STXS in Higgs decays: $H \rightarrow 4I$

Matteo Bonanomi, Karlis Dreimanis, **Michael Duehrssen**, Andrea Gabrielli, Antra Gaile, Han Li, Katherine Lai, Giacomo Ortona, Kirill Prokofiev, Toni Sculac

LHC H XS WG workshop, 15.11.2023

Goals

Make Higgs decay measurements that can be used as input to theory interpretations

- Stage 0: current STXS measurements are done inclusive in the Higgs decay modes, although experiments don't necessarily measure inclusively
 ⇒ For each decay mode define a phase space region that approximates the experimental acceptance
- Stage 1: Measure properties within each decay mode
 - ⇒ Allow decay properties to be used to constraint BSM effects in this decay

Why do we need a Stage 0?

- Experimental measurements are not inclusive
- Example: The acceptance of the ATLAS H→4I measurement shows a sizeable dependence on EFT parameters that is "resolved" by having EFT parameter dependent acceptance corrections
- Experiments apply a cut of m>10 GeV on the subleading lepton pair in H→4l that has a high acceptance for the SM, but the acceptance can be low for some BSM models

Lorentz invariance

- When we measure a Higgs decay property, this measurement should be valid independent of the Higgs production mode or boost of the Higgs
- The measurement should be valid for LHC 7, 8, 13, 13.6 and 14 TeV
- It should be valid for pp and e⁺e⁻ colliders
- Fortunately the Higgs is Spin 0, so production and decay completely decouple
- But all of the above is only possible, if our STXS decay selection is Lorentz invariant
- For each Higgs decay mode, we need a Lorentz invariant simple fiducial STXS decay selection
- > This will also provide a clean definition of what $H \rightarrow ZZ^* \rightarrow 4I$, $H \rightarrow Z\gamma^* \rightarrow 4I$, $H \rightarrow \gamma^*\gamma^* \rightarrow 4I$, $H \rightarrow WW^* \rightarrow IvIv$ is beyond the Pythia decay mode selection

Not quite as complicated as it may sound

- $H \rightarrow 2$ body decays: decay objects are back-to-back in the Higgs rest frame.
 - \Rightarrow No kinematic information in the decay!
 - \Rightarrow We will still want some simple fiducial object definition. E.g. what is a "b"?
- Non-trivial decays (today): $H \rightarrow Z^{(*)}\gamma \rightarrow II\gamma$, $H \rightarrow WW^* \rightarrow IvIv$, $H \rightarrow ZZ^* \rightarrow 4I$
- Highest priority is H→ZZ*→4I as current measurements are already affected by the tension of unfolding the experimental selection to the inclusive H→4I decay

State of development

- Attached to the agenda is a (simple) writeup that gives more information on the current stage of development for decay selections
- This is NOT final and

In many cases not well developed at all

Label	Final state	Kinematic selection	Comment
$H \rightarrow ee$	$H \rightarrow ee + X$	$m_{ee} \ge 120 \text{ GeV}$	Section 3.1
$H \rightarrow ff$	$H \to f\bar{f} + X$	$m_{ff} \ge 105 \mathrm{GeV}$	Section 3.1
$H \rightarrow Z\gamma$	$H \rightarrow ee + \gamma + X$	$50 \le m_{ff} < 120 \text{ GeV}, m_{ff\gamma} \ge 120 \text{ GeV}$	Section 3.1
$H \rightarrow Z\gamma$	$H \to ff + \gamma + X$	$50 \le m_{ff} < 105 \text{ GeV}, m_{ff\gamma} \ge 120 \text{ GeV}$	Section 3.1
$H \to \gamma^* \gamma$	$H \to ff + \gamma + X$	$m_{ff} < 50 \text{ GeV}, m_{ff\gamma} > 120 \text{ GeV}$	Section 3.1
$H \rightarrow \gamma \gamma$	$H \rightarrow \gamma \gamma$	$m_{\gamma\gamma} = 125 \text{ GeV}$	Section 3.1
$H \to 4\ell$	$H \to 4\ell + X$	$m_{34} \ge 10 \text{ GeV}, m_{34} \le m_{12} < 105 \text{ GeV}$	Section 3.2
$H \rightarrow 2e2\mu$	$H \to 2e2\mu + X$	$m_{34} \ge 10 \text{ GeV}, m_{34} \le m_{12} < 105 \text{ GeV}$	Section 3.2
$H \rightarrow 2\ell 2\nu$	$H \to \ell\ell\nu\nu + X$	$80 \le m_{2\ell} < 105 \text{GeV}$	Section 3.3
$H \rightarrow 2\ell 2f$	$H \to \ell \ell f f + X$	$80 \le m_{2\ell} < 105 \text{ GeV}, ff! = ee, \mu\mu, \nu\nu$	Section 3.4
$H \rightarrow \ell \nu \ell \nu$	$H \to \ell \nu \ell \nu + X$	$10 < m_{\ell\ell} < 80 \text{ GeV}$	Section 3.3
$H \rightarrow e \nu \mu \nu$	$H \to e \nu \mu \nu + X$	$10 < m_{e\mu} < 105 \text{GeV}$	Section 3.3
$H \to \ell \nu f f'$	$H \to \ell \nu f f' + X$	$10 < m_{\ell\nu} < ? {\rm GeV}$	Section 3.4
$H \to f f f' f'$	$H \to fff'f' + X$	$10 < m_{12} < 105 \text{ GeV}, fff'f'! = \text{modes above}$	Section 3.5
$H \rightarrow f_1 f_2 f_3 f_4$	$H \rightarrow f_1 f_2 f_3 f_4 + X$	$f_1 f_2 f_3 f_4! = modes above$	Section 3.5

Table 1: Kinematic definition of Higgs decay modes. Only particles originating from the Higgs decay are considered. Definitions: $4\ell = 4e, 4\mu$; $2\ell = ee, \mu\mu$

Goal for today: $H \rightarrow ZZ^* \rightarrow 4I$

- Present first candidates for a Lorentz invariant simple fiducial $H \rightarrow ZZ^* \rightarrow 4I$ selection
- The simple fiducial selection should
 - be "larger" than the experimental reconstruction selection, e.g. contain almost all events reconstructed as $H \rightarrow ZZ^* \rightarrow 4I$ in the experiments
 - have the same residual acceptance for SM and BSM models. Since we consider only Higgs decays Q² is fixed to 125 GeV and EFT models should span almost all BSM phase space. This makes the STXS decay measurement valid for BSM interpretations (<=> unfolding)
 - have the same residual acceptance for critical decay variables as function of BSM model parameters for SM and BSM models. This allows to use decay properties for BSM interpretation
- Ultimately we want to change what ATLAS and CMS quote as $H \rightarrow ZZ^*$.

Instead of measuring the decay inclusive $H \rightarrow ZZ^*$: $\sigma_{qqH}(0jet,pT0-10) * BR(H \rightarrow ZZ^*)$

Measure using a simple fiducial decay selection: σ_{aaH} (0jet,pT0-10) * BR^{fid}(H \rightarrow 4I)

From ATLAS experimental to simplified fiducial selection

Leptons and Jets					
Electrons	$E_{\rm T} > 7 \text{ GeV}$ and $ \eta < 2.47$				
Muons	$p_{\rm T}$ > 5 GeV and $ \eta < 2.7$, calorimeter-tagged: $p_{\rm T} > 15$ GeV				
Jets	$p_{\rm T}$ > 30 GeV and $ \eta < 4.5$				
Quadruplets					
All combinations of two same-flavour and opposite-charge lepton pairs					
- Leading lepton pair: lepton pair with invariant mass m_{12} closest to the Z boson mass m_Z					
- Subleading lepton pair: lepton pair with invariant mass m_{34} second closest to the Z boson mass m_Z					
Classification according to the decay final state: 4μ , $2e^{2\mu}$, $2\mu^{2e}$, $4e$					
Requirements on each quadruplet					
LEPTON	- Three highest- p_T leptons must have p_T greater than 20, 15 and 10 GeV				
RECONSTRUCTION	- At most one calorimeter-tagged or stand-alone muon				
LEPTON PAIRS	- Leading lepton pair: $50 < m_{12} < 106 \text{ GeV}$				
	- Subleading lepton pair: $m_{\min} < m_{34} < 115$ GeV				
	- Alternative same-flavour opposite-charge lepton pair: $m_{\ell\ell} > 5$ GeV				
	- $\Delta R(\ell, \ell') > 0.10$ for all lepton pairs				
LEPTON ISOLATION	- The amount of isolation $E_{\rm T}$ after summing the track-based and 40% of the				
	calorimeter-based contribution must be smaller than 16% of the lepton $p_{\rm T}$				
IMPACT PARAMETER	- Electrons: $ d_0 /\sigma(d_0) < 5$				
SIGNIFICANCE	- Muons: $ d_0 /\sigma(d_0) < 3$				
COMMON VERTEX	- χ^2 -requirement on the fit of the four lepton tracks to their common vertex				
SELECTION OF THE BEST QUADRUPLET					
- Select quadruplet v	with m_{12} closest to m_Z from one decay final state				
in decreasing order of priority: 4μ , $2e2\mu$, $2\mu 2e$ and $4e$					
- If at least one additional (fifth) lepton with $p_{\rm T} > 12$ GeV meets the isolation, impact parameter					
and angular separation criteria, select the quadruplet with the highest matrix-element value					
Higgs boson mass window					
- Correction of the four-lepton invariant mass due to the FSR photons in Z boson decays					
- Four-lepton invariant mass window in the signal region: $115 < m_{4\ell} < 130$ GeV					
- Four-lepton invariant mass window in the sideband region:					
$105 < m_{4\ell} < 115 \text{ GeV or } 130 < m_{4\ell} < 160 (350) \text{ GeV}$					

- Only Lorentz invariant selections
- >99% of reco events also covered by the simple fiducial selection
 - \rightarrow no events "lost" !

Event selection (at most one quadruplet per event)						
Momentun of leptons	Leptons momentum in the Higgs rest frame $p > 4$ GeV					
Mass requirements	50 GeV $< m_{12} < 106$ GeV and 12 GeV $< m_{34} < 115$ GeV					
Lepton separation	Angle(ℓ_i, ℓ_j) in the Higgs rest frame > 0.1(rad.)					
low-mass dilepton veto	$m(\ell_i, \ell_i) > 5$ GeV for all SFOC lepton pairs					
Mass window	$115 \text{ GeV} < m_{4\ell} < 130 \text{ GeV}$					
106						
Inclusive H→ZZ*→4I phase space						
Simple fiducial phase space						
Fs	Reco phase pace					

ATLAS: Check model dependence: compare SM to SMEFT

From CMS experimental to simplified fiducial selection

Selection	HIG-21-009	simplified*
Leading lepton	$p_T > 20 { m ~GeV}$	$p>4~{ m GeV}$
Sub-leading lepton	$p_T > 10 \text{ GeV}$	$p>4\;{ m GeV}$
Additional electrons (muons)	$p_T > 7(5) \text{ GeV}$	$p>4(4){ m GeV}$
Pseudorapidity of electrons (muons)	$ \eta < 2.5(2.4)$	no restrictions
Cone for dressing bare leptons with photons	$\Delta R = 0.3$	$\Delta R=0.1$
Inv. mass of the Z ₁ candidate	$40 < m_{\rm 12} < 120 {\rm ~GeV}$	$50 < m_{ m 12} < 106~{ m GeV}$
Inv. mass of the Z ₂ candidate	$12 < m_{34} < 120 \; {\rm GeV}$	$12 < m_{34} < 115 \; {\rm GeV}$
Distance between selected four leptons	$\Delta R_{ll} > 0.02$	$\Delta R_{ll} > 0.1$
Inv. mass of any opposite sign lepton pair	$m_{ll} > 4 \text{ GeV}$	$m_{ll} > 5 \; GeV$
Inv. mass of the selected four leptons	$105 < m_{4l} < 160 { m ~GeV}$	not (yet) implemented

* Almost identical to ATLAS fiducial selection, exception: angle in ΔR place

- Started with almost the same simple fiducial selection used by ATLAS
- Because selection matches less well, only ~98% of reco events also covered by the simple fiducial selection.

CMS: Check model dependence: compare SM to BSM

Summary

- A Lorentz invariant simple fiducial selection exists for H→ZZ*→4I that largely (hopefully fully) removes the need for acceptance corrections for BSM interpretations of STXS measurements
- The selection tuned to ATLAS works well for ATLAS and obviously less well for CMS, but still much better than extrapolating to the inclusive phase space
- TODO:
 - Find a compromise simple fiducial selection for $H \rightarrow ZZ^* \rightarrow 4I$ that works equally well for ATLAS and CMS, then agree on it
 - Implement this selection into the LHC H XS WG STXS Rivet code (being worked on), and start using it in the experiments for future STXS measurements
 - Continue the same effort for $H \rightarrow WW^* \rightarrow 2I2v, H \rightarrow Z\gamma, ...$
 - Find fiducial particle definition for gluon-jets, b-jets, c–jets to extend to all Higgs final states