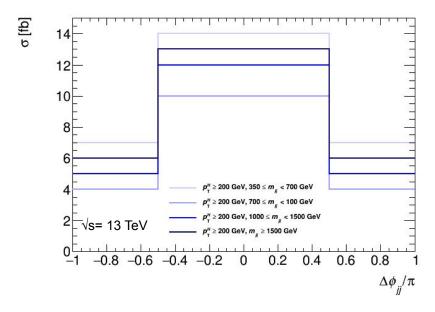

Often cannot do  $p_{\tau}^{Hjj}$  and  $m_{ii}$  splits. Categories useful to evaluate migration uncertainties from separating ggF and VBF Split 0-jet finer to access *Hc* coupling?


### STXS for EW qqH





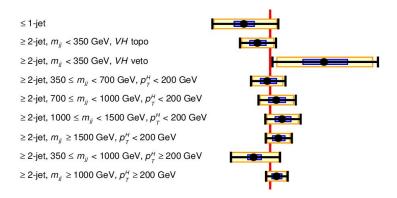

- Do nearly all  $m_{ij}$  splits
- Defined  $p_{T}^{Hjj}$  splits mainly for uncertainty estimate (see ggF)
- Could split VH topo. Measure
  - high  $p_T^H$  via boosted  $H \rightarrow bb$
  - o low  $p_{T}^{H}$  via  $H \rightarrow \gamma \gamma$  and  $H \rightarrow WW^*$

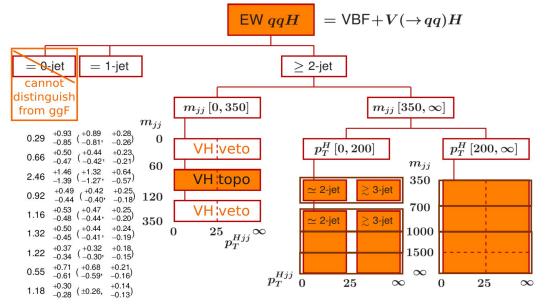

#### Sensitivity to CP Violation



- Currently no sensitivity, all STXS observables are CP even. Plan to add  $\Delta \phi_{jj}$ . Need to find compromise with  $m_{ij}$  and  $p_{T}^{\ \ H}$  splitting
- Also possible for ggF 2-jet but challenging in terms of sensitivity

## STXS 1.2 with 4 $\Delta \phi_{ij}$ bins. SM prediction




SM prediction derived with MadGraph5 by Matthew Basso. Numbers in backup

- Standard Model is symmetric (CP even)
- [- $\pi$ /2;  $\pi$ /2] includes 35% of events for  $p_{T}^{H}$  < 200 GeV but 70% for high  $p_{T}^{H}$   $\Rightarrow$  the less populated  $\Delta \phi_{jj}$  bins include ~15% of the  $\Delta \phi_{jj}$  inclusive yield

#### Possible binning





- 30–50% uncertainty when measuring nearly all STXS 1.2 bins
- powerful H→ττ and H→WW channels merged the bins >200 GeV for Run 2
  → can improve for Run 3
- splitting each bin for  $m_{jj}>350$  GeV into  $4 \Delta \phi_{jj}$  bins seems reasonable to me. Analyses could merge  $m_{jj}$  bins when needed

Ideas and opinions are very welcome (also on points other than  $\Delta \phi_{ii}$ )

# STXS 1.2 with 4 $\Delta \phi_{ii}$ bins. SM prediction

| Cross-secti       | ons for 13 TeV in     | pb         | ob $\Delta oldsymbol{\phi}_{jj}$ |          |                |  |
|-------------------|-----------------------|------------|----------------------------------|----------|----------------|--|
| $p_{T}^{H}$ [GeV] | $\emph{m}_{jj}$ [GeV] | [-π; -π/2] | [-π/2; 0]                        | [0; π/2] | $[\pi/2; \pi]$ |  |
| <200              | 350 - 700             | 0.183      | 0.098                            | 0.098    | 0.183          |  |
| <200              | 700 – 1000            | 0.084      | 0.048                            | 0.048    | 0.084          |  |
| <200              | 1000 – 1500           | 0.069      | 0.041                            | 0.041    | 0.069          |  |

| <200 | 700 – 1000  | 0.084 | 0.048 | 0.048 | 0.084 |  |
|------|-------------|-------|-------|-------|-------|--|
| <200 | 1000 – 1500 | 0.069 | 0.041 | 0.041 | 0.069 |  |
| <200 | >1500       | 0.059 | 0.036 | 0.036 | 0.059 |  |
| >200 | 350 - 700   | 0.007 | 0.014 | 0.014 | 0.007 |  |
| >200 | 700 – 1000  | 0.004 | 0.010 | 0.010 | 0.004 |  |
| >200 | 1000 – 1500 | 0.005 | 0.012 | 0.012 | 0.005 |  |
| >200 | >1500       | 0.006 | 0.013 | 0.013 | 0.006 |  |
|      |             |       |       |       |       |  |