

New trigger strategies targeting HH events at the CMS experiment in Run 3

<u>Stephane Cooperstein</u> (University of California San Diego), on behalf of the CMS Collaboration

Stephane Cooperstein LHC Higgs Working Group

- Millions of Higgs bosons have now been produced at the LHC, enabling
 - Per-mille precision on Higgs boson mass
 - ♦ Measurement of most Higgs boson couplings, even rare decays such as H→µµ.
- This unprecedented data set opens a new frontier in exploration of H sector:
 - The Higgs self-interaction!
 - ***** What can we expect for Run-3?

15/11/2023

Stephane Cooperstein LHC Higgs Working Group

Why the H self-coupling matters

- Shape of H potential is probably the most important unmeasured parameter in the SM.
 - Implications for stability of the universe, baryogenesis, ...
- Higgs boson discovery confirms the (quadratic) shape close to the minimum, but we know little to nothing about most of the potential.

Stephane Cooperstein LHC Higgs Working Group

3

The driving channels for HH at LHC

Stephane Cooperstein LHC Higgs Working Group

Stephane Cooperstein

(HL-)LHC schedule

✓ Era of rapid total integrated luminosity and center-of-mass energy increases is ~over
 ⇒ to make the most of the incoming data we need innovation!

LHC Higgs Working Group

Where we stand today

- Huge progress made in probing HH with Run-2 data
 - ♦ 95% C.L. upper limits on HH production rate of ~3 x SM
- Improvements in precision during Run-2 going well beyond increase in data set
 - Multiple novel methods, including many ML applications
- With 3000 fb⁻¹, expect visible SM HH signal, precision on λ at ~50% level
 - Can we manage to measure HH sooner....and better?

<u>Nature 607 (2022) 60</u>

15/11/2023

LHC Higgs Working Group

Outline for today

← LS2 Insights: Trigger Limitation in HH Physics

♦ Identified trigger as a key limitation for $HH \rightarrow 4b$ scope using Run-2 data

- ♦ HH→4b trigger efficiency in Run-2 (expected for SM HH) was approximately 18%
- \sim Challenges with Run-2 Data Analysis
 - Innovations in analysis could only take us so far data not collected due to trigger limitations cannot be recovered (~80% of all HH→4b events!)
- Advancements in Run-3 trigger: *dedicated trigger-level ML for jet flavor tagging* Application of state-of-the-art ML for jet flavor tagging (ParticleNet)
 Implemented within the CMS trigger system since the beginning of Run-3
 Expect significant improvement in Run-3 HH physics reach

Separable H decay products (b jets)

Merged-jet $H \rightarrow bb$ decay

15/11/2023

 \sim Fully hadronic multijet final state \Rightarrow huge backgrounds at LHC

At high p_T(H), H decay products are highly collimated in lab frame

♦ Reconstruct H→bb as single large-radius jet

♦ Reconstruction of such decays is key to maximizing sensitivity to HH→4b signal

Signal evolution with λ

- HH production driven by two diagrams that destructively interfere
 - variations in λ change HH kinematics significantly
 - ~1000 times less HH than single-H events expected at LHC
- Critical to efficiently select potential signals throughout λ range of interest ([-10,10])
 - We have designed the new HH triggers to be as efficient as possible for range of λ scenarios
 - $\bigstar Low m_{HH} \Rightarrow low jet p_T's$
 - Critical to keep trigger jet p_T thresholds as low as possible, to maximize acceptance throughout λ range

Evolution of HH kinematics when varying Higgs self-coupling $\boldsymbol{\lambda}$

15/11/2023

LHC Higgs Working Group

The challenge: trigger system

- ∼ Main handle to reduce HH→4b trigger rate is b-tagging in HLT
- Jet b-tagging is particularly challenging at trigger level:
 - Degraded inputs: highly simplified track reconstruction, less precise calibrations, etc.
 - Low latency requirements (~milliseconds)

Trigger efficiency,		
HH→4b signal		
Run-2	18%	

 \sim Graph networks emerging in the last years as the new sharp tool in jet physics

 \sim A data structure type naturally suited to jet physics:

- Consider jets as collection of particles and vertices forming nodes in a graph, with edge features giving relations among jet constituents
- The more the data structure is suited to the problem, the more efficient the ML

Point clouds: representing multidimensional data

- Represent shapes with unordered set of points in space \Rightarrow natural representation as input to graph-based neural networks
 - Self-driving cars : efficiently represent complex and dynamic outside environment as given by LiDAR (laser imaging using time of reflected light to return)
 - Computer-aided design (CAD): store a design in any level of detail while minimizing size of data

Self-driving car representation of space with point cloud

15/11/2023

Stephane Cooperstein LHC Higgs Working Group

Particle cloud: a point cloud for the LHC

 \sim Represent jet as unordered set of particles (particle cloud) with variety of features:

Spatial (η/φ), pT, impact parameter, charge, ...

\sim Learn nature of the jet and its properties from particle features and correlations

arXiv:2202.03772

Edge convolution

 To apply ML to a particle cloud, need a differentiable function to pass information, learn given task (e.g. b-jet classification)

← EdgeConv:

An abstraction of convolutional layer as applied in image-based AI (e.g. ResNet)

- For each node in the graph (particle), calculate a new node representation based on N nearest neighbor nodes
- Output of each EdgeConv operation is a graph (stackable)

A particle cloud-based jet tagger: ParticleNet

Phys. Rev. D 101, 056019

Stephane Cooperstein

LHC Higgs Working Group

A particle cloud-based jet tagger: ParticleNet

Stephane Cooperstein

LHC Higgs Working Group

Online b-tagging performance of ParticleNet

We developed a b-tagging algorithm, based on particle clouds, for the CMS trigger system

- First such network in trigger system
- First generation of online b-taggers trained on HLT-level jets
- Previous algorithms were suboptimal (no HLT jet training)
- Design of network to fit within trigger low-latency budget

New Run-3 HH→4b trigger strategy

► Leveraging the highly improved online b-tagger
 (ParticleNet@HLT), we redesigned Run-3 HH→4b trigger with
 much more inclusive selections

Trigger efficiency,		
HH→4b signal		
Run-2	18%	
Run-3	42%	

15/11/2023

*actual rate in 2022 was ~60 Hz after update to HCAL calibrations

Stephane Cooperstein LHC Higgs Working Group

A new opportunity for 2023: data parking

- ✓ In 2023, opportunity for higher rate (150 Hz) in delayed data stream ("data parking") ⇒ even looser thresholds
- → Absolute HH→4b signal efficiency improved by 300%*

♦ Efficiency gain even larger for HH→4b signals with λ other than SM

*N.B. more background too - room to explore for Run-3!

Stephane Cooperstein

LHC Higgs Working Group

Trigger efficiency,		
HH→4b signal		
Run-2	18%	
Run-3	42%	
Run-3 (parking)	55%	

15/11/2023

UCSE

Efficiency recovery vs. m_{HH}

- Efficiency gain is particularly large for lower m_{HH} events, which are critical in constraining λ
- With many more HH→4b events saved in Run-3, we have much more room to explore
 - ♦ Can HH→4b become a leading channel in constraining λ?

15/11/2023

Stephane Cooperstein LHC Higgs Working Group

Trigger Efficiency

New trigger is significantly more

generic than in Run-2, improving signal efficiency for a variety of analyses

- ✦HH→bbtt, ttH(bb), resonance searches, …
- In particular, it also improves signal efficiency in key HH→bbπ fully hadronic channel by about 70%.

15/11/2023

HH→bbπ trigger efficiency

Stephane Cooperstein LHC Higgs Working Group

...and HHH!

 \sim The latest place to explore: HHH production

- SM production rate is very (very) small, but large enhancement when varying λ₄
- See Marko's talk this morning for more details
- New HH→4b triggers also substantially improve the trigger efficiency for HHH signals

LHC Higgs Working Group

- We have similarly deployed a dedicated training of ParticleNet@HLT for merged bb-jet tagging at HLT
- Basis for new merged-H triggers, deployed since start of Run-3, which will very significantly expand available phase space
 - Run-2 analyses were strongly limited by trigger acceptance
 - ♦ Merged HH→4b channel alone had sensitivity comparable to 2b2⊤ and 2b2γ, despite these limitations in trigger
- Expect a general large expansion in general high-p_T(H) physics reach for Run-3
 - ✤...coming soon :)

Validating in data

 Two years (2022+2023) of successful data-taking with new HH triggers

- We have now also validated the HLT jet b-tagging performance relative to the full offline reconstruction, in data and simulation
- Performance in data is well predicted by simulation ⇒ high confidence that the predicted gains in HH/HHH are representative of the data
- Similar studies in progress for online merged H→bb tagging performance

- \sim Focus today has been on new trigger developments for Run-3
 - First priority, further innovations don't matter if we don't collect the data :)
- However, this is just one piece in a multi-faceted effort to maximize HH reach for Run-3
 - $\boldsymbol{\diamondsuit}$ Improvements in offline b-jet identification and p_{T} regression
 - New methods for tau identification and reconstruction
 - ❖...
- \sim Let's see together how far we can push the HH frontier with Run-3 data!

Additional Material

Stephane Cooperstein LHC Higgs Working Group

- ✓ Despite significant trigger limitations, HH→4b was one of the driving channels in Run-2 HH, honing in on SM...
- → HH→bbTT is another leading channel that should improve substantially from our new algorithms.

Nature 607 (2022) 60-68

Network architecture, inputs

ParticleNet general architecture

- \sim Input features from:
 - PF candidates (up to 50): similar to Run-2 classifier + dedicated PF e/μ/γ inputs
 - SV vertices (up to 5)
 - Lost tracks (up to 5)
 - Good quality tracks not matched to PF candidate, important for tau reconstruction.
- Unify tasks (jet flavor classification, tau ID+reco, jet energy regression) by combining into single loss function.

$$L = CatEntropy(x, x_{truth}) + \lambda \times log(cosh(y - y_{truth})) + \gamma \times [\rho_{0.16}(z - z_{truth}) + \rho_{0.84}(z - z_{truth})]$$

$$\int Classification \qquad Regression (p_T, m_X) \qquad Quantile regression \qquad \rho_{\tau}(z) = \begin{cases} \tau z, & \text{if } z > 0; \\ (\tau - 1)z, & \text{otherwise,} \end{cases}$$
Stephane Cooperstein
$$LHC Higgs Working Group \qquad 15/11/2023 \qquad 28$$

Input features

➤ PF candidates (up to 50 per jet):

- Common between charged and neutral:
 - $\log(p_T)$, $\log(E)$, η , $\Delta\eta(i,jet) \Delta\varphi(i,jet)$, charge, PFID, H/E, E_{CALO}/E_{PF} , P_T projected || or \perp to jet axis
- Specific to charged particles:
 - PV association, Trk χ^2 and quality, Δz & Δxy vs PV, $N_{pix\text{-}hit}$ $N_{strip\text{-}hit}$, $\Lambda_{lost\text{-}hit}$, $\Delta 3d$ impact, decay length

Secondary vertices (up to 5 per jet):

♦ log(p_T), M_{SV}, Δη(i,jet), Δφ(i,jet), N_{track}, χ^2 , Δxy, Δz

 \sim PF candidate specific features:

- * Electrons: $\sigma_{i\eta i\eta}$, $\sigma_{i\phi i\phi}$, R9, Δ ϕ (SC,trk.), Δ η (SC,trk.)
- Photons: σ_{iηiη}, R9, eVeto
- * Muon: isGlobal, χ^2 , segment compatibility, N_{hit}, N_{station}

Good quality tracks not associated with PF candidate ("lost tracks")

Input features the same as those specific to PF charged candidates.

Training sample

- General philosophy: sample jet kinematic phase space as much as possible, mix processes to protect from process-specific biases
- AK4 PUPPI jets from a mix of Run-2 2018UL MINIAODSIM v2 samples: QCD, ttbar, H/HH(bb/cc/ττ/μμ/ee), DY(ττ/μμ/ee), W+jets
- About 80M AK4 PUPPI jets with raw p_T>15 GeV, |η|<2.5, and matched with generator-level jet.
 - ♦ 65% for training, 20% for validation, 15% for testing.
 - Sets sampled such that distribution in jet p_T and η is ~uniform such that network output is decorrelated.

Bins for uniform resampling:

jet_pt_raw: [15, 20, 25, 30, 38, 48, 60, 76, 97, 122, 154, 195, 246, 311, 393, 496, 627, 792, 1000]
jet_eta: [-2.5, -2.0, -1.5, -1.0, -0.5, 0.0, 0.5, 1.0, 1.5, 2.0, 2.5]

- Classify jets based on truth-level:
 - Hadron flavor for heavy flavor jets (b, c)
 - Parton flavor for udsg
 - Matching $\Delta R(j, lep.)$ with prompt GEN lepton from H/W/Z decay. \bullet
- Ensure orthogonality among classes, giving priority to lepton classes.

Truth classes	selection	weight
μ jets	GEN μ with $p_T > 8$ GeV from H/W/Z/ τ decays $\Delta R(j,\mu) < 0.4$	1
e jets	GEN e with $p_T > 8$ GeV from H/W/Z/ τ decays $\Delta R(j,e) < 0.4$	1
$\tau_{\mathbf{h}}$ jets	GEN τ_h with $p_T^{vis} > 15$ GeV from H/W/Z/ τ decays $\Delta R(j,\tau) < 0$.	4 1.5
b-jets	Not $\mu/e/\tau_h$ + hadron-flavor = 5	2
c-jets	Not $\mu/e/\tau_h$ + hadron-flavor = 4	2
uds jets	Not $\mu/e/\tau_h$ + hadron-flavor = 0 + abs(parton-flavor) = 1,2,3	
gluon jets	Not $\mu/e/\tau_h$ + hadron-flavor = 0 + abs(parton-flavor) = 21	
Stephane Coopersteir	ParticleNet, JME-BTV 10/07/2	023 31

Evolution of b-tagging in CMS

Rely on a few observables:

Run-1

- Track impact parameters
- Secondary vertices (SV)
- First single-variable algorithms, later multi-dimensional likelihoods

LHC Higgs Working Group

- Combine increasing number of highlevel input variables into multivariate algorithms:
 - Single layer neural network: CSVv2
 - Deep neural network with several hidden layers of 100 nodes: DeepyCSV

Run-1

Stephane Cooperstein

Evolution of b-tagging in CMS

b

bb

C

CMS Deep Flavor - Recurrent neural network

Trained on 40M jets, almost full set of constituents

