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Figure 3: Example graphs that contribute to the B1g0Z matrix elements. The diagram
on the left shows a SM contribution. On the right we instead depict a SMEFT correction
that receives contributions from the generalised ZZh and �Zh currents introduced in (4.6).
The four-momentum flow is indicated by the grey arrows and labels. See the main text for
additional explanations.

describes the contribution from Q
(1)
Hq

, Q(3)
Hq

, QHu and QHd, while the second term is induced
by Q

(1)
H`

, Q(3)
H`

and QHe. Notice that compared to the corresponding SM contribution in (4.3)
the SMEFT correction proportional to �g

(1)hq

hZq
in (4.12) is missing the Z-boson propagator

depending on s123. This feature explains the high-energy growth [11–13] of the SMEFT
pp ! V h amplitudes involving the Wilson coefficients C

(1)
Hq

, C(3)
Hq

, CHu and CHd.
The last type of SMEFT corrections to the matrix element B1g0Z is associated to the

tree-level shifts of the SM parameters and couplings. EW input scheme corrections from
CHD, CHWB, C

(3)
H`

and C`` lead to the shifts �g1, �g2 and �v of the U(1)Y and SU(2)L

gauge coupling and the Higgs VEV, respectively, that in turn induce the shifts �g
(0)
hZZ

and
�g

(0)hf

Zf
in the respective couplings of the Z boson. The expressions for these shifts are listed

in Appendix A. In practice, the input scheme corrections can be accounted for by applying
the replacements ghZZ ! ghZZ + �g

(0)
hZZ

and �g
(0)hf

Zf
! �g

(0)hf

Zf
+ �g

(0)hf

Zf
to (4.3). Similarly,

the Wilson coefficients C
(1)
Hq

, C(3)
Hq

, CHu, CHd, C
(1)
H`

, C(3)
H`

and CHe lead to direct shifts in

the Zff̄ couplings that we include through the shifts g
(1)hf

Zf
! g

(1)hf

Zf
+ �g

(1)hf

Zf
in (4.3).

The expressions for the latter shifts are again given in Appendix A.
While we have used in this section the matrix element B1g0Z as an example to illus-

trate the general approach that we have employed in our SMEFT calculation of pp ! V h

at NNLO in QCD, it is important to realise that the computation of all other matrix
elements proceeds in an analogous manner. In the case of the SMEFT corrections aris-
ing from the choice of EW input scheme as well as those associated to insertions of the
operators (2.2) and (2.3) this is clear in view of the factorisation properties of these contri-
butions

�
cf. (4.12)

�
. Likewise, since the spinor-helicity structure of the partonic part of a

given SMEFT amplitude remains the same as in the SM, it can simply be extracted from the
SM expressions and contracted with the part of the SMEFT amplitude that does change.
It follows that an explicit calculation of the full partonic structures for the higher-order cor-
rections to pp ! V h in the SMEFT can always be avoided, because the relevant amplitudes
can be obtained from those in the SM by applying relations a la (4.8) and (4.10) which
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Figure 9: Examples of contributions to gg ! Zh production within the SMEFT.
All graphs involve an insertion of one of the operators given in (2.2) as indicated by the
green squares. Further details can be found in the main text.

where the overline means that the brackets should be exchanged, i.e. [. . .] $ h. . .i. The re-
sulting spin-averaged matrix element A0g2Z takes the form

A0g2Z =
↵
2
s

8⇡2 (C2
A
� 1)2

X

hg ,h`=±

������

X

q=t,b

(g
�
Zq

� g
+
Zq
)A0g2Z

q

������

2

, (B.3)

with

A0g2Z
q
=

g
h`

Z`
ghZZ m

2
q

DZ(s12)DZ(s34)
A0g2Z

⇣
1
hg

g , 2
hg

g ; 3
h`

`
, 4

�h`

¯̀

⌘
C0(s12, 0, 0,mq,mq,mq) , (B.4)

where DZ(s) has been defined in (4.5) while the expressions for the couplings g±
Zf

and ghZZ

can be found in (A.2). In (B.3) the sum over q includes the contributions from top- and
bottom-quark loops, mq denotes the respective quark mass and C0 is the scalar Passarino-
Veltman triangle integral defined as in [63, 64]. The corresponding SM Feynman diagram
is displayed on the right-hand side in Figure 2.

It is important to realise that as a result of the generalised Furry theorem the vector-
current coupling of the Z boson, which is proportional to the combination (g

�
Zq

+ g
+
Zq
)

of couplings, does not contribute to (B.3). However, the axial-current part contributes,
as signalled by the factor (g

�
Zq

� g
+
Zq
) in A0g2Z, and this contribution is directly connected

to the U(1)A⇥SU(3)c gauge anomaly. In fact, a regulator and a loop routing scheme must
be introduced to properly define the amplitude A0g2Z

q
, rendering its expression scheme-

dependent. Within the SM, the axial parts of the top- and bottom-quark coupling obey

(g
�
Zt

� g
+
Zt
) = �(g

�
Zb

� g
+
Zb
) , (B.5)

as a results of the anomaly cancellation in the SM. It follows that the sum over q that
appears in (B.3) evaluates to

X

q=t,b

(g
�
Zq

� g
+
Zq
)A0g2Z

q
= (g

�
Zt

� g
+
Zt
)
�
A0g2Z

t
� A0g2Z

b

�
, (B.6)

and in consequence any scheme-dependent constant shift in the amplitude A0g2Z
q

cancels
in the difference (A0g2Z

t
� A0g2Z

b
). Notice that in the degenerate or zero mass case the
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Sources: [1] DOI:10.1007/BF01679868 (G. Kramer, B. Lampe), [2] DOI:10.1016/0550-3213(91)90064-5 (R. Hamberg, W.L. van Neerven, T. Matsuura),  
[3] ArXiv:1112.1531 (T. Gehrmann, L. Tancredi), [4] ArXiv:2112.04168 (S. Zanoli, M. Chiesa, E. Re, M. Wiesemann, G. Zanderighi), [5] ArXiv:2209.06138 (J. Baglio, C. Duhr, B. Mistlberger, R. Szafron).

In the SM, the higher-order QCD corrections to Vh at NNLO+PS are well-known [1,2,3]. 

A dedicated Monte Carlo event generator has for example been made available in the POWHEG MiNNLOPS 
framework [4]. 

(B-type) (C,D-type) (A-type)Figure 2: Examples of higher-order QCD corrections to pp ! Zh production within the
SM. The diagram on the left features additional virtual and real gluon lines (B-type), the
diagram in the middle involves a second quark line (C- and D-type) and the diagram on the
right is gluon-gluon initiated (A-type). Consult the main text for further details.

where
sij = (pi + pj)

2
, sijk = sij + sjk + ski , (4.4)

are the usual Mandelstam invariants with pi the four-momentum of particle i. We have
furthermore introduced

DZ(s) = s�M
2
Z + iMZ�Z , (4.5)

with �Z denoting the total decay width of the Z boson. In (4.3) the variable ↵s denotes
the strong coupling constant while CF = 4/3 and CA = 3 are the relevant colour factors.
The symbols g

hf

Zf
and ghZZ represent the Zff̄ and hZZ coupling strengths, respectively.

The explicit expressions for these quantities are given in Appendix A.
The technically most involved part of the SMEFT calculation results from insertions of

the three operators introduced in (2.1) since QHB, QHW and QHWB generate modified hV V

vertices with helicity structures different from the SM one. These modifications can be
included at the level of (4.1) by means of generalised currents that describe the splitting
of the initial vector boson V1 into the outgoing vector boson V2 and the Higgs boson h [8].
If the initial-state quarks and final-state leptons are left-handed the relevant generalised
neutral currents are given by

ZZhµ(p123, 4�` , 5
+
¯̀ ) =

g
�
Zq

g
�
Z`

DZ(s123)DZ(s45)

(
h4|�µ|5]

⇣
ghZZ + �g

(2)
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(s123 + s34) + �g
(3)
hZZ

⌘

� �g
(2)
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p
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(1)
hZZ
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⇣
h4|�µ/p123|4i[45] + h45i[5|/p123�

µ
|5]

⌘)
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�q g
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s123D(s45)

(
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(1)
h�Z

2

✓
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⇣
h4|/p123|4] + h5|/p123|5]

⌘

� 2 (pµ4 + p
µ

5 ) h4|/p123|5]

◆
+ �g

(2)
h�Z

⇣
h4|�µ|5] s123 � p

µ

123 h4|/p123|5]
⌘)

,

(4.6)
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Figure 2: Examples of higher-order QCD corrections to pp ! Zh production within the
SM. The diagram on the left features additional virtual and real gluon lines (B-type), the
diagram in the middle involves a second quark line (C- and D-type) and the diagram on the
right is gluon-gluon initiated (A-type). Consult the main text for further details.
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SM. The diagram on the left features additional virtual and real gluon lines (B-type), the
diagram in the middle involves a second quark line (C- and D-type) and the diagram on the
right is gluon-gluon initiated (A-type). Consult the main text for further details.
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1. Introduction
1.1 Theoretical predictions (SM)
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cle, including a discussion of the normalisation chosen for the individual effective inter-
actions. Section 3 contains a brief description of the basic ingredients of the SMEFT
calculations for pp ! Zh and h ! bb̄ and their combination and implementation in our
NNLO+PS event generator. The impact of the SMEFT corrections on kinematic distribu-
tions in pp ! Zh ! `

+
`
�
bb̄ production at NNLO+PS is presented in Section 4 by using

simple benchmark scenarios for the Wilson coefficients. We conclude and present an outlook
in Section 5. The lenghty analytic expressions for the squared matrix elements that are
relevant for our work are relegated to Appendix A, while Appendix B contains numerical
estimates of higher-order QCD corrections associated to the subset of the SMEFT opera-
tors that are considered in this paper. The discussed corrections have been neglected in our
phenomenological study because they all turn out to contribute less than a percent once
existing experimental limits on the relevant Wilson coefficients are taken into account.

2 Preliminaries

In this article we consider the following set of dimension-six operators

QH2 = (H
†
H)2 (H

†
H) , QHD = (H

†
DµH)

⇤
(H

†
D

µ
H) ,

QbH = yb(H
†
H) q̄LbRH , QbG =

g
3
s

(4⇡)2
yb q̄L�µ⌫T

a
bRHG

a,µ⌫
, (2.1)

QHG =
g
2
s

(4⇡)2
(H

†
H)G

a

µ⌫G
a,µ⌫

, Q3G =
g
3
s

(4⇡)2
f
abc

G
a,⌫

µ G
b,�

⌫ G
c,µ

� ,

which appear in the full SMEFT Lagrangian

LSMEFT �

X

i

Ci

⇤2
Qi . (2.2)

Here 2 = @µ@
µ, �µ⌫ = i/2(�µ�⌫ � �⌫�µ) with �µ the usual Dirac matrices, H denotes the

SM Higgs doublet, qL is the left-handed third-generation quark doublet, bR is the right-
handed bottom-quark singlet, while gs =

p
4⇡↵s and G

a
µ⌫ denote the coupling constant and

the field strength tensor of QCD, respectively. The definition of the covariant derivative
is Dµ = @µ � igsG

a
µT

a with T
a being the SU(3) generators and f

abc denote the fully
antisymmetric QCD structure constants. The bottom-quark Yukawa coupling is defined
as yb =

p
2m̄b/v, with the MS bottom-quark mass m̄b and the Higgs vacuum expectation

value (VEV) v, while ⇤ denotes the new-physics mass scale that suppresses the dimension-
six operators Qi entering (2.2) and Ci are the corresponding Wilson coefficients. Notice
finally that in the case of QbH and QbG the sum over the hermitian conjugate in (2.1) is
understood.

The normalisations of the dimension-six operators introduced in (2.1) deserve some
additional comments. First, the two mixed-chirality operators QbH and QbG include a
factor of yb which serves as an order parameter and explicitly appears in a broad class
of ultraviolet (UV) completions that match onto the set of operators in (2.1). See for
example the discussions in [23, 24]. Second, the factors of gs and 1/(4⇡)

2 that arise in
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QCD operators 

Have already been considered in ref. [1].

Sources: [1] ArXiv:2204.00663 (U. Haisch, D.J. Scott, M. Wiesemann, G. Zanderighi, S. Zanoli).

Figure 1: Tree-level SMEFT contributions to qq̄ ! Zh production. The diagram on
the left involves an insertion of one of the operators defined in (2.1), while the two graphs
on the right stem from an insertion of one of the operators given in (2.2). The operator
insertions are indicated by the green squares.

article [6]. This basis contains the following three independent operators

QHB = H
†
HBµ⌫B

µ⌫
, QHW = H

†
HW

a

µ⌫W
a,µ⌫

, QHWB = H
†
�
a
HW

a

µ⌫B
µ⌫

, (2.1)

that modify the couplings between the Higgs and two vector bosons at tree level. The SM
Higgs doublet is denoted by H, while Bµ⌫ and W

a
µ⌫ are the U(1)Y and SU(2)L gauge field

strength tensors and �
a are the Pauli matrices. In the case of the operators that result in

couplings between the Higgs, a W or a Z boson and light quarks, we consider the following
four effective interactions

Q
(1)
Hq

= (H†
i

$
DµH)(q̄�µq) , Q

(3)
Hq

= (H†
i

$
D

a

µH)(q̄�µ�a
q) ,

(2.2)
QHu = (H†

i

$
DµH)(ū�µu) , QHd = (H†

i

$
DµH)(d̄�µd) ,

where H
†
i

$
DµH = iH

†�
Dµ �

 
Dµ

�
H and H

†
i

$
D

a
µH = iH

†�
�
a
Dµ �

 
Dµ�

a
�
H with Dµ the

usual covariant derivative. The symbol q denotes left-handed quark doublets, while u and d

are the right-handed quark singlets of up and down type, respectively. Example tree-level
Feynman diagrams that contribute to Zh production and involve an insertion of one of the
operators in (2.1) or (2.2) are displayed in Figure 1.

Besides the two set of operators (2.1) and (2.2) that alter the pp ! V h production
process, we also consider effective interactions that modify the Z ! `

+
`
� and W ! `⌫

decays at tree level. In the Warsaw basis there are three such operators, namely

Q
(1)
H`

= (H†
i

$
DµH)(¯̀�µ`) , Q

(3)
H`

= (H†
i

$
D

a

µH)(¯̀�µ⌧a`) , QHe = (H†
i

$
DµH)(ē�µe) . (2.3)

Here ` and e denotes a left-handed lepton doublet and right-handed lepton singlet field,
respectively. Notice that in writing (2.2) and (2.3) we have assumed that the full SMEFT
Lagrangian respects an approximate U(3)5 flavour symmetry which allows us to drop all
flavour indices.

The final type of SMEFT corrections that change the Higgsstrahlungs process indi-
rectly is provided by the Wilson coefficients of the operators that shift the EW SM input
parameters. In order to fully describes these shifts the following two additional operators
are needed at tree level:

QHD = (H†
DµH)⇤(H†

D
µ
H) , Q`` = (¯̀�µ`)(¯̀�

µ
`) . (2.4)
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Figure 1: Tree-level SMEFT contributions to qq̄ ! Zh production. The diagram on
the left involves an insertion of one of the operators defined in (2.1), while the two graphs
on the right stem from an insertion of one of the operators given in (2.2). The operator
insertions are indicated by the green squares.
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Figure 2: Examples of higher-order QCD corrections to pp ! Zh production within the
SM. The diagram on the left features additional virtual and real gluon lines (B-type), the
diagram in the middle involves a second quark line (C- and D-type) and the diagram on the
right is gluon-gluon initiated (A-type). Consult the main text for further details.
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The explicit expressions for these quantities are given in Appendix A.
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Figure 2: Examples of higher-order QCD corrections to pp ! Zh production within the
SM. The diagram on the left features additional virtual and real gluon lines (B-type), the
diagram in the middle involves a second quark line (C- and D-type) and the diagram on the
right is gluon-gluon initiated (A-type). Consult the main text for further details.
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diagram in the middle involves a second quark line (C- and D-type) and the diagram on the
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Figure 3: Example graphs that contribute to the B1g0Z matrix elements. The diagram
on the left shows a SM contribution. On the right we instead depict a SMEFT correction
that receives contributions from the generalised ZZh and �Zh currents introduced in (4.6).
The four-momentum flow is indicated by the grey arrows and labels. See the main text for
additional explanations.

describes the contribution from Q
(1)
Hq

, Q(3)
Hq

, QHu and QHd, while the second term is induced
by Q

(1)
H`

, Q(3)
H`

and QHe. Notice that compared to the corresponding SM contribution in (4.3)
the SMEFT correction proportional to �g

(1)hq

hZq
in (4.12) is missing the Z-boson propagator

depending on s123. This feature explains the high-energy growth [11–13] of the SMEFT
pp ! V h amplitudes involving the Wilson coefficients C

(1)
Hq

, C(3)
Hq

, CHu and CHd.
The last type of SMEFT corrections to the matrix element B1g0Z is associated to the

tree-level shifts of the SM parameters and couplings. EW input scheme corrections from
CHD, CHWB, C

(3)
H`

and C`` lead to the shifts �g1, �g2 and �v of the U(1)Y and SU(2)L

gauge coupling and the Higgs VEV, respectively, that in turn induce the shifts �g
(0)
hZZ

and
�g

(0)hf

Zf
in the respective couplings of the Z boson. The expressions for these shifts are listed

in Appendix A. In practice, the input scheme corrections can be accounted for by applying
the replacements ghZZ ! ghZZ + �g
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hZZ

and �g
(0)hf
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! �g
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the Wilson coefficients C
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and CHe lead to direct shifts in

the Zff̄ couplings that we include through the shifts g
(1)hf

Zf
! g

(1)hf

Zf
+ �g

(1)hf

Zf
in (4.3).

The expressions for the latter shifts are again given in Appendix A.
While we have used in this section the matrix element B1g0Z as an example to illus-

trate the general approach that we have employed in our SMEFT calculation of pp ! V h

at NNLO in QCD, it is important to realise that the computation of all other matrix
elements proceeds in an analogous manner. In the case of the SMEFT corrections aris-
ing from the choice of EW input scheme as well as those associated to insertions of the
operators (2.2) and (2.3) this is clear in view of the factorisation properties of these contri-
butions

�
cf. (4.12)

�
. Likewise, since the spinor-helicity structure of the partonic part of a

given SMEFT amplitude remains the same as in the SM, it can simply be extracted from the
SM expressions and contracted with the part of the SMEFT amplitude that does change.
It follows that an explicit calculation of the full partonic structures for the higher-order cor-
rections to pp ! V h in the SMEFT can always be avoided, because the relevant amplitudes
can be obtained from those in the SM by applying relations a la (4.8) and (4.10) which
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Figure 2: Examples of higher-order QCD corrections to pp ! Zh production within the
SM. The diagram on the left features additional virtual and real gluon lines (B-type), the
diagram in the middle involves a second quark line (C- and D-type) and the diagram on the
right is gluon-gluon initiated (A-type). Consult the main text for further details.
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Figure 3: Example graphs that contribute to the B1g0Z matrix elements. The diagram
on the left shows a SM contribution. On the right we instead depict a SMEFT correction
that receives contributions from the generalised ZZh and �Zh currents introduced in (4.6).
The four-momentum flow is indicated by the grey arrows and labels. See the main text for
additional explanations.
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The expressions for the latter shifts are again given in Appendix A.
While we have used in this section the matrix element B1g0Z as an example to illus-

trate the general approach that we have employed in our SMEFT calculation of pp ! V h

at NNLO in QCD, it is important to realise that the computation of all other matrix
elements proceeds in an analogous manner. In the case of the SMEFT corrections aris-
ing from the choice of EW input scheme as well as those associated to insertions of the
operators (2.2) and (2.3) this is clear in view of the factorisation properties of these contri-
butions

�
cf. (4.12)

�
. Likewise, since the spinor-helicity structure of the partonic part of a

given SMEFT amplitude remains the same as in the SM, it can simply be extracted from the
SM expressions and contracted with the part of the SMEFT amplitude that does change.
It follows that an explicit calculation of the full partonic structures for the higher-order cor-
rections to pp ! V h in the SMEFT can always be avoided, because the relevant amplitudes
can be obtained from those in the SM by applying relations a la (4.8) and (4.10) which
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Figure 2: Examples of higher-order QCD corrections to pp ! Zh production within the
SM. The diagram on the left features additional virtual and real gluon lines (B-type), the
diagram in the middle involves a second quark line (C- and D-type) and the diagram on the
right is gluon-gluon initiated (A-type). Consult the main text for further details.

As an example for the calculation of the SMEFT matrix elements, we consider the case
of B1g0Z where an additional gluon is radiated off the initial-state quark line. While contain-
ing all the main ingredients, the expressions for B1g0Z are concise enough to be stated here.
The corresponding SM Feynman diagram is displayed on the left-hand side in Figure 3.
Note that we consider the leptons (quarks) to be outgoing (incoming). The corresponding
spinor-helicity amplitude with left-handed fermion chiralities and a physical gluon with a
negative helicity reads
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⇣
1�q , 2
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`
, 5+¯̀
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=
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h12i h23i

⇣
h13i [51] + h23i [52]

⌘
, (3.1)

where hiji and [ij] denote the usual spinor products — see for example [32] for a review of
the spinor-helicity formalism. Notice that the semicolon in the expression on the left-hand
side of (3.1) separates the particles with incoming and outgoing convention, respectively.
The amplitudes for the remaining helicity combinations can be obtained via the following
parity and charge conjugation relations
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The resulting spin-averaged matrix element B1g0Z then takes the form
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where
sij = (pi + pj)

2
, sijk = sij + sjk + ski , (3.4)
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Figure 2: Examples of higher-order QCD corrections to pp ! Zh production within the
SM. The diagram on the left features additional virtual and real gluon lines (B-type), the
diagram in the middle involves a second quark line (C- and D-type) and the diagram on the
right is gluon-gluon initiated (A-type). Consult the main text for further details.

where
sij = (pi + pj)

2
, sijk = sij + sjk + ski , (4.4)

are the usual Mandelstam invariants with pi the four-momentum of particle i. We have
furthermore introduced

DZ(s) = s�M
2
Z + iMZ�Z , (4.5)

with �Z denoting the total decay width of the Z boson. In (4.3) the variable ↵s denotes
the strong coupling constant while CF = 4/3 and CA = 3 are the relevant colour factors.
The symbols g

hf

Zf
and ghZZ represent the Zff̄ and hZZ coupling strengths, respectively.

The explicit expressions for these quantities are given in Appendix A.
The technically most involved part of the SMEFT calculation results from insertions of

the three operators introduced in (2.1) since QHB, QHW and QHWB generate modified hV V

vertices with helicity structures different from the SM one. These modifications can be
included at the level of (4.1) by means of generalised currents that describe the splitting
of the initial vector boson V1 into the outgoing vector boson V2 and the Higgs boson h [8].
If the initial-state quarks and final-state leptons are left-handed the relevant generalised
neutral currents are given by
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(4.6)
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Figure 2: Examples of higher-order QCD corrections to pp ! Zh production within the
SM. The diagram on the left features additional virtual and real gluon lines (B-type), the
diagram in the middle involves a second quark line (C- and D-type) and the diagram on the
right is gluon-gluon initiated (A-type). Consult the main text for further details.
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SM. The diagram on the left features additional virtual and real gluon lines (B-type), the
diagram in the middle involves a second quark line (C- and D-type) and the diagram on the
right is gluon-gluon initiated (A-type). Consult the main text for further details.
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(B-type) (C,D-type) (A-type)

UV

Figure 3: Example graphs that contribute to the B1g0Z matrix elements. The diagram
on the left shows a SM contribution. On the right we instead depict a SMEFT correction
that receives contributions from the generalised ZZh and �Zh currents introduced in (4.6).
The four-momentum flow is indicated by the grey arrows and labels. See the main text for
additional explanations.

describes the contribution from Q
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, Q(3)
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, QHu and QHd, while the second term is induced
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(1)
H`

, Q(3)
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and QHe. Notice that compared to the corresponding SM contribution in (4.3)
the SMEFT correction proportional to �g

(1)hq

hZq
in (4.12) is missing the Z-boson propagator

depending on s123. This feature explains the high-energy growth [11–13] of the SMEFT
pp ! V h amplitudes involving the Wilson coefficients C

(1)
Hq

, C(3)
Hq

, CHu and CHd.
The last type of SMEFT corrections to the matrix element B1g0Z is associated to the

tree-level shifts of the SM parameters and couplings. EW input scheme corrections from
CHD, CHWB, C

(3)
H`

and C`` lead to the shifts �g1, �g2 and �v of the U(1)Y and SU(2)L

gauge coupling and the Higgs VEV, respectively, that in turn induce the shifts �g
(0)
hZZ

and
�g

(0)hf

Zf
in the respective couplings of the Z boson. The expressions for these shifts are listed

in Appendix A. In practice, the input scheme corrections can be accounted for by applying
the replacements ghZZ ! ghZZ + �g

(0)
hZZ

and �g
(0)hf

Zf
! �g

(0)hf
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to (4.3). Similarly,

the Wilson coefficients C
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, C(3)
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, CHu, CHd, C
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, C(3)
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and CHe lead to direct shifts in

the Zff̄ couplings that we include through the shifts g
(1)hf

Zf
! g

(1)hf

Zf
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(1)hf

Zf
in (4.3).

The expressions for the latter shifts are again given in Appendix A.
While we have used in this section the matrix element B1g0Z as an example to illus-

trate the general approach that we have employed in our SMEFT calculation of pp ! V h

at NNLO in QCD, it is important to realise that the computation of all other matrix
elements proceeds in an analogous manner. In the case of the SMEFT corrections aris-
ing from the choice of EW input scheme as well as those associated to insertions of the
operators (2.2) and (2.3) this is clear in view of the factorisation properties of these contri-
butions

�
cf. (4.12)

�
. Likewise, since the spinor-helicity structure of the partonic part of a

given SMEFT amplitude remains the same as in the SM, it can simply be extracted from the
SM expressions and contracted with the part of the SMEFT amplitude that does change.
It follows that an explicit calculation of the full partonic structures for the higher-order cor-
rections to pp ! V h in the SMEFT can always be avoided, because the relevant amplitudes
can be obtained from those in the SM by applying relations a la (4.8) and (4.10) which
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Figure 2: Examples of higher-order QCD corrections to pp ! Zh production within the
SM. The diagram on the left features additional virtual and real gluon lines (B-type), the
diagram in the middle involves a second quark line (C- and D-type) and the diagram on the
right is gluon-gluon initiated (A-type). Consult the main text for further details.

As an example for the calculation of the SMEFT matrix elements, we consider the case
of B1g0Z where an additional gluon is radiated off the initial-state quark line. While contain-
ing all the main ingredients, the expressions for B1g0Z are concise enough to be stated here.
The corresponding SM Feynman diagram is displayed on the left-hand side in Figure 3.
Note that we consider the leptons (quarks) to be outgoing (incoming). The corresponding
spinor-helicity amplitude with left-handed fermion chiralities and a physical gluon with a
negative helicity reads
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1�q , 2
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g , 3
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q̄ ; 4
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`
, 5+¯̀

⌘
=

h34i

h12i h23i
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h13i [51] + h23i [52]

⌘
, (3.1)

where hiji and [ij] denote the usual spinor products — see for example [32] for a review of
the spinor-helicity formalism. Notice that the semicolon in the expression on the left-hand
side of (3.1) separates the particles with incoming and outgoing convention, respectively.
The amplitudes for the remaining helicity combinations can be obtained via the following
parity and charge conjugation relations

AB1g0Z
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The resulting spin-averaged matrix element B1g0Z then takes the form

B1g0Z =
8⇡↵sCF
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Figure 2: Examples of higher-order QCD corrections to pp ! Zh production within the
SM. The diagram on the left features additional virtual and real gluon lines (B-type), the
diagram in the middle involves a second quark line (C- and D-type) and the diagram on the
right is gluon-gluon initiated (A-type). Consult the main text for further details.

As an example for the calculation of the SMEFT matrix elements, we consider the case
of B1g0Z where an additional gluon is radiated off the initial-state quark line. While contain-
ing all the main ingredients, the expressions for B1g0Z are concise enough to be stated here.
The corresponding SM Feynman diagram is displayed on the left-hand side in Figure 3.
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where hiji and [ij] denote the usual spinor products — see for example [32] for a review of
the spinor-helicity formalism. Notice that the semicolon in the expression on the left-hand
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Figure 2: Examples of higher-order QCD corrections to pp ! Zh production within the
SM. The diagram on the left features additional virtual and real gluon lines (B-type), the
diagram in the middle involves a second quark line (C- and D-type) and the diagram on the
right is gluon-gluon initiated (A-type). Consult the main text for further details.

where
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are the usual Mandelstam invariants with pi the four-momentum of particle i. We have
furthermore introduced

DZ(s) = s�M
2
Z + iMZ�Z , (4.5)

with �Z denoting the total decay width of the Z boson. In (4.3) the variable ↵s denotes
the strong coupling constant while CF = 4/3 and CA = 3 are the relevant colour factors.
The symbols g
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and ghZZ represent the Zff̄ and hZZ coupling strengths, respectively.

The explicit expressions for these quantities are given in Appendix A.
The technically most involved part of the SMEFT calculation results from insertions of

the three operators introduced in (2.1) since QHB, QHW and QHWB generate modified hV V

vertices with helicity structures different from the SM one. These modifications can be
included at the level of (4.1) by means of generalised currents that describe the splitting
of the initial vector boson V1 into the outgoing vector boson V2 and the Higgs boson h [8].
If the initial-state quarks and final-state leptons are left-handed the relevant generalised
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Figure 2: Examples of higher-order QCD corrections to pp ! Zh production within the
SM. The diagram on the left features additional virtual and real gluon lines (B-type), the
diagram in the middle involves a second quark line (C- and D-type) and the diagram on the
right is gluon-gluon initiated (A-type). Consult the main text for further details.
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are the usual Mandelstam invariants with pi the four-momentum of particle i. We have
furthermore introduced

DZ(s) = s�M
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Z + iMZ�Z , (4.5)

with �Z denoting the total decay width of the Z boson. In (4.3) the variable ↵s denotes
the strong coupling constant while CF = 4/3 and CA = 3 are the relevant colour factors.
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and ghZZ represent the Zff̄ and hZZ coupling strengths, respectively.

The explicit expressions for these quantities are given in Appendix A.
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(B-type) (C,D-type) (A-type)

UV

Figure 3: Example graphs that contribute to the B1g0Z matrix elements. The diagram
on the left shows a SM contribution. On the right we instead depict a SMEFT correction
that receives contributions from the generalised ZZh and �Zh currents introduced in (4.6).
The four-momentum flow is indicated by the grey arrows and labels. See the main text for
additional explanations.

describes the contribution from Q
(1)
Hq

, Q(3)
Hq

, QHu and QHd, while the second term is induced
by Q

(1)
H`

, Q(3)
H`

and QHe. Notice that compared to the corresponding SM contribution in (4.3)
the SMEFT correction proportional to �g

(1)hq

hZq
in (4.12) is missing the Z-boson propagator

depending on s123. This feature explains the high-energy growth [11–13] of the SMEFT
pp ! V h amplitudes involving the Wilson coefficients C

(1)
Hq

, C(3)
Hq

, CHu and CHd.
The last type of SMEFT corrections to the matrix element B1g0Z is associated to the

tree-level shifts of the SM parameters and couplings. EW input scheme corrections from
CHD, CHWB, C

(3)
H`

and C`` lead to the shifts �g1, �g2 and �v of the U(1)Y and SU(2)L

gauge coupling and the Higgs VEV, respectively, that in turn induce the shifts �g
(0)
hZZ

and
�g
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Zf
in the respective couplings of the Z boson. The expressions for these shifts are listed

in Appendix A. In practice, the input scheme corrections can be accounted for by applying
the replacements ghZZ ! ghZZ + �g
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hZZ

and �g
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! �g

(0)hf
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to (4.3). Similarly,

the Wilson coefficients C
(1)
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, C(3)
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(1)
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, C(3)
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and CHe lead to direct shifts in

the Zff̄ couplings that we include through the shifts g
(1)hf

Zf
! g

(1)hf

Zf
+ �g

(1)hf

Zf
in (4.3).

The expressions for the latter shifts are again given in Appendix A.
While we have used in this section the matrix element B1g0Z as an example to illus-

trate the general approach that we have employed in our SMEFT calculation of pp ! V h

at NNLO in QCD, it is important to realise that the computation of all other matrix
elements proceeds in an analogous manner. In the case of the SMEFT corrections aris-
ing from the choice of EW input scheme as well as those associated to insertions of the
operators (2.2) and (2.3) this is clear in view of the factorisation properties of these contri-
butions

�
cf. (4.12)

�
. Likewise, since the spinor-helicity structure of the partonic part of a

given SMEFT amplitude remains the same as in the SM, it can simply be extracted from the
SM expressions and contracted with the part of the SMEFT amplitude that does change.
It follows that an explicit calculation of the full partonic structures for the higher-order cor-
rections to pp ! V h in the SMEFT can always be avoided, because the relevant amplitudes
can be obtained from those in the SM by applying relations a la (4.8) and (4.10) which
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Figure 2: Examples of higher-order QCD corrections to pp ! Zh production within the
SM. The diagram on the left features additional virtual and real gluon lines (B-type), the
diagram in the middle involves a second quark line (C- and D-type) and the diagram on the
right is gluon-gluon initiated (A-type). Consult the main text for further details.

As an example for the calculation of the SMEFT matrix elements, we consider the case
of B1g0Z where an additional gluon is radiated off the initial-state quark line. While contain-
ing all the main ingredients, the expressions for B1g0Z are concise enough to be stated here.
The corresponding SM Feynman diagram is displayed on the left-hand side in Figure 3.
Note that we consider the leptons (quarks) to be outgoing (incoming). The corresponding
spinor-helicity amplitude with left-handed fermion chiralities and a physical gluon with a
negative helicity reads
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where hiji and [ij] denote the usual spinor products — see for example [32] for a review of
the spinor-helicity formalism. Notice that the semicolon in the expression on the left-hand
side of (3.1) separates the particles with incoming and outgoing convention, respectively.
The amplitudes for the remaining helicity combinations can be obtained via the following
parity and charge conjugation relations
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Figure 2: Examples of higher-order QCD corrections to pp ! Zh production within the
SM. The diagram on the left features additional virtual and real gluon lines (B-type), the
diagram in the middle involves a second quark line (C- and D-type) and the diagram on the
right is gluon-gluon initiated (A-type). Consult the main text for further details.

where
sij = (pi + pj)

2
, sijk = sij + sjk + ski , (4.4)

are the usual Mandelstam invariants with pi the four-momentum of particle i. We have
furthermore introduced

DZ(s) = s�M
2
Z + iMZ�Z , (4.5)

with �Z denoting the total decay width of the Z boson. In (4.3) the variable ↵s denotes
the strong coupling constant while CF = 4/3 and CA = 3 are the relevant colour factors.
The symbols g

hf

Zf
and ghZZ represent the Zff̄ and hZZ coupling strengths, respectively.

The explicit expressions for these quantities are given in Appendix A.
The technically most involved part of the SMEFT calculation results from insertions of

the three operators introduced in (2.1) since QHB, QHW and QHWB generate modified hV V

vertices with helicity structures different from the SM one. These modifications can be
included at the level of (4.1) by means of generalised currents that describe the splitting
of the initial vector boson V1 into the outgoing vector boson V2 and the Higgs boson h [8].
If the initial-state quarks and final-state leptons are left-handed the relevant generalised
neutral currents are given by
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(B-type) (C,D-type) (A-type)

UV

Figure 3: Example graphs that contribute to the B1g0Z matrix elements. The diagram
on the left shows a SM contribution. On the right we instead depict a SMEFT correction
that receives contributions from the generalised ZZh and �Zh currents introduced in (4.6).
The four-momentum flow is indicated by the grey arrows and labels. See the main text for
additional explanations.

describes the contribution from Q
(1)
Hq

, Q(3)
Hq

, QHu and QHd, while the second term is induced
by Q

(1)
H`

, Q(3)
H`

and QHe. Notice that compared to the corresponding SM contribution in (4.3)
the SMEFT correction proportional to �g

(1)hq

hZq
in (4.12) is missing the Z-boson propagator

depending on s123. This feature explains the high-energy growth [11–13] of the SMEFT
pp ! V h amplitudes involving the Wilson coefficients C

(1)
Hq

, C(3)
Hq

, CHu and CHd.
The last type of SMEFT corrections to the matrix element B1g0Z is associated to the

tree-level shifts of the SM parameters and couplings. EW input scheme corrections from
CHD, CHWB, C

(3)
H`

and C`` lead to the shifts �g1, �g2 and �v of the U(1)Y and SU(2)L

gauge coupling and the Higgs VEV, respectively, that in turn induce the shifts �g
(0)
hZZ

and
�g

(0)hf

Zf
in the respective couplings of the Z boson. The expressions for these shifts are listed

in Appendix A. In practice, the input scheme corrections can be accounted for by applying
the replacements ghZZ ! ghZZ + �g

(0)
hZZ

and �g
(0)hf

Zf
! �g

(0)hf

Zf
+ �g

(0)hf

Zf
to (4.3). Similarly,

the Wilson coefficients C
(1)
Hq

, C(3)
Hq

, CHu, CHd, C
(1)
H`

, C(3)
H`

and CHe lead to direct shifts in

the Zff̄ couplings that we include through the shifts g
(1)hf

Zf
! g

(1)hf

Zf
+ �g

(1)hf

Zf
in (4.3).

The expressions for the latter shifts are again given in Appendix A.
While we have used in this section the matrix element B1g0Z as an example to illus-

trate the general approach that we have employed in our SMEFT calculation of pp ! V h

at NNLO in QCD, it is important to realise that the computation of all other matrix
elements proceeds in an analogous manner. In the case of the SMEFT corrections aris-
ing from the choice of EW input scheme as well as those associated to insertions of the
operators (2.2) and (2.3) this is clear in view of the factorisation properties of these contri-
butions

�
cf. (4.12)

�
. Likewise, since the spinor-helicity structure of the partonic part of a

given SMEFT amplitude remains the same as in the SM, it can simply be extracted from the
SM expressions and contracted with the part of the SMEFT amplitude that does change.
It follows that an explicit calculation of the full partonic structures for the higher-order cor-
rections to pp ! V h in the SMEFT can always be avoided, because the relevant amplitudes
can be obtained from those in the SM by applying relations a la (4.8) and (4.10) which
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(B1g0Z)

2. Details of the calculation
2.1 -initiated contributionsqq̄

Figure 2: Examples of higher-order QCD corrections to pp ! Zh production within the
SM. The diagram on the left features additional virtual and real gluon lines (B-type), the
diagram in the middle involves a second quark line (C- and D-type) and the diagram on the
right is gluon-gluon initiated (A-type). Consult the main text for further details.

As an example for the calculation of the SMEFT matrix elements, we consider the case
of B1g0Z where an additional gluon is radiated off the initial-state quark line. While contain-
ing all the main ingredients, the expressions for B1g0Z are concise enough to be stated here.
The corresponding SM Feynman diagram is displayed on the left-hand side in Figure 3.
Note that we consider the leptons (quarks) to be outgoing (incoming). The corresponding
spinor-helicity amplitude with left-handed fermion chiralities and a physical gluon with a
negative helicity reads
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⇣
1�q , 2

�
g , 3
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q̄ ; 4

�
`
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⌘
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⇣
h13i [51] + h23i [52]

⌘
, (3.1)

where hiji and [ij] denote the usual spinor products — see for example [32] for a review of
the spinor-helicity formalism. Notice that the semicolon in the expression on the left-hand
side of (3.1) separates the particles with incoming and outgoing convention, respectively.
The amplitudes for the remaining helicity combinations can be obtained via the following
parity and charge conjugation relations
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⇣
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⇣
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⇣
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(3.2)

The resulting spin-averaged matrix element B1g0Z then takes the form
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⇣
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2

, (3.3)

where
sij = (pi + pj)

2
, sijk = sij + sjk + ski , (3.4)

– 5 –

Figure 2: Examples of higher-order QCD corrections to pp ! Zh production within the
SM. The diagram on the left features additional virtual and real gluon lines (B-type), the
diagram in the middle involves a second quark line (C- and D-type) and the diagram on the
right is gluon-gluon initiated (A-type). Consult the main text for further details.
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Figure 2: Examples of higher-order QCD corrections to pp ! Zh production within the
SM. The diagram on the left features additional virtual and real gluon lines (B-type), the
diagram in the middle involves a second quark line (C- and D-type) and the diagram on the
right is gluon-gluon initiated (A-type). Consult the main text for further details.
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The resulting spin-averaged matrix element B1g0Z then takes the form
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CA

X

hq ,hg ,h`=±
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, sijk = sij + sjk + ski , (3.4)
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are the usual Mandelstam invariants with pi the four-momentum of particle i. We have
furthermore introduced

DZ(s) = s�m
2
Z + imZ�Z , (3.5)

with �Z denoting the total decay width of the Z boson. In (3.3) the variable ↵s denotes
the strong coupling constant while CF = 4/3 and CA = 3 are the relevant colour factors.
The symbols g

hf

Zf
and ghZZ represent the Zff̄ and hZZ coupling strengths, respectively.

The explicit expressions for these quantities are given in Appendix A.
To compute the SMEFT contributions that involve modified couplings between the

Higgs and two vector bosons, it is important to notice that by using the spinor identity

hiji[kl] =
1

2
hj|�

µ
|k]hi|�µ|l] , (3.6)

the result (3.1) can be rewritten as

AB1g0Z

⇣
1�q , 2

�
g , 3

+
q̄ ; 4

�
`
, 5+¯̀

⌘
= h4|�µ|5]A

µ

qgq(1
�
q , 2

�
g , 3

+
q̄ ) . (3.7)

Here the spinor-helicity amplitude corresponding to the qq̄g subprocess with the indi-
cated helicities is given by

A
µ

qgq(1
�
q , 2

�
g , 3

+
q̄ ) =

h13ih3|�µ|1] + h23ih3|�µ|2]

2h12ih23i
. (3.8)

3.2 SMEFT calculation

The technically most involved part of the SMEFT calculation results from insertions of the
three operators introduced in (2.1) since QHB, QHW and QHWB generate modified hV V

vertices with helicity structures different from the one present in the SM, i.e. the spinor
chain h4|�µ|5] in (3.7). These modifications can be included at the level of (3.1) by means
of generalised currents that describe the splitting of the initial vector boson V1 into the
outgoing vector boson V2 and the Higgs boson h [8]. If the initial-state quarks and final-
state leptons are left-handed the relevant generalised neutral currents are given by

A
µ

hZZ
(p123, 4

�
`
, 5+¯̀ ) =

g
�
Zq

g
�
Z`

DZ(s123)DZ(s45)

(
h4|�µ|5]

⇣
ghZZ + �g

(2)
hZZ

(s123 + s34) + �g
(3)
hZZ

⌘

� �g
(2)
hZZ

p
µ

123h4|/p123|5]�
�g

(1)
hZZ

2

⇣
h4|�µ/p123|4i[45] + h45i[5|/p123�

µ
|5]

⌘)
,

A
µ

h�Z
(p123, 4

�
`
, 5+¯̀ ) =

g
�
�q g

�
Z`

s123D(s45)

(
�

�g
(1)
h�Z

2

✓
h4|�µ|5]

⇣
h4|/p123|4] + h5|/p123|5]

⌘

� 2 (pµ4 + p
µ

5 ) h4|/p123|5]

◆
+ �g

(2)
h�Z

⇣
h4|�µ|5] s123 � p

µ

123 h4|/p123|5]
⌘)

,

(3.9)

where the structures A
µ

hZZ
and A

µ

h�Z
encode the modified hZZ and h�Z vertices, respec-

tively, and p123 denotes the four-momentum of the incoming vector boson. The symbols ghq

�q
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How can we calculate the relevant SMEFT matrix elements?

Figure 2: Examples of higher-order QCD corrections to pp ! Zh production within the
SM. The diagram on the left features additional virtual and real gluon lines (B-type), the
diagram in the middle involves a second quark line (C- and D-type) and the diagram on the
right is gluon-gluon initiated (A-type). Consult the main text for further details.
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2
, sijk = sij + sjk + ski , (4.4)

are the usual Mandelstam invariants with pi the four-momentum of particle i. We have
furthermore introduced

DZ(s) = s�M
2
Z + iMZ�Z , (4.5)

with �Z denoting the total decay width of the Z boson. In (4.3) the variable ↵s denotes
the strong coupling constant while CF = 4/3 and CA = 3 are the relevant colour factors.
The symbols g

hf

Zf
and ghZZ represent the Zff̄ and hZZ coupling strengths, respectively.

The explicit expressions for these quantities are given in Appendix A.
The technically most involved part of the SMEFT calculation results from insertions of

the three operators introduced in (2.1) since QHB, QHW and QHWB generate modified hV V

vertices with helicity structures different from the SM one. These modifications can be
included at the level of (4.1) by means of generalised currents that describe the splitting
of the initial vector boson V1 into the outgoing vector boson V2 and the Higgs boson h [8].
If the initial-state quarks and final-state leptons are left-handed the relevant generalised
neutral currents are given by
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Figure 2: Examples of higher-order QCD corrections to pp ! Zh production within the
SM. The diagram on the left features additional virtual and real gluon lines (B-type), the
diagram in the middle involves a second quark line (C- and D-type) and the diagram on the
right is gluon-gluon initiated (A-type). Consult the main text for further details.
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Figure 2: Examples of higher-order QCD corrections to pp ! Zh production within the
SM. The diagram on the left features additional virtual and real gluon lines (B-type), the
diagram in the middle involves a second quark line (C- and D-type) and the diagram on the
right is gluon-gluon initiated (A-type). Consult the main text for further details.
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(B-type) (C,D-type) (A-type)

UV

Figure 3: Example graphs that contribute to the B1g0Z matrix elements. The diagram
on the left shows a SM contribution. On the right we instead depict a SMEFT correction
that receives contributions from the generalised ZZh and �Zh currents introduced in (4.6).
The four-momentum flow is indicated by the grey arrows and labels. See the main text for
additional explanations.

describes the contribution from Q
(1)
Hq

, Q(3)
Hq

, QHu and QHd, while the second term is induced
by Q

(1)
H`

, Q(3)
H`

and QHe. Notice that compared to the corresponding SM contribution in (4.3)
the SMEFT correction proportional to �g

(1)hq

hZq
in (4.12) is missing the Z-boson propagator

depending on s123. This feature explains the high-energy growth [11–13] of the SMEFT
pp ! V h amplitudes involving the Wilson coefficients C

(1)
Hq

, C(3)
Hq

, CHu and CHd.
The last type of SMEFT corrections to the matrix element B1g0Z is associated to the

tree-level shifts of the SM parameters and couplings. EW input scheme corrections from
CHD, CHWB, C

(3)
H`

and C`` lead to the shifts �g1, �g2 and �v of the U(1)Y and SU(2)L

gauge coupling and the Higgs VEV, respectively, that in turn induce the shifts �g
(0)
hZZ

and
�g

(0)hf

Zf
in the respective couplings of the Z boson. The expressions for these shifts are listed

in Appendix A. In practice, the input scheme corrections can be accounted for by applying
the replacements ghZZ ! ghZZ + �g

(0)
hZZ

and �g
(0)hf

Zf
! �g

(0)hf

Zf
+ �g

(0)hf

Zf
to (4.3). Similarly,

the Wilson coefficients C
(1)
Hq

, C(3)
Hq

, CHu, CHd, C
(1)
H`

, C(3)
H`

and CHe lead to direct shifts in

the Zff̄ couplings that we include through the shifts g
(1)hf

Zf
! g

(1)hf

Zf
+ �g

(1)hf

Zf
in (4.3).

The expressions for the latter shifts are again given in Appendix A.
While we have used in this section the matrix element B1g0Z as an example to illus-

trate the general approach that we have employed in our SMEFT calculation of pp ! V h

at NNLO in QCD, it is important to realise that the computation of all other matrix
elements proceeds in an analogous manner. In the case of the SMEFT corrections aris-
ing from the choice of EW input scheme as well as those associated to insertions of the
operators (2.2) and (2.3) this is clear in view of the factorisation properties of these contri-
butions

�
cf. (4.12)

�
. Likewise, since the spinor-helicity structure of the partonic part of a

given SMEFT amplitude remains the same as in the SM, it can simply be extracted from the
SM expressions and contracted with the part of the SMEFT amplitude that does change.
It follows that an explicit calculation of the full partonic structures for the higher-order cor-
rections to pp ! V h in the SMEFT can always be avoided, because the relevant amplitudes
can be obtained from those in the SM by applying relations a la (4.8) and (4.10) which
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(B1g0Z)

2. Details of the calculation
2.1 -initiated contributionsqq̄

Figure 2: Examples of higher-order QCD corrections to pp ! Zh production within the
SM. The diagram on the left features additional virtual and real gluon lines (B-type), the
diagram in the middle involves a second quark line (C- and D-type) and the diagram on the
right is gluon-gluon initiated (A-type). Consult the main text for further details.

As an example for the calculation of the SMEFT matrix elements, we consider the case
of B1g0Z where an additional gluon is radiated off the initial-state quark line. While contain-
ing all the main ingredients, the expressions for B1g0Z are concise enough to be stated here.
The corresponding SM Feynman diagram is displayed on the left-hand side in Figure 3.
Note that we consider the leptons (quarks) to be outgoing (incoming). The corresponding
spinor-helicity amplitude with left-handed fermion chiralities and a physical gluon with a
negative helicity reads
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⇣
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g , 3
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q̄ ; 4

�
`
, 5+¯̀

⌘
=
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h12i h23i

⇣
h13i [51] + h23i [52]

⌘
, (3.1)

where hiji and [ij] denote the usual spinor products — see for example [32] for a review of
the spinor-helicity formalism. Notice that the semicolon in the expression on the left-hand
side of (3.1) separates the particles with incoming and outgoing convention, respectively.
The amplitudes for the remaining helicity combinations can be obtained via the following
parity and charge conjugation relations
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⇣
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⇣
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(3.2)

The resulting spin-averaged matrix element B1g0Z then takes the form

B1g0Z =
8⇡↵sCF

CA

X

hq ,hg ,h`=±

�����
g
hq

Zq
g
h`

Z`
ghZZ

DZ(s123)DZ(s45)
AB1g0Z

⇣
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2

, (3.3)

where
sij = (pi + pj)

2
, sijk = sij + sjk + ski , (3.4)
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Figure 2: Examples of higher-order QCD corrections to pp ! Zh production within the
SM. The diagram on the left features additional virtual and real gluon lines (B-type), the
diagram in the middle involves a second quark line (C- and D-type) and the diagram on the
right is gluon-gluon initiated (A-type). Consult the main text for further details.
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Figure 2: Examples of higher-order QCD corrections to pp ! Zh production within the
SM. The diagram on the left features additional virtual and real gluon lines (B-type), the
diagram in the middle involves a second quark line (C- and D-type) and the diagram on the
right is gluon-gluon initiated (A-type). Consult the main text for further details.
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The resulting spin-averaged matrix element B1g0Z then takes the form
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CA
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hq ,hg ,h`=±
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sij = (pi + pj)
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, sijk = sij + sjk + ski , (3.4)
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are the usual Mandelstam invariants with pi the four-momentum of particle i. We have
furthermore introduced

DZ(s) = s�m
2
Z + imZ�Z , (3.5)

with �Z denoting the total decay width of the Z boson. In (3.3) the variable ↵s denotes
the strong coupling constant while CF = 4/3 and CA = 3 are the relevant colour factors.
The symbols g

hf

Zf
and ghZZ represent the Zff̄ and hZZ coupling strengths, respectively.

The explicit expressions for these quantities are given in Appendix A.
To compute the SMEFT contributions that involve modified couplings between the

Higgs and two vector bosons, it is important to notice that by using the spinor identity

hiji[kl] =
1

2
hj|�

µ
|k]hi|�µ|l] , (3.6)

the result (3.1) can be rewritten as

AB1g0Z

⇣
1�q , 2

�
g , 3

+
q̄ ; 4

�
`
, 5+¯̀

⌘
= h4|�µ|5]A

µ

qgq(1
�
q , 2

�
g , 3

+
q̄ ) . (3.7)

Here the spinor-helicity amplitude corresponding to the qq̄g subprocess with the indi-
cated helicities is given by

A
µ

qgq(1
�
q , 2

�
g , 3

+
q̄ ) =

h13ih3|�µ|1] + h23ih3|�µ|2]

2h12ih23i
. (3.8)

3.2 SMEFT calculation

The technically most involved part of the SMEFT calculation results from insertions of the
three operators introduced in (2.1) since QHB, QHW and QHWB generate modified hV V

vertices with helicity structures different from the one present in the SM, i.e. the spinor
chain h4|�µ|5] in (3.7). These modifications can be included at the level of (3.1) by means
of generalised currents that describe the splitting of the initial vector boson V1 into the
outgoing vector boson V2 and the Higgs boson h [8]. If the initial-state quarks and final-
state leptons are left-handed the relevant generalised neutral currents are given by

A
µ

hZZ
(p123, 4

�
`
, 5+¯̀ ) =

g
�
Zq

g
�
Z`

DZ(s123)DZ(s45)

(
h4|�µ|5]

⇣
ghZZ + �g

(2)
hZZ

(s123 + s34) + �g
(3)
hZZ

⌘

� �g
(2)
hZZ

p
µ

123h4|/p123|5]�
�g

(1)
hZZ

2

⇣
h4|�µ/p123|4i[45] + h45i[5|/p123�

µ
|5]

⌘)
,

A
µ

h�Z
(p123, 4

�
`
, 5+¯̀ ) =

g
�
�q g

�
Z`

s123D(s45)

(
�

�g
(1)
h�Z

2

✓
h4|�µ|5]

⇣
h4|/p123|4] + h5|/p123|5]

⌘

� 2 (pµ4 + p
µ

5 ) h4|/p123|5]

◆
+ �g

(2)
h�Z

⇣
h4|�µ|5] s123 � p

µ

123 h4|/p123|5]
⌘)

,

(3.9)

where the structures A
µ

hZZ
and A

µ

h�Z
encode the modified hZZ and h�Z vertices, respec-

tively, and p123 denotes the four-momentum of the incoming vector boson. The symbols ghq

�q
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How can we calculate the relevant SMEFT matrix elements?

Figure 2: Examples of higher-order QCD corrections to pp ! Zh production within the
SM. The diagram on the left features additional virtual and real gluon lines (B-type), the
diagram in the middle involves a second quark line (C- and D-type) and the diagram on the
right is gluon-gluon initiated (A-type). Consult the main text for further details.

where
sij = (pi + pj)

2
, sijk = sij + sjk + ski , (4.4)

are the usual Mandelstam invariants with pi the four-momentum of particle i. We have
furthermore introduced

DZ(s) = s�M
2
Z + iMZ�Z , (4.5)

with �Z denoting the total decay width of the Z boson. In (4.3) the variable ↵s denotes
the strong coupling constant while CF = 4/3 and CA = 3 are the relevant colour factors.
The symbols g

hf

Zf
and ghZZ represent the Zff̄ and hZZ coupling strengths, respectively.

The explicit expressions for these quantities are given in Appendix A.
The technically most involved part of the SMEFT calculation results from insertions of

the three operators introduced in (2.1) since QHB, QHW and QHWB generate modified hV V

vertices with helicity structures different from the SM one. These modifications can be
included at the level of (4.1) by means of generalised currents that describe the splitting
of the initial vector boson V1 into the outgoing vector boson V2 and the Higgs boson h [8].
If the initial-state quarks and final-state leptons are left-handed the relevant generalised
neutral currents are given by

ZZhµ(p123, 4�` , 5
+
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�
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h4|�µ/p123|4i[45] + h45i[5|/p123�
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AZhµ(p123, 4�` , 5
+
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Figure 2: Examples of higher-order QCD corrections to pp ! Zh production within the
SM. The diagram on the left features additional virtual and real gluon lines (B-type), the
diagram in the middle involves a second quark line (C- and D-type) and the diagram on the
right is gluon-gluon initiated (A-type). Consult the main text for further details.
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Figure 2: Examples of higher-order QCD corrections to pp ! Zh production within the
SM. The diagram on the left features additional virtual and real gluon lines (B-type), the
diagram in the middle involves a second quark line (C- and D-type) and the diagram on the
right is gluon-gluon initiated (A-type). Consult the main text for further details.
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(B-type) (C,D-type) (A-type)

UV

Figure 3: Example graphs that contribute to the B1g0Z matrix elements. The diagram
on the left shows a SM contribution. On the right we instead depict a SMEFT correction
that receives contributions from the generalised ZZh and �Zh currents introduced in (4.6).
The four-momentum flow is indicated by the grey arrows and labels. See the main text for
additional explanations.

describes the contribution from Q
(1)
Hq

, Q(3)
Hq

, QHu and QHd, while the second term is induced
by Q

(1)
H`

, Q(3)
H`

and QHe. Notice that compared to the corresponding SM contribution in (4.3)
the SMEFT correction proportional to �g

(1)hq

hZq
in (4.12) is missing the Z-boson propagator

depending on s123. This feature explains the high-energy growth [11–13] of the SMEFT
pp ! V h amplitudes involving the Wilson coefficients C

(1)
Hq

, C(3)
Hq

, CHu and CHd.
The last type of SMEFT corrections to the matrix element B1g0Z is associated to the

tree-level shifts of the SM parameters and couplings. EW input scheme corrections from
CHD, CHWB, C
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and C`` lead to the shifts �g1, �g2 and �v of the U(1)Y and SU(2)L

gauge coupling and the Higgs VEV, respectively, that in turn induce the shifts �g
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hZZ

and
�g

(0)hf

Zf
in the respective couplings of the Z boson. The expressions for these shifts are listed

in Appendix A. In practice, the input scheme corrections can be accounted for by applying
the replacements ghZZ ! ghZZ + �g

(0)
hZZ

and �g
(0)hf

Zf
! �g

(0)hf

Zf
+ �g

(0)hf

Zf
to (4.3). Similarly,

the Wilson coefficients C
(1)
Hq

, C(3)
Hq

, CHu, CHd, C
(1)
H`

, C(3)
H`

and CHe lead to direct shifts in

the Zff̄ couplings that we include through the shifts g
(1)hf

Zf
! g

(1)hf

Zf
+ �g

(1)hf

Zf
in (4.3).

The expressions for the latter shifts are again given in Appendix A.
While we have used in this section the matrix element B1g0Z as an example to illus-

trate the general approach that we have employed in our SMEFT calculation of pp ! V h

at NNLO in QCD, it is important to realise that the computation of all other matrix
elements proceeds in an analogous manner. In the case of the SMEFT corrections aris-
ing from the choice of EW input scheme as well as those associated to insertions of the
operators (2.2) and (2.3) this is clear in view of the factorisation properties of these contri-
butions

�
cf. (4.12)

�
. Likewise, since the spinor-helicity structure of the partonic part of a

given SMEFT amplitude remains the same as in the SM, it can simply be extracted from the
SM expressions and contracted with the part of the SMEFT amplitude that does change.
It follows that an explicit calculation of the full partonic structures for the higher-order cor-
rections to pp ! V h in the SMEFT can always be avoided, because the relevant amplitudes
can be obtained from those in the SM by applying relations a la (4.8) and (4.10) which
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Figure 2: Examples of higher-order QCD corrections to pp ! Zh production within the
SM. The diagram on the left features additional virtual and real gluon lines (B-type), the
diagram in the middle involves a second quark line (C- and D-type) and the diagram on the
right is gluon-gluon initiated (A-type). Consult the main text for further details.

As an example for the calculation of the SMEFT matrix elements, we consider the case
of B1g0Z where an additional gluon is radiated off the initial-state quark line. While contain-
ing all the main ingredients, the expressions for B1g0Z are concise enough to be stated here.
The corresponding SM Feynman diagram is displayed on the left-hand side in Figure 3.
Note that we consider the leptons (quarks) to be outgoing (incoming). The corresponding
spinor-helicity amplitude with left-handed fermion chiralities and a physical gluon with a
negative helicity reads
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⇣
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⇣
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⌘
, (3.1)

where hiji and [ij] denote the usual spinor products — see for example [32] for a review of
the spinor-helicity formalism. Notice that the semicolon in the expression on the left-hand
side of (3.1) separates the particles with incoming and outgoing convention, respectively.
The amplitudes for the remaining helicity combinations can be obtained via the following
parity and charge conjugation relations
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(3.2)

The resulting spin-averaged matrix element B1g0Z then takes the form
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2

, (3.3)

where
sij = (pi + pj)

2
, sijk = sij + sjk + ski , (3.4)
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Figure 2: Examples of higher-order QCD corrections to pp ! Zh production within the
SM. The diagram on the left features additional virtual and real gluon lines (B-type), the
diagram in the middle involves a second quark line (C- and D-type) and the diagram on the
right is gluon-gluon initiated (A-type). Consult the main text for further details.
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Figure 2: Examples of higher-order QCD corrections to pp ! Zh production within the
SM. The diagram on the left features additional virtual and real gluon lines (B-type), the
diagram in the middle involves a second quark line (C- and D-type) and the diagram on the
right is gluon-gluon initiated (A-type). Consult the main text for further details.
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The resulting spin-averaged matrix element B1g0Z then takes the form

B1g0Z =
8⇡↵sCF

CA

X

hq ,hg ,h`=±
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sij = (pi + pj)
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, sijk = sij + sjk + ski , (3.4)
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are the usual Mandelstam invariants with pi the four-momentum of particle i. We have
furthermore introduced

DZ(s) = s�m
2
Z + imZ�Z , (3.5)

with �Z denoting the total decay width of the Z boson. In (3.3) the variable ↵s denotes
the strong coupling constant while CF = 4/3 and CA = 3 are the relevant colour factors.
The symbols g

hf

Zf
and ghZZ represent the Zff̄ and hZZ coupling strengths, respectively.

The explicit expressions for these quantities are given in Appendix A.
To compute the SMEFT contributions that involve modified couplings between the

Higgs and two vector bosons, it is important to notice that by using the spinor identity

hiji[kl] =
1

2
hj|�

µ
|k]hi|�µ|l] , (3.6)

the result (3.1) can be rewritten as

AB1g0Z

⇣
1�q , 2

�
g , 3

+
q̄ ; 4

�
`
, 5+¯̀

⌘
= h4|�µ|5]A

µ

qgq(1
�
q , 2

�
g , 3

+
q̄ ) . (3.7)

Here the spinor-helicity amplitude corresponding to the qq̄g subprocess with the indi-
cated helicities is given by

A
µ

qgq(1
�
q , 2

�
g , 3

+
q̄ ) =

h13ih3|�µ|1] + h23ih3|�µ|2]

2h12ih23i
. (3.8)

3.2 SMEFT calculation

The technically most involved part of the SMEFT calculation results from insertions of the
three operators introduced in (2.1) since QHB, QHW and QHWB generate modified hV V

vertices with helicity structures different from the one present in the SM, i.e. the spinor
chain h4|�µ|5] in (3.7). These modifications can be included at the level of (3.1) by means
of generalised currents that describe the splitting of the initial vector boson V1 into the
outgoing vector boson V2 and the Higgs boson h [8]. If the initial-state quarks and final-
state leptons are left-handed the relevant generalised neutral currents are given by

A
µ

hZZ
(p123, 4

�
`
, 5+¯̀ ) =

g
�
Zq

g
�
Z`

DZ(s123)DZ(s45)

(
h4|�µ|5]

⇣
ghZZ + �g

(2)
hZZ

(s123 + s34) + �g
(3)
hZZ

⌘

� �g
(2)
hZZ

p
µ

123h4|/p123|5]�
�g

(1)
hZZ

2

⇣
h4|�µ/p123|4i[45] + h45i[5|/p123�

µ
|5]

⌘)
,

A
µ

h�Z
(p123, 4

�
`
, 5+¯̀ ) =

g
�
�q g

�
Z`

s123D(s45)

(
�

�g
(1)
h�Z

2

✓
h4|�µ|5]

⇣
h4|/p123|4] + h5|/p123|5]

⌘

� 2 (pµ4 + p
µ

5 ) h4|/p123|5]

◆
+ �g

(2)
h�Z

⇣
h4|�µ|5] s123 � p

µ

123 h4|/p123|5]
⌘)

,

(3.9)

where the structures A
µ

hZZ
and A

µ

h�Z
encode the modified hZZ and h�Z vertices, respec-

tively, and p123 denotes the four-momentum of the incoming vector boson. The symbols ghq

�q

– 6 –



7

How can we calculate the relevant SMEFT matrix elements?

Figure 2: Examples of higher-order QCD corrections to pp ! Zh production within the
SM. The diagram on the left features additional virtual and real gluon lines (B-type), the
diagram in the middle involves a second quark line (C- and D-type) and the diagram on the
right is gluon-gluon initiated (A-type). Consult the main text for further details.
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2
, sijk = sij + sjk + ski , (4.4)

are the usual Mandelstam invariants with pi the four-momentum of particle i. We have
furthermore introduced

DZ(s) = s�M
2
Z + iMZ�Z , (4.5)

with �Z denoting the total decay width of the Z boson. In (4.3) the variable ↵s denotes
the strong coupling constant while CF = 4/3 and CA = 3 are the relevant colour factors.
The symbols g

hf

Zf
and ghZZ represent the Zff̄ and hZZ coupling strengths, respectively.

The explicit expressions for these quantities are given in Appendix A.
The technically most involved part of the SMEFT calculation results from insertions of

the three operators introduced in (2.1) since QHB, QHW and QHWB generate modified hV V

vertices with helicity structures different from the SM one. These modifications can be
included at the level of (4.1) by means of generalised currents that describe the splitting
of the initial vector boson V1 into the outgoing vector boson V2 and the Higgs boson h [8].
If the initial-state quarks and final-state leptons are left-handed the relevant generalised
neutral currents are given by
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+
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�
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�
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AZhµ(p123, 4�` , 5
+
¯̀ ) =

g
�
�q g
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s123D(s45)

(
�g
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h�Z
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(4.6)
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Figure 2: Examples of higher-order QCD corrections to pp ! Zh production within the
SM. The diagram on the left features additional virtual and real gluon lines (B-type), the
diagram in the middle involves a second quark line (C- and D-type) and the diagram on the
right is gluon-gluon initiated (A-type). Consult the main text for further details.
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Figure 2: Examples of higher-order QCD corrections to pp ! Zh production within the
SM. The diagram on the left features additional virtual and real gluon lines (B-type), the
diagram in the middle involves a second quark line (C- and D-type) and the diagram on the
right is gluon-gluon initiated (A-type). Consult the main text for further details.
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the strong coupling constant while CF = 4/3 and CA = 3 are the relevant colour factors.
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(B-type) (C,D-type) (A-type)

UV

Figure 3: Example graphs that contribute to the B1g0Z matrix elements. The diagram
on the left shows a SM contribution. On the right we instead depict a SMEFT correction
that receives contributions from the generalised ZZh and �Zh currents introduced in (4.6).
The four-momentum flow is indicated by the grey arrows and labels. See the main text for
additional explanations.

describes the contribution from Q
(1)
Hq

, Q(3)
Hq

, QHu and QHd, while the second term is induced
by Q

(1)
H`

, Q(3)
H`

and QHe. Notice that compared to the corresponding SM contribution in (4.3)
the SMEFT correction proportional to �g

(1)hq

hZq
in (4.12) is missing the Z-boson propagator

depending on s123. This feature explains the high-energy growth [11–13] of the SMEFT
pp ! V h amplitudes involving the Wilson coefficients C

(1)
Hq

, C(3)
Hq

, CHu and CHd.
The last type of SMEFT corrections to the matrix element B1g0Z is associated to the

tree-level shifts of the SM parameters and couplings. EW input scheme corrections from
CHD, CHWB, C

(3)
H`

and C`` lead to the shifts �g1, �g2 and �v of the U(1)Y and SU(2)L

gauge coupling and the Higgs VEV, respectively, that in turn induce the shifts �g
(0)
hZZ

and
�g

(0)hf

Zf
in the respective couplings of the Z boson. The expressions for these shifts are listed

in Appendix A. In practice, the input scheme corrections can be accounted for by applying
the replacements ghZZ ! ghZZ + �g

(0)
hZZ

and �g
(0)hf

Zf
! �g

(0)hf

Zf
+ �g

(0)hf

Zf
to (4.3). Similarly,

the Wilson coefficients C
(1)
Hq

, C(3)
Hq

, CHu, CHd, C
(1)
H`

, C(3)
H`

and CHe lead to direct shifts in

the Zff̄ couplings that we include through the shifts g
(1)hf

Zf
! g

(1)hf

Zf
+ �g

(1)hf

Zf
in (4.3).

The expressions for the latter shifts are again given in Appendix A.
While we have used in this section the matrix element B1g0Z as an example to illus-

trate the general approach that we have employed in our SMEFT calculation of pp ! V h

at NNLO in QCD, it is important to realise that the computation of all other matrix
elements proceeds in an analogous manner. In the case of the SMEFT corrections aris-
ing from the choice of EW input scheme as well as those associated to insertions of the
operators (2.2) and (2.3) this is clear in view of the factorisation properties of these contri-
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. Likewise, since the spinor-helicity structure of the partonic part of a

given SMEFT amplitude remains the same as in the SM, it can simply be extracted from the
SM expressions and contracted with the part of the SMEFT amplitude that does change.
It follows that an explicit calculation of the full partonic structures for the higher-order cor-
rections to pp ! V h in the SMEFT can always be avoided, because the relevant amplitudes
can be obtained from those in the SM by applying relations a la (4.8) and (4.10) which
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Figure 2: Examples of higher-order QCD corrections to pp ! Zh production within the
SM. The diagram on the left features additional virtual and real gluon lines (B-type), the
diagram in the middle involves a second quark line (C- and D-type) and the diagram on the
right is gluon-gluon initiated (A-type). Consult the main text for further details.

As an example for the calculation of the SMEFT matrix elements, we consider the case
of B1g0Z where an additional gluon is radiated off the initial-state quark line. While contain-
ing all the main ingredients, the expressions for B1g0Z are concise enough to be stated here.
The corresponding SM Feynman diagram is displayed on the left-hand side in Figure 3.
Note that we consider the leptons (quarks) to be outgoing (incoming). The corresponding
spinor-helicity amplitude with left-handed fermion chiralities and a physical gluon with a
negative helicity reads

AB1g0Z

⇣
1�q , 2

�
g , 3

+
q̄ ; 4

�
`
, 5+¯̀

⌘
=

h34i

h12i h23i

⇣
h13i [51] + h23i [52]

⌘
, (3.1)

where hiji and [ij] denote the usual spinor products — see for example [32] for a review of
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are the usual Mandelstam invariants with pi the four-momentum of particle i. We have
furthermore introduced

DZ(s) = s�m
2
Z + imZ�Z , (3.5)

with �Z denoting the total decay width of the Z boson. In (3.3) the variable ↵s denotes
the strong coupling constant while CF = 4/3 and CA = 3 are the relevant colour factors.
The symbols g

hf

Zf
and ghZZ represent the Zff̄ and hZZ coupling strengths, respectively.

The explicit expressions for these quantities are given in Appendix A.
To compute the SMEFT contributions that involve modified couplings between the

Higgs and two vector bosons, it is important to notice that by using the spinor identity

hiji[kl] =
1

2
hj|�

µ
|k]hi|�µ|l] , (3.6)

the result (3.1) can be rewritten as

AB1g0Z

⇣
1�q , 2

�
g , 3

+
q̄ ; 4

�
`
, 5+¯̀

⌘
= h4|�µ|5]A

µ

qgq(1
�
q , 2

�
g , 3

+
q̄ ) . (3.7)

Here the spinor-helicity amplitude corresponding to the qq̄g subprocess with the indi-
cated helicities is given by

A
µ

qgq(1
�
q , 2

�
g , 3

+
q̄ ) =

h13ih3|�µ|1] + h23ih3|�µ|2]

2h12ih23i
. (3.8)

3.2 SMEFT calculation

The technically most involved part of the SMEFT calculation results from insertions of the
three operators introduced in (2.1) since QHB, QHW and QHWB generate modified hV V

vertices with helicity structures different from the one present in the SM, i.e. the spinor
chain h4|�µ|5] in (3.7). These modifications can be included at the level of (3.1) by means
of generalised currents that describe the splitting of the initial vector boson V1 into the
outgoing vector boson V2 and the Higgs boson h [8]. If the initial-state quarks and final-
state leptons are left-handed the relevant generalised neutral currents are given by
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�
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⌘)

,

(3.9)

where the structures A
µ

hZZ
and A

µ

h�Z
encode the modified hZZ and h�Z vertices, respec-

tively, and p123 denotes the four-momentum of the incoming vector boson. The symbols ghq

�q
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Figure 3: Example graphs that contribute to the B1g0Z matrix elements. The diagram
on the left shows a SM contribution. On the right we instead depict a SMEFT correction
that receives contributions from the generalised ZZh and �Zh currents introduced in (4.6).
The four-momentum flow is indicated by the grey arrows and labels. See the main text for
additional explanations.

describes the contribution from Q
(1)
Hq

, Q(3)
Hq

, QHu and QHd, while the second term is induced
by Q

(1)
H`

, Q(3)
H`

and QHe. Notice that compared to the corresponding SM contribution in (4.3)
the SMEFT correction proportional to �g

(1)hq

hZq
in (4.12) is missing the Z-boson propagator

depending on s123. This feature explains the high-energy growth [11–13] of the SMEFT
pp ! V h amplitudes involving the Wilson coefficients C

(1)
Hq

, C(3)
Hq

, CHu and CHd.
The last type of SMEFT corrections to the matrix element B1g0Z is associated to the

tree-level shifts of the SM parameters and couplings. EW input scheme corrections from
CHD, CHWB, C

(3)
H`

and C`` lead to the shifts �g1, �g2 and �v of the U(1)Y and SU(2)L

gauge coupling and the Higgs VEV, respectively, that in turn induce the shifts �g
(0)
hZZ

and
�g

(0)hf

Zf
in the respective couplings of the Z boson. The expressions for these shifts are listed

in Appendix A. In practice, the input scheme corrections can be accounted for by applying
the replacements ghZZ ! ghZZ + �g

(0)
hZZ

and �g
(0)hf

Zf
! �g

(0)hf

Zf
+ �g

(0)hf

Zf
to (4.3). Similarly,

the Wilson coefficients C
(1)
Hq

, C(3)
Hq

, CHu, CHd, C
(1)
H`

, C(3)
H`

and CHe lead to direct shifts in

the Zff̄ couplings that we include through the shifts g
(1)hf

Zf
! g

(1)hf

Zf
+ �g

(1)hf

Zf
in (4.3).

The expressions for the latter shifts are again given in Appendix A.
While we have used in this section the matrix element B1g0Z as an example to illus-

trate the general approach that we have employed in our SMEFT calculation of pp ! V h

at NNLO in QCD, it is important to realise that the computation of all other matrix
elements proceeds in an analogous manner. In the case of the SMEFT corrections aris-
ing from the choice of EW input scheme as well as those associated to insertions of the
operators (2.2) and (2.3) this is clear in view of the factorisation properties of these contri-
butions

�
cf. (4.12)

�
. Likewise, since the spinor-helicity structure of the partonic part of a

given SMEFT amplitude remains the same as in the SM, it can simply be extracted from the
SM expressions and contracted with the part of the SMEFT amplitude that does change.
It follows that an explicit calculation of the full partonic structures for the higher-order cor-
rections to pp ! V h in the SMEFT can always be avoided, because the relevant amplitudes
can be obtained from those in the SM by applying relations a la (4.8) and (4.10) which
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in Appendix A. In practice, the input scheme corrections can be accounted for by applying
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in (4.3).

The expressions for the latter shifts are again given in Appendix A.
While we have used in this section the matrix element B1g0Z as an example to illus-

trate the general approach that we have employed in our SMEFT calculation of pp ! V h

at NNLO in QCD, it is important to realise that the computation of all other matrix
elements proceeds in an analogous manner. In the case of the SMEFT corrections aris-
ing from the choice of EW input scheme as well as those associated to insertions of the
operators (2.2) and (2.3) this is clear in view of the factorisation properties of these contri-
butions

�
cf. (4.12)

�
. Likewise, since the spinor-helicity structure of the partonic part of a

given SMEFT amplitude remains the same as in the SM, it can simply be extracted from the
SM expressions and contracted with the part of the SMEFT amplitude that does change.
It follows that an explicit calculation of the full partonic structures for the higher-order cor-
rections to pp ! V h in the SMEFT can always be avoided, because the relevant amplitudes
can be obtained from those in the SM by applying relations a la (4.8) and (4.10) which
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2.1 -initiated contributionsqq̄

are the usual Mandelstam invariants with pi the four-momentum of particle i. We have
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DZ(s) = s�m
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with �Z denoting the total decay width of the Z boson. In (3.3) the variable ↵s denotes
the strong coupling constant while CF = 4/3 and CA = 3 are the relevant colour factors.
The symbols g

hf

Zf
and ghZZ represent the Zff̄ and hZZ coupling strengths, respectively.

The explicit expressions for these quantities are given in Appendix A.
To compute the SMEFT contributions that involve modified couplings between the

Higgs and two vector bosons, it is important to notice that by using the spinor identity
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|k]hi|�µ|l] , (3.6)

the result (3.1) can be rewritten as
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vertices with helicity structures different from the one present in the SM, i.e. the spinor
chain h4|�µ|5] in (3.7). These modifications can be included at the level of (3.1) by means
of generalised currents that describe the splitting of the initial vector boson V1 into the
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and A
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encode the modified hZZ and h�Z vertices, respec-

tively, and p123 denotes the four-momentum of the incoming vector boson. The symbols ghq

�q
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Figure 3: Example graphs that contribute to the B1g0Z matrix elements. The diagram
on the left shows a SM contribution. On the right we instead depict a SMEFT correction
that receives contributions from the generalised ZZh and �Zh currents introduced in (4.6).
The four-momentum flow is indicated by the grey arrows and labels. See the main text for
additional explanations.
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Figure 3: Example graphs that contribute to the B1g0Z matrix elements. The diagram
on the left shows a SM contribution. On the right we instead depict a SMEFT correction
that receives contributions from the generalised ZZh and �Zh currents introduced in (4.6).
The four-momentum flow is indicated by the grey arrows and labels. See the main text for
additional explanations.
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Figure 3: Example graphs that contribute to the B1g0Z matrix elements. The diagram
on the left shows a SM contribution. On the right we instead depict a SMEFT correction
that receives contributions from the generalised hZZ and h�Z currents introduced in (3.9).
The four-momentum flow is indicated by the grey arrows and labels. See the main text for
additional explanations.

are the �qq̄ coupling strengths while �g
(1)
hZZ

, �g(2)
hZZ

, �g(3)
hZZ

, �g(1)
h�Z

and �g
(2)
h�Z

are anomalous
couplings that describe the interactions between the Higgs boson and the relevant vector
bosons as indicated by the subscript. The explicit expressions for all the couplings appear-
ing in (3.9) can be found in Appendix A. We stress that although the anomalous couplings
�g

(2)
hZZ

and �g
(2)
h�Z

do not receive corrections from the Wilson coefficients CHB, CHW and
CHWB our POWHEG-BOX implementation contains the full generalised neutral currents (3.9).
The presented MC code can therefore be used to extend the Higgsstrahlungs computations
in the anomalous-coupling framework [19–21] to the NNLO+PS level.

By looking at (3.7) and (3.9) it is now readily seen that in order to obtain the spin-
averaged matrix element B1g0Z that contains the contributions from the SM as well as the
Wilson coefficients CHB, CHW and CHWB one just has to replace the expression in the
modulus of (3.3) by the following spinor contraction

Aqgq,µ

⇣
1
hq

q , 2
hg

g , 3
�hq

q̄

⌘ h
A

µ

hZZ
(p123, 4

h`

`
, 5�h`

¯̀ ) +A
µ

h�Z
(p123, 4

h`

`
, 5�h`

¯̀ )
i
. (3.10)

A schematic depiction of (3.10) is given on the right in Figure 3. Notice that all helicity
configurations of Aµ

qgq can be obtained from (3.7) and (3.8) using the relations (3.2) while
in the case of A

µ

hZZ
and A

µ

h�Z
one just has to perform the replacements g

�
V f

! g
hf

V f
for

f = q, ` and V = Z, �.
Insertions of the operators (2.2) and (2.3) lead to the Feynman diagrams shown on the

right-hand side in Figure 1 at tree level. In order to capture this contribution in the case
of the matrix element B1g0Z, one simply has to add the following term

0

@�g
(1)hq

hZq
g
h`

Z`

DZ(s45)
+

g
hq

Zq
�g

(1)h`

hZ`

DZ(s123)

1

A AB1g0Z

⇣
1
hq

q , 2
hg

g , 3
�hq

q̄ ; 4h`

`
, 5�h`

¯̀

⌘
, (3.11)

to the corresponding SM contribution in the modulus of (3.3). The analytic expressions
for the couplings �g

(1)hf

hZf
are given in Appendix A. In (3.11) the first term in the brackets

describes the contribution from Q
(1)
Hq

, Q(3)
Hq

, QHd and QHu, while the second term is induced
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Figure 1: Tree-level SMEFT contributions to qq̄ ! Zh production. The diagram on
the left involves an insertion of one of the operators defined in (2.1), while the two graphs
on the right stem from an insertion of one of the operators given in (2.2). The operator
insertions are indicated by the green squares.

article [6]. This basis contains the following three independent operators

QHB = H
†
HBµ⌫B

µ⌫
, QHW = H

†
HW

a

µ⌫W
a,µ⌫

, QHWB = H
†
�
a
HW

a

µ⌫B
µ⌫

, (2.1)

that modify the couplings between the Higgs and two vector bosons at tree level. The SM
Higgs doublet is denoted by H, while Bµ⌫ and W

a
µ⌫ are the U(1)Y and SU(2)L gauge field

strength tensors and �
a are the Pauli matrices. In the case of the operators that result in

couplings between the Higgs, a W or a Z boson and light quarks, we consider the following
four effective interactions

Q
(1)
Hq

= (H†
i

$
DµH)(q̄�µq) , Q

(3)
Hq

= (H†
i

$
D

a

µH)(q̄�µ�a
q) ,

(2.2)
QHu = (H†

i

$
DµH)(ū�µu) , QHd = (H†

i

$
DµH)(d̄�µd) ,

where H
†
i

$
DµH = iH

†�
Dµ �

 
Dµ

�
H and H

†
i

$
D

a
µH = iH

†�
�
a
Dµ �

 
Dµ�

a
�
H with Dµ the

usual covariant derivative. The symbol q denotes left-handed quark doublets, while u and d

are the right-handed quark singlets of up and down type, respectively. Example tree-level
Feynman diagrams that contribute to Zh production and involve an insertion of one of the
operators in (2.1) or (2.2) are displayed in Figure 1.

Besides the two set of operators (2.1) and (2.2) that alter the pp ! V h production
process, we also consider effective interactions that modify the Z ! `

+
`
� and W ! `⌫

decays at tree level. In the Warsaw basis there are three such operators, namely

Q
(1)
H`

= (H†
i

$
DµH)(¯̀�µ`) , Q

(3)
H`

= (H†
i

$
D

a

µH)(¯̀�µ⌧a`) , QHe = (H†
i

$
DµH)(ē�µe) . (2.3)

Here ` and e denotes a left-handed lepton doublet and right-handed lepton singlet field,
respectively. Notice that in writing (2.2) and (2.3) we have assumed that the full SMEFT
Lagrangian respects an approximate U(3)5 flavour symmetry which allows us to drop all
flavour indices.

The final type of SMEFT corrections that change the Higgsstrahlungs process indi-
rectly is provided by the Wilson coefficients of the operators that shift the EW SM input
parameters. In order to fully describes these shifts the following two additional operators
are needed at tree level:

QHD = (H†
DµH)⇤(H†

D
µ
H) , Q`` = (¯̀�µ`)(¯̀�

µ
`) . (2.4)
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Figure 2: Examples of higher-order QCD corrections to pp ! Zh production within the
SM. The diagram on the left features additional virtual and real gluon lines (B-type), the
diagram in the middle involves a second quark line (C- and D-type) and the diagram on the
right is gluon-gluon initiated (A-type). Consult the main text for further details.

As an example for the calculation of the SMEFT matrix elements, we consider the case
of B1g0Z where an additional gluon is radiated off the initial-state quark line. While contain-
ing all the main ingredients, the expressions for B1g0Z are concise enough to be stated here.
The corresponding SM Feynman diagram is displayed on the left-hand side in Figure 3.
Note that we consider the leptons (quarks) to be outgoing (incoming). The corresponding
spinor-helicity amplitude with left-handed fermion chiralities and a physical gluon with a
negative helicity reads

AB1g0Z

⇣
1�q , 2

�
g , 3

+
q̄ ; 4

�
`
, 5+¯̀

⌘
=

h34i

h12i h23i

⇣
h13i [51] + h23i [52]

⌘
, (3.1)

where hiji and [ij] denote the usual spinor products — see for example [32] for a review of
the spinor-helicity formalism. Notice that the semicolon in the expression on the left-hand
side of (3.1) separates the particles with incoming and outgoing convention, respectively.
The amplitudes for the remaining helicity combinations can be obtained via the following
parity and charge conjugation relations

AB1g0Z

⇣
1�q , 2

+
g , 3

+
q̄ ; 4

�
`
, 5+¯̀

⌘
= �AB1g0Z

⇣
3�q , 2

�
g , 1

+
q̄ ; 5

�
`
, 4+¯̀

⌘⇤
,

AB1g0Z

⇣
1�q , 2

hg

g , 3+q̄ ; 4
+
`
, 5�¯̀

⌘
= AB1g0Z

⇣
1�q , 2

hg

g , 3+q̄ ; 5
�
`
, 4+¯̀

⌘
,

AB1g0Z

⇣
1+q , 2

hg

g , 3�q̄ ; 4
�
`
, 5+¯̀

⌘
= �AB1g0Z

⇣
3�q , 2

hg

g , 1+q̄ ; 4
�
`
, 5+¯̀

⌘
,

AB1g0Z

⇣
1+q , 2

hg

g , 3�q̄ ; 4
+
`
, 5�¯̀

⌘
= �AB1g0Z

⇣
3�q , 2

hg

g , 1+q̄ ; 5
�
`
, 4+¯̀

⌘
.

(3.2)

The resulting spin-averaged matrix element B1g0Z then takes the form

B1g0Z =
8⇡↵sCF

CA

X

hq ,hg ,h`=±

�����
g
hq

Zq
g
h`

Z`
ghZZ

DZ(s123)DZ(s45)
AB1g0Z

⇣
1
hq

q , 2
hg

g , 3
�hq

q̄ ; 4h`

`
, 5�h`

¯̀

⌘�����

2

, (3.3)

where
sij = (pi + pj)

2
, sijk = sij + sjk + ski , (3.4)
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Figure 1: Tree-level SMEFT contributions to qq̄ ! Zh production. The diagram on
the left involves an insertion of one of the operators defined in (2.1), while the two graphs
on the right stem from an insertion of one of the operators given in (2.2). The operator
insertions are indicated by the green squares.

article [6]. This basis contains the following three independent operators

QHB = H
†
HBµ⌫B

µ⌫
, QHW = H

†
HW

a

µ⌫W
a,µ⌫

, QHWB = H
†
�
a
HW

a

µ⌫B
µ⌫

, (2.1)

that modify the couplings between the Higgs and two vector bosons at tree level. The SM
Higgs doublet is denoted by H, while Bµ⌫ and W

a
µ⌫ are the U(1)Y and SU(2)L gauge field

strength tensors and �
a are the Pauli matrices. In the case of the operators that result in

couplings between the Higgs, a W or a Z boson and light quarks, we consider the following
four effective interactions

Q
(1)
Hq

= (H†
i

$
DµH)(q̄�µq) , Q

(3)
Hq

= (H†
i

$
D

a

µH)(q̄�µ�a
q) ,

(2.2)
QHu = (H†

i

$
DµH)(ū�µu) , QHd = (H†

i

$
DµH)(d̄�µd) ,

where H
†
i

$
DµH = iH
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Dµ �

 
Dµ

�
H and H

†
i

$
D

a
µH = iH

†�
�
a
Dµ �

 
Dµ�

a
�
H with Dµ the

usual covariant derivative. The symbol q denotes left-handed quark doublets, while u and d

are the right-handed quark singlets of up and down type, respectively. Example tree-level
Feynman diagrams that contribute to Zh production and involve an insertion of one of the
operators in (2.1) or (2.2) are displayed in Figure 1.

Besides the two set of operators (2.1) and (2.2) that alter the pp ! V h production
process, we also consider effective interactions that modify the Z ! `

+
`
� and W ! `⌫

decays at tree level. In the Warsaw basis there are three such operators, namely

Q
(1)
H`

= (H†
i

$
DµH)(¯̀�µ`) , Q

(3)
H`

= (H†
i

$
D

a

µH)(¯̀�µ⌧a`) , QHe = (H†
i

$
DµH)(ē�µe) . (2.3)

Here ` and e denotes a left-handed lepton doublet and right-handed lepton singlet field,
respectively. Notice that in writing (2.2) and (2.3) we have assumed that the full SMEFT
Lagrangian respects an approximate U(3)5 flavour symmetry which allows us to drop all
flavour indices.

The final type of SMEFT corrections that change the Higgsstrahlungs process indi-
rectly is provided by the Wilson coefficients of the operators that shift the EW SM input
parameters. In order to fully describes these shifts the following two additional operators
are needed at tree level:

QHD = (H†
DµH)⇤(H†

D
µ
H) , Q`` = (¯̀�µ`)(¯̀�

µ
`) . (2.4)
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SM. The diagram on the left features additional virtual and real gluon lines (B-type), the
diagram in the middle involves a second quark line (C- and D-type) and the diagram on the
right is gluon-gluon initiated (A-type). Consult the main text for further details.

As an example for the calculation of the SMEFT matrix elements, we consider the case
of B1g0Z where an additional gluon is radiated off the initial-state quark line. While contain-
ing all the main ingredients, the expressions for B1g0Z are concise enough to be stated here.
The corresponding SM Feynman diagram is displayed on the left-hand side in Figure 3.
Note that we consider the leptons (quarks) to be outgoing (incoming). The corresponding
spinor-helicity amplitude with left-handed fermion chiralities and a physical gluon with a
negative helicity reads

AB1g0Z

⇣
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=
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h13i [51] + h23i [52]

⌘
, (3.1)

where hiji and [ij] denote the usual spinor products — see for example [32] for a review of
the spinor-helicity formalism. Notice that the semicolon in the expression on the left-hand
side of (3.1) separates the particles with incoming and outgoing convention, respectively.
The amplitudes for the remaining helicity combinations can be obtained via the following
parity and charge conjugation relations
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⇣
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⌘
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⇣
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g , 1+q̄ ; 5
�
`
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.

(3.2)

The resulting spin-averaged matrix element B1g0Z then takes the form

B1g0Z =
8⇡↵sCF

CA

X

hq ,hg ,h`=±
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where
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Figure 1: Tree-level SMEFT contributions to qq̄ ! Zh production. The diagram on
the left involves an insertion of one of the operators defined in (2.1), while the two graphs
on the right stem from an insertion of one of the operators given in (2.2). The operator
insertions are indicated by the green squares.

article [6]. This basis contains the following three independent operators

QHB = H
†
HBµ⌫B

µ⌫
, QHW = H

†
HW

a

µ⌫W
a,µ⌫

, QHWB = H
†
�
a
HW

a

µ⌫B
µ⌫

, (2.1)

that modify the couplings between the Higgs and two vector bosons at tree level. The SM
Higgs doublet is denoted by H, while Bµ⌫ and W

a
µ⌫ are the U(1)Y and SU(2)L gauge field

strength tensors and �
a are the Pauli matrices. In the case of the operators that result in

couplings between the Higgs, a W or a Z boson and light quarks, we consider the following
four effective interactions

Q
(1)
Hq

= (H†
i

$
DµH)(q̄�µq) , Q

(3)
Hq

= (H†
i

$
D

a

µH)(q̄�µ�a
q) ,

(2.2)
QHu = (H†

i

$
DµH)(ū�µu) , QHd = (H†

i

$
DµH)(d̄�µd) ,

where H
†
i

$
DµH = iH

†�
Dµ �

 
Dµ

�
H and H

†
i

$
D

a
µH = iH

†�
�
a
Dµ �

 
Dµ�

a
�
H with Dµ the

usual covariant derivative. The symbol q denotes left-handed quark doublets, while u and d

are the right-handed quark singlets of up and down type, respectively. Example tree-level
Feynman diagrams that contribute to Zh production and involve an insertion of one of the
operators in (2.1) or (2.2) are displayed in Figure 1.

Besides the two set of operators (2.1) and (2.2) that alter the pp ! V h production
process, we also consider effective interactions that modify the Z ! `

+
`
� and W ! `⌫

decays at tree level. In the Warsaw basis there are three such operators, namely

Q
(1)
H`

= (H†
i

$
DµH)(¯̀�µ`) , Q

(3)
H`

= (H†
i

$
D

a

µH)(¯̀�µ⌧a`) , QHe = (H†
i

$
DµH)(ē�µe) . (2.3)

Here ` and e denotes a left-handed lepton doublet and right-handed lepton singlet field,
respectively. Notice that in writing (2.2) and (2.3) we have assumed that the full SMEFT
Lagrangian respects an approximate U(3)5 flavour symmetry which allows us to drop all
flavour indices.

The final type of SMEFT corrections that change the Higgsstrahlungs process indi-
rectly is provided by the Wilson coefficients of the operators that shift the EW SM input
parameters. In order to fully describes these shifts the following two additional operators
are needed at tree level:

QHD = (H†
DµH)⇤(H†

D
µ
H) , Q`` = (¯̀�µ`)(¯̀�

µ
`) . (2.4)
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Figure 1: Tree-level SMEFT contributions to qq̄ ! Zh production. The diagram on
the left involves an insertion of one of the operators defined in (2.1), while the two graphs
on the right stem from an insertion of one of the operators given in (2.2). The operator
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, QHW = H

†
HW

a

µ⌫W
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that modify the couplings between the Higgs and two vector bosons at tree level. The SM
Higgs doublet is denoted by H, while Bµ⌫ and W

a
µ⌫ are the U(1)Y and SU(2)L gauge field

strength tensors and �
a are the Pauli matrices. In the case of the operators that result in

couplings between the Higgs, a W or a Z boson and light quarks, we consider the following
four effective interactions
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= (H†
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DµH)(q̄�µq) , Q

(3)
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= (H†
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H and H
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usual covariant derivative. The symbol q denotes left-handed quark doublets, while u and d

are the right-handed quark singlets of up and down type, respectively. Example tree-level
Feynman diagrams that contribute to Zh production and involve an insertion of one of the
operators in (2.1) or (2.2) are displayed in Figure 1.

Besides the two set of operators (2.1) and (2.2) that alter the pp ! V h production
process, we also consider effective interactions that modify the Z ! `

+
`
� and W ! `⌫

decays at tree level. In the Warsaw basis there are three such operators, namely
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= (H†
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$
DµH)(¯̀�µ`) , Q
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= (H†
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D
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DµH)(ē�µe) . (2.3)

Here ` and e denotes a left-handed lepton doublet and right-handed lepton singlet field,
respectively. Notice that in writing (2.2) and (2.3) we have assumed that the full SMEFT
Lagrangian respects an approximate U(3)5 flavour symmetry which allows us to drop all
flavour indices.

The final type of SMEFT corrections that change the Higgsstrahlungs process indi-
rectly is provided by the Wilson coefficients of the operators that shift the EW SM input
parameters. In order to fully describes these shifts the following two additional operators
are needed at tree level:

QHD = (H†
DµH)⇤(H†

D
µ
H) , Q`` = (¯̀�µ`)(¯̀�

µ
`) . (2.4)
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These contributions give overall factors to the SM amplitude. 
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A Analytic expressions for parameters and couplings

In this appendix, we provide the analytic formulas for the parameters and couplings that
appear in Section 4. The presented expressions have been implemented into our MC code
which allows the user to choose between the ↵, the ↵µ and the LEP scheme. We refer
the interested reader to the articles [7, 29, 62] for additional technical details on EW input
schemes in the SMEFT context.

In order to write the expression in this appendix as compactly as possible we introduce
the following abbreviations
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2
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where ↵ is the fine-structure constant, GF is the Fermi constant as extracted from muon
decay and mZ (mW ) is the mass of the Z (W ) boson in the on-shell scheme. The relevant ex-
pressions for the U(1)Y and SU(2)L gauge couplings g1 and g2 and the Higgs VEV v in terms
of the EW input parameters are given in Table 1 for the ↵, the ↵µ and the LEP scheme.

In terms of the parameters g1, g2 and v the Zff̄ , �ff̄ and hZZ coupling strengths
take the following form in the SM

g
±
Zf

=
g
2
1 Y

±
f

� 2g22 T
3±
f

2g+
, g

±
�f

= �
g1g2Q

±
f

g+
, ghZZ =

vg
2
+

2
. (A.2)

Notice that these relations are independent of the employed EW input scheme. Here the
symbol Yf represents the weak hypercharge, T 3

f
is the third component of the weak isospin

and Qf denotes the electric charge. The fermions are f = q, ` with q = d, u and ` = e, ⌫,
and the helicity states f+ and f� are identical to the chirality states fR and fL in the
massless limit.

The relations among the EW input parameters and g1, g2 and v are modified at tree level
by the presence of some of the dimension-six SMEFT operators listed in (2.1) to (2.4),
leading to so-called input scheme corrections. These can be accounted for via the shifts
x ! x + �x for x = g1, g2, v. We summarise the relevant shifts in Table 2. The input
scheme corrections �g1 �g2 and �v themselves lead to the shifts �g(0)±

Zf
and �g

(0)
hZZ

of the Zff̄
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Figure 2: Examples of higher-order QCD corrections to pp ! Zh production within the
SM. The diagram on the left features additional virtual and real gluon lines (B-type), the
diagram in the middle involves a second quark line (C- and D-type) and the diagram on the
right is gluon-gluon initiated (A-type). Consult the main text for further details.

As an example for the calculation of the SMEFT matrix elements, we consider the case
of B1g0Z where an additional gluon is radiated off the initial-state quark line. While contain-
ing all the main ingredients, the expressions for B1g0Z are concise enough to be stated here.
The corresponding SM Feynman diagram is displayed on the left-hand side in Figure 3.
Note that we consider the leptons (quarks) to be outgoing (incoming). The corresponding
spinor-helicity amplitude with left-handed fermion chiralities and a physical gluon with a
negative helicity reads
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⇣
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+
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�
`
, 5+¯̀

⌘
=

h34i

h12i h23i

⇣
h13i [51] + h23i [52]

⌘
, (3.1)

where hiji and [ij] denote the usual spinor products — see for example [32] for a review of
the spinor-helicity formalism. Notice that the semicolon in the expression on the left-hand
side of (3.1) separates the particles with incoming and outgoing convention, respectively.
The amplitudes for the remaining helicity combinations can be obtained via the following
parity and charge conjugation relations
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(3.2)

The resulting spin-averaged matrix element B1g0Z then takes the form

B1g0Z =
8⇡↵sCF

CA

X

hq ,hg ,h`=±
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⌘�����
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, (3.3)

where
sij = (pi + pj)

2
, sijk = sij + sjk + ski , (3.4)
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Figure 1: Tree-level SMEFT contributions to qq̄ ! Zh production. The diagram on
the left involves an insertion of one of the operators defined in (2.1), while the two graphs
on the right stem from an insertion of one of the operators given in (2.2). The operator
insertions are indicated by the green squares.

article [6]. This basis contains the following three independent operators

QHB = H
†
HBµ⌫B

µ⌫
, QHW = H

†
HW

a

µ⌫W
a,µ⌫

, QHWB = H
†
�
a
HW

a

µ⌫B
µ⌫

, (2.1)

that modify the couplings between the Higgs and two vector bosons at tree level. The SM
Higgs doublet is denoted by H, while Bµ⌫ and W

a
µ⌫ are the U(1)Y and SU(2)L gauge field

strength tensors and �
a are the Pauli matrices. In the case of the operators that result in

couplings between the Higgs, a W or a Z boson and light quarks, we consider the following
four effective interactions

Q
(1)
Hq

= (H†
i

$
DµH)(q̄�µq) , Q

(3)
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= (H†
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$
D
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DµH)(ū�µu) , QHd = (H†

i

$
DµH)(d̄�µd) ,

where H
†
i

$
DµH = iH

†�
Dµ �

 
Dµ

�
H and H
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a
µH = iH
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Dµ�

a
�
H with Dµ the

usual covariant derivative. The symbol q denotes left-handed quark doublets, while u and d

are the right-handed quark singlets of up and down type, respectively. Example tree-level
Feynman diagrams that contribute to Zh production and involve an insertion of one of the
operators in (2.1) or (2.2) are displayed in Figure 1.

Besides the two set of operators (2.1) and (2.2) that alter the pp ! V h production
process, we also consider effective interactions that modify the Z ! `

+
`
� and W ! `⌫

decays at tree level. In the Warsaw basis there are three such operators, namely

Q
(1)
H`

= (H†
i

$
DµH)(¯̀�µ`) , Q

(3)
H`

= (H†
i

$
D

a

µH)(¯̀�µ⌧a`) , QHe = (H†
i

$
DµH)(ē�µe) . (2.3)

Here ` and e denotes a left-handed lepton doublet and right-handed lepton singlet field,
respectively. Notice that in writing (2.2) and (2.3) we have assumed that the full SMEFT
Lagrangian respects an approximate U(3)5 flavour symmetry which allows us to drop all
flavour indices.

The final type of SMEFT corrections that change the Higgsstrahlungs process indi-
rectly is provided by the Wilson coefficients of the operators that shift the EW SM input
parameters. In order to fully describes these shifts the following two additional operators
are needed at tree level:

QHD = (H†
DµH)⇤(H†

D
µ
H) , Q`` = (¯̀�µ`)(¯̀�

µ
`) . (2.4)
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These contributions give overall factors to the SM amplitude. 
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A Analytic expressions for parameters and couplings

In this appendix, we provide the analytic formulas for the parameters and couplings that
appear in Section 4. The presented expressions have been implemented into our MC code
which allows the user to choose between the ↵, the ↵µ and the LEP scheme. We refer
the interested reader to the articles [7, 29, 62] for additional technical details on EW input
schemes in the SMEFT context.

In order to write the expression in this appendix as compactly as possible we introduce
the following abbreviations

g± =
q
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2
1 ± g

2
2 , �m =

q
m

2
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,
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2
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where ↵ is the fine-structure constant, GF is the Fermi constant as extracted from muon
decay and mZ (mW ) is the mass of the Z (W ) boson in the on-shell scheme. The relevant ex-
pressions for the U(1)Y and SU(2)L gauge couplings g1 and g2 and the Higgs VEV v in terms
of the EW input parameters are given in Table 1 for the ↵, the ↵µ and the LEP scheme.

In terms of the parameters g1, g2 and v the Zff̄ , �ff̄ and hZZ coupling strengths
take the following form in the SM

g
±
Zf

=
g
2
1 Y

±
f

� 2g22 T
3±
f

2g+
, g

±
�f

= �
g1g2Q

±
f

g+
, ghZZ =

vg
2
+

2
. (A.2)

Notice that these relations are independent of the employed EW input scheme. Here the
symbol Yf represents the weak hypercharge, T 3

f
is the third component of the weak isospin

and Qf denotes the electric charge. The fermions are f = q, ` with q = d, u and ` = e, ⌫,
and the helicity states f+ and f� are identical to the chirality states fR and fL in the
massless limit.

The relations among the EW input parameters and g1, g2 and v are modified at tree level
by the presence of some of the dimension-six SMEFT operators listed in (2.1) to (2.4),
leading to so-called input scheme corrections. These can be accounted for via the shifts
x ! x + �x for x = g1, g2, v. We summarise the relevant shifts in Table 2. The input
scheme corrections �g1 �g2 and �v themselves lead to the shifts �g(0)±

Zf
and �g

(0)
hZZ

of the Zff̄
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g1 g2 v

↵-scheme

{GF ,mZ ,mW }

2 4
p
2
p
GF �m 2 4

p
2
p
GF mW

1
4
p
2
p
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↵µ-scheme

{↵,mZ ,mW }

p
4⇡↵

mZ
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mZ

�m

mW�m
p
⇡↵ mZ

LEP-scheme

{↵, GF ,mZ}

p
4⇡↵

cw

p
4⇡↵

sw

1
4
p
2
p
GF

Table 1: The parameters g1, g2 and v expressed in terms of the input parameters for the
three EW input schemes implemented in the POWHEG-BOX code.

and hZZ couplings, respectively. We find the following scheme-independent results
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⌘
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�
.

(A.3)

At the same time, the SMEFT operators listed in (2.1) to (2.4) give direct contributions
to the Z-boson couplings to two gauge bosons. We find the following analytic expressions
for the non-zero couplings

�g
(1)
hZZ

=
4v

g
2
+

h
g
2
1CHB + g

2
2CHW + g1g2CHWB

i
,
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�
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
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8
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g
2
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2
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�
.

(A.4)

Furthermore, we obtain �g
(2)
hZZ

= �g
(2)
h�Z

= 0 meaning that the corresponding Dirac struc-
tures are not generated at the dimension-six level in the SMEFT. The expressions for
the hZff̄ couplings can finally be written as

�g
(1)±
hZf

=
2�g(1)±

Zf

v
. (A.5)

– 25 –

Input scheme corrections

2. Details of the calculation
2.1 -initiated contributionsqq̄



Figure 2: Examples of higher-order QCD corrections to pp ! Zh production within the
SM. The diagram on the left features additional virtual and real gluon lines (B-type), the
diagram in the middle involves a second quark line (C- and D-type) and the diagram on the
right is gluon-gluon initiated (A-type). Consult the main text for further details.

As an example for the calculation of the SMEFT matrix elements, we consider the case
of B1g0Z where an additional gluon is radiated off the initial-state quark line. While contain-
ing all the main ingredients, the expressions for B1g0Z are concise enough to be stated here.
The corresponding SM Feynman diagram is displayed on the left-hand side in Figure 3.
Note that we consider the leptons (quarks) to be outgoing (incoming). The corresponding
spinor-helicity amplitude with left-handed fermion chiralities and a physical gluon with a
negative helicity reads

AB1g0Z

⇣
1�q , 2

�
g , 3

+
q̄ ; 4

�
`
, 5+¯̀

⌘
=

h34i

h12i h23i

⇣
h13i [51] + h23i [52]

⌘
, (3.1)

where hiji and [ij] denote the usual spinor products — see for example [32] for a review of
the spinor-helicity formalism. Notice that the semicolon in the expression on the left-hand
side of (3.1) separates the particles with incoming and outgoing convention, respectively.
The amplitudes for the remaining helicity combinations can be obtained via the following
parity and charge conjugation relations

AB1g0Z

⇣
1�q , 2

+
g , 3

+
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⌘
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⌘⇤
,
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, 5�¯̀

⌘
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⇣
1�q , 2
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⌘
,

AB1g0Z

⇣
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⌘
,
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⇣
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⌘
= �AB1g0Z

⇣
3�q , 2
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g , 1+q̄ ; 5
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, 4+¯̀

⌘
.

(3.2)

The resulting spin-averaged matrix element B1g0Z then takes the form

B1g0Z =
8⇡↵sCF

CA

X

hq ,hg ,h`=±

�����
g
hq
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g
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ghZZ
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, (3.3)

where
sij = (pi + pj)

2
, sijk = sij + sjk + ski , (3.4)
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Figure 1: Tree-level SMEFT contributions to qq̄ ! Zh production. The diagram on
the left involves an insertion of one of the operators defined in (2.1), while the two graphs
on the right stem from an insertion of one of the operators given in (2.2). The operator
insertions are indicated by the green squares.

article [6]. This basis contains the following three independent operators

QHB = H
†
HBµ⌫B

µ⌫
, QHW = H

†
HW

a

µ⌫W
a,µ⌫

, QHWB = H
†
�
a
HW

a

µ⌫B
µ⌫

, (2.1)

that modify the couplings between the Higgs and two vector bosons at tree level. The SM
Higgs doublet is denoted by H, while Bµ⌫ and W

a
µ⌫ are the U(1)Y and SU(2)L gauge field

strength tensors and �
a are the Pauli matrices. In the case of the operators that result in

couplings between the Higgs, a W or a Z boson and light quarks, we consider the following
four effective interactions

Q
(1)
Hq

= (H†
i

$
DµH)(q̄�µq) , Q

(3)
Hq

= (H†
i

$
D

a

µH)(q̄�µ�a
q) ,

(2.2)
QHu = (H†

i

$
DµH)(ū�µu) , QHd = (H†

i

$
DµH)(d̄�µd) ,

where H
†
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$
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†�
Dµ �

 
Dµ
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H and H

†
i

$
D

a
µH = iH

†�
�
a
Dµ �

 
Dµ�

a
�
H with Dµ the

usual covariant derivative. The symbol q denotes left-handed quark doublets, while u and d

are the right-handed quark singlets of up and down type, respectively. Example tree-level
Feynman diagrams that contribute to Zh production and involve an insertion of one of the
operators in (2.1) or (2.2) are displayed in Figure 1.

Besides the two set of operators (2.1) and (2.2) that alter the pp ! V h production
process, we also consider effective interactions that modify the Z ! `

+
`
� and W ! `⌫

decays at tree level. In the Warsaw basis there are three such operators, namely

Q
(1)
H`

= (H†
i

$
DµH)(¯̀�µ`) , Q

(3)
H`

= (H†
i

$
D

a

µH)(¯̀�µ⌧a`) , QHe = (H†
i

$
DµH)(ē�µe) . (2.3)

Here ` and e denotes a left-handed lepton doublet and right-handed lepton singlet field,
respectively. Notice that in writing (2.2) and (2.3) we have assumed that the full SMEFT
Lagrangian respects an approximate U(3)5 flavour symmetry which allows us to drop all
flavour indices.

The final type of SMEFT corrections that change the Higgsstrahlungs process indi-
rectly is provided by the Wilson coefficients of the operators that shift the EW SM input
parameters. In order to fully describes these shifts the following two additional operators
are needed at tree level:

QHD = (H†
DµH)⇤(H†

D
µ
H) , Q`` = (¯̀�µ`)(¯̀�

µ
`) . (2.4)
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A Analytic expressions for parameters and couplings

In this appendix, we provide the analytic formulas for the parameters and couplings that
appear in Section 4. The presented expressions have been implemented into our MC code
which allows the user to choose between the ↵, the ↵µ and the LEP scheme. We refer
the interested reader to the articles [7, 29, 62] for additional technical details on EW input
schemes in the SMEFT context.

In order to write the expression in this appendix as compactly as possible we introduce
the following abbreviations

g± =
q
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2
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2
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2
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where ↵ is the fine-structure constant, GF is the Fermi constant as extracted from muon
decay and mZ (mW ) is the mass of the Z (W ) boson in the on-shell scheme. The relevant ex-
pressions for the U(1)Y and SU(2)L gauge couplings g1 and g2 and the Higgs VEV v in terms
of the EW input parameters are given in Table 1 for the ↵, the ↵µ and the LEP scheme.

In terms of the parameters g1, g2 and v the Zff̄ , �ff̄ and hZZ coupling strengths
take the following form in the SM

g
±
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=
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2
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±
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= �
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2
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Notice that these relations are independent of the employed EW input scheme. Here the
symbol Yf represents the weak hypercharge, T 3

f
is the third component of the weak isospin

and Qf denotes the electric charge. The fermions are f = q, ` with q = d, u and ` = e, ⌫,
and the helicity states f+ and f� are identical to the chirality states fR and fL in the
massless limit.

The relations among the EW input parameters and g1, g2 and v are modified at tree level
by the presence of some of the dimension-six SMEFT operators listed in (2.1) to (2.4),
leading to so-called input scheme corrections. These can be accounted for via the shifts
x ! x + �x for x = g1, g2, v. We summarise the relevant shifts in Table 2. The input
scheme corrections �g1 �g2 and �v themselves lead to the shifts �g(0)±

Zf
and �g

(0)
hZZ

of the Zff̄
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Table 1: The parameters g1, g2 and v expressed in terms of the input parameters for the
three EW input schemes implemented in the POWHEG-BOX code.

and hZZ couplings, respectively. We find the following scheme-independent results
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At the same time, the SMEFT operators listed in (2.1) to (2.4) give direct contributions
to the Z-boson couplings to two gauge bosons. We find the following analytic expressions
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Furthermore, we obtain �g
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hZZ
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= 0 meaning that the corresponding Dirac struc-
tures are not generated at the dimension-six level in the SMEFT. The expressions for
the hZff̄ couplings can finally be written as
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Input scheme corrections

2. Details of the calculation
2.1 -initiated contributionsqq̄



Figure 2: Examples of higher-order QCD corrections to pp ! Zh production within the
SM. The diagram on the left features additional virtual and real gluon lines (B-type), the
diagram in the middle involves a second quark line (C- and D-type) and the diagram on the
right is gluon-gluon initiated (A-type). Consult the main text for further details.

As an example for the calculation of the SMEFT matrix elements, we consider the case
of B1g0Z where an additional gluon is radiated off the initial-state quark line. While contain-
ing all the main ingredients, the expressions for B1g0Z are concise enough to be stated here.
The corresponding SM Feynman diagram is displayed on the left-hand side in Figure 3.
Note that we consider the leptons (quarks) to be outgoing (incoming). The corresponding
spinor-helicity amplitude with left-handed fermion chiralities and a physical gluon with a
negative helicity reads

AB1g0Z

⇣
1�q , 2

�
g , 3

+
q̄ ; 4

�
`
, 5+¯̀

⌘
=

h34i

h12i h23i

⇣
h13i [51] + h23i [52]

⌘
, (3.1)

where hiji and [ij] denote the usual spinor products — see for example [32] for a review of
the spinor-helicity formalism. Notice that the semicolon in the expression on the left-hand
side of (3.1) separates the particles with incoming and outgoing convention, respectively.
The amplitudes for the remaining helicity combinations can be obtained via the following
parity and charge conjugation relations

AB1g0Z

⇣
1�q , 2

+
g , 3

+
q̄ ; 4

�
`
, 5+¯̀

⌘
= �AB1g0Z
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�
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�
`
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⌘⇤
,
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⇣
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g , 3+q̄ ; 4
+
`
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⌘
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hg
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�
`
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⌘
,
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�
`
, 4+¯̀

⌘
.

(3.2)

The resulting spin-averaged matrix element B1g0Z then takes the form

B1g0Z =
8⇡↵sCF

CA

X

hq ,hg ,h`=±

�����
g
hq

Zq
g
h`

Z`
ghZZ

DZ(s123)DZ(s45)
AB1g0Z

⇣
1
hq

q , 2
hg

g , 3
�hq

q̄ ; 4h`

`
, 5�h`

¯̀

⌘�����

2

, (3.3)

where
sij = (pi + pj)

2
, sijk = sij + sjk + ski , (3.4)
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How can we calculate the relevant SMEFT matrix elements?

Figure 1: Tree-level SMEFT contributions to qq̄ ! Zh production. The diagram on
the left involves an insertion of one of the operators defined in (2.1), while the two graphs
on the right stem from an insertion of one of the operators given in (2.2). The operator
insertions are indicated by the green squares.

article [6]. This basis contains the following three independent operators

QHB = H
†
HBµ⌫B

µ⌫
, QHW = H

†
HW

a

µ⌫W
a,µ⌫

, QHWB = H
†
�
a
HW

a

µ⌫B
µ⌫

, (2.1)

that modify the couplings between the Higgs and two vector bosons at tree level. The SM
Higgs doublet is denoted by H, while Bµ⌫ and W

a
µ⌫ are the U(1)Y and SU(2)L gauge field

strength tensors and �
a are the Pauli matrices. In the case of the operators that result in

couplings between the Higgs, a W or a Z boson and light quarks, we consider the following
four effective interactions

Q
(1)
Hq

= (H†
i

$
DµH)(q̄�µq) , Q

(3)
Hq

= (H†
i

$
D

a

µH)(q̄�µ�a
q) ,

(2.2)
QHu = (H†

i

$
DµH)(ū�µu) , QHd = (H†

i

$
DµH)(d̄�µd) ,

where H
†
i

$
DµH = iH

†�
Dµ �

 
Dµ

�
H and H

†
i

$
D

a
µH = iH

†�
�
a
Dµ �

 
Dµ�

a
�
H with Dµ the

usual covariant derivative. The symbol q denotes left-handed quark doublets, while u and d

are the right-handed quark singlets of up and down type, respectively. Example tree-level
Feynman diagrams that contribute to Zh production and involve an insertion of one of the
operators in (2.1) or (2.2) are displayed in Figure 1.

Besides the two set of operators (2.1) and (2.2) that alter the pp ! V h production
process, we also consider effective interactions that modify the Z ! `

+
`
� and W ! `⌫

decays at tree level. In the Warsaw basis there are three such operators, namely

Q
(1)
H`

= (H†
i

$
DµH)(¯̀�µ`) , Q

(3)
H`

= (H†
i

$
D

a

µH)(¯̀�µ⌧a`) , QHe = (H†
i

$
DµH)(ē�µe) . (2.3)

Here ` and e denotes a left-handed lepton doublet and right-handed lepton singlet field,
respectively. Notice that in writing (2.2) and (2.3) we have assumed that the full SMEFT
Lagrangian respects an approximate U(3)5 flavour symmetry which allows us to drop all
flavour indices.

The final type of SMEFT corrections that change the Higgsstrahlungs process indi-
rectly is provided by the Wilson coefficients of the operators that shift the EW SM input
parameters. In order to fully describes these shifts the following two additional operators
are needed at tree level:

QHD = (H†
DµH)⇤(H†

D
µ
H) , Q`` = (¯̀�µ`)(¯̀�

µ
`) . (2.4)
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These contributions give overall factors to the SM amplitude. 

�g1/g1 �g2/g2 �v/v

↵-scheme

{GF ,mZ ,mW }

�

m
2
Z

CHD

4�m2 +C
(3)
H`

�C
``

2 +
mW CHWB

�mp
2GF

�
1p
2GF

⇣
C

(3)
H`

�
C``

2

⌘
1p
2GF

⇣
C

(3)
H`

�
C``

2

⌘

↵µ-scheme

{↵,mZ ,mW }

�
m

2
W

�m
2

4⇡↵m
2
Z

CHD

m
3
W

(mWCHD+4�mCHWB)

4⇡↵m
2
Z

�
m

3
W

(mWCHD+4�mCHWB)

4⇡↵m
2
Z

LEP-scheme

{↵, GF ,mZ}

sw

h
cwCHWB+

swCHD

4 +sw

⇣
C

(3)
H`

�C
``

2

⌘i

p
2GF (c2w�s2w)

�
cw

h
swCHWB+

cwCHD

4 +cw

⇣
C

(3)
H`

�C
``

2

⌘i

p
2GF (c2w�s2w)

1p
2GF

⇣
C

(3)
H`

�
C``

2

⌘

Table 2: SMEFT input scheme corrections for the three EW input schemes implemented
in the MC code.
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(A.6)

are the relevant direct SMEFT corrections to the Zff̄ couplings.

B SMEFT corrections to gg ! Zh process

Our implementation of the gg ! Zh production channel is based on the spinor-helicity
amplitudes for the SM implemented in MCFM [49] and presented in [38]. The expressions
for the triangle contribution in unitary gauge read1

A0g2Z_tri
q

⇣
1+g , 2

+
g , 3

�
`
, 4+¯̀

⌘
= �

✓
1�

s12

m
2
Z

◆
2m2

q [21] ([41] h13i+ [42] h23i)

h12i

⇥ C0(s12, 0, 0,mq,mq,mq) ,

(B.1)

where q is the fermion running in the loop with mass mq and the two terms in the first
factor stem from the transversal and longitudinal part of the Z propagator in unitary gauge.
Similarly, we implemented the amplitudes for the box contributions

A0g2Z_box
q

⇣
1+g , 2

+
g , 3

�
`
, 4+¯̀

⌘
, A0g2Z_box

q

⇣
1�g , 2

+
g , 3

�
`
, 4+¯̀

⌘
, (B.2)

which are too lengthy to be written out here but may be inspected in the code. The
remaining non-zero helicity combinations are obtained via the parity and charge conjugation

1Here we follow the convention of [38] and state the amplitudes for all-outgoing momenta. Our convention
with incoming parton momenta is implemented numerically via analytic continuation.
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A Analytic expressions for parameters and couplings

In this appendix, we provide the analytic formulas for the parameters and couplings that
appear in Section 4. The presented expressions have been implemented into our MC code
which allows the user to choose between the ↵, the ↵µ and the LEP scheme. We refer
the interested reader to the articles [7, 29, 62] for additional technical details on EW input
schemes in the SMEFT context.

In order to write the expression in this appendix as compactly as possible we introduce
the following abbreviations

g± =
q
g
2
1 ± g

2
2 , �m =

q
m

2
Z
�m

2
W

,

sw =

vuuut1

2

2

41�

s

1�
2
p
2⇡↵

GFm
2
Z

3

5 , cw =
p
1� s2w ,

(A.1)

where ↵ is the fine-structure constant, GF is the Fermi constant as extracted from muon
decay and mZ (mW ) is the mass of the Z (W ) boson in the on-shell scheme. The relevant ex-
pressions for the U(1)Y and SU(2)L gauge couplings g1 and g2 and the Higgs VEV v in terms
of the EW input parameters are given in Table 1 for the ↵, the ↵µ and the LEP scheme.

In terms of the parameters g1, g2 and v the Zff̄ , �ff̄ and hZZ coupling strengths
take the following form in the SM

g
±
Zf

=
g
2
1 Y

±
f

� 2g22 T
3±
f

2g+
, g

±
�f

= �
g1g2Q

±
f

g+
, ghZZ =

vg
2
+

2
. (A.2)

Notice that these relations are independent of the employed EW input scheme. Here the
symbol Yf represents the weak hypercharge, T 3

f
is the third component of the weak isospin

and Qf denotes the electric charge. The fermions are f = q, ` with q = d, u and ` = e, ⌫,
and the helicity states f+ and f� are identical to the chirality states fR and fL in the
massless limit.

The relations among the EW input parameters and g1, g2 and v are modified at tree level
by the presence of some of the dimension-six SMEFT operators listed in (2.1) to (2.4),
leading to so-called input scheme corrections. These can be accounted for via the shifts
x ! x + �x for x = g1, g2, v. We summarise the relevant shifts in Table 2. The input
scheme corrections �g1 �g2 and �v themselves lead to the shifts �g(0)±

Zf
and �g

(0)
hZZ

of the Zff̄
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At the same time, the SMEFT operators listed in (2.1) to (2.4) give direct contributions
to the Z-boson couplings to two gauge bosons. We find the following analytic expressions
for the non-zero couplings
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Furthermore, we obtain �g
(2)
hZZ

= �g
(2)
h�Z

= 0 meaning that the corresponding Dirac struc-
tures are not generated at the dimension-six level in the SMEFT. The expressions for
the hZff̄ couplings can finally be written as
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=
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v
. (A.5)
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At the same time, the SMEFT operators listed in (2.1) to (2.4) give direct contributions
to the Z-boson couplings to two gauge bosons. We find the following analytic expressions
for the non-zero couplings
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Furthermore, we obtain �g
(2)
hZZ

= �g
(2)
h�Z

= 0 meaning that the corresponding Dirac struc-
tures are not generated at the dimension-six level in the SMEFT. The expressions for
the hZff̄ couplings can finally be written as

�g
(1)±
hZf

=
2�g(1)±

Zf

v
. (A.5)
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Input scheme corrections

2. Details of the calculation
2.1 -initiated contributionsqq̄



Figure 2: Examples of higher-order QCD corrections to pp ! Zh production within the
SM. The diagram on the left features additional virtual and real gluon lines (B-type), the
diagram in the middle involves a second quark line (C- and D-type) and the diagram on the
right is gluon-gluon initiated (A-type). Consult the main text for further details.

As an example for the calculation of the SMEFT matrix elements, we consider the case
of B1g0Z where an additional gluon is radiated off the initial-state quark line. While contain-
ing all the main ingredients, the expressions for B1g0Z are concise enough to be stated here.
The corresponding SM Feynman diagram is displayed on the left-hand side in Figure 3.
Note that we consider the leptons (quarks) to be outgoing (incoming). The corresponding
spinor-helicity amplitude with left-handed fermion chiralities and a physical gluon with a
negative helicity reads

AB1g0Z

⇣
1�q , 2

�
g , 3

+
q̄ ; 4

�
`
, 5+¯̀

⌘
=

h34i

h12i h23i

⇣
h13i [51] + h23i [52]

⌘
, (3.1)

where hiji and [ij] denote the usual spinor products — see for example [32] for a review of
the spinor-helicity formalism. Notice that the semicolon in the expression on the left-hand
side of (3.1) separates the particles with incoming and outgoing convention, respectively.
The amplitudes for the remaining helicity combinations can be obtained via the following
parity and charge conjugation relations

AB1g0Z

⇣
1�q , 2

+
g , 3

+
q̄ ; 4

�
`
, 5+¯̀

⌘
= �AB1g0Z

⇣
3�q , 2

�
g , 1

+
q̄ ; 5

�
`
, 4+¯̀

⌘⇤
,

AB1g0Z

⇣
1�q , 2

hg

g , 3+q̄ ; 4
+
`
, 5�¯̀

⌘
= AB1g0Z

⇣
1�q , 2

hg

g , 3+q̄ ; 5
�
`
, 4+¯̀

⌘
,

AB1g0Z

⇣
1+q , 2

hg

g , 3�q̄ ; 4
�
`
, 5+¯̀

⌘
= �AB1g0Z

⇣
3�q , 2

hg

g , 1+q̄ ; 4
�
`
, 5+¯̀

⌘
,

AB1g0Z

⇣
1+q , 2

hg

g , 3�q̄ ; 4
+
`
, 5�¯̀

⌘
= �AB1g0Z

⇣
3�q , 2

hg

g , 1+q̄ ; 5
�
`
, 4+¯̀

⌘
.

(3.2)

The resulting spin-averaged matrix element B1g0Z then takes the form

B1g0Z =
8⇡↵sCF

CA

X

hq ,hg ,h`=±

�����
g
hq

Zq
g
h`

Z`
ghZZ

DZ(s123)DZ(s45)
AB1g0Z

⇣
1
hq

q , 2
hg

g , 3
�hq

q̄ ; 4h`

`
, 5�h`

¯̀

⌘�����

2

, (3.3)

where
sij = (pi + pj)

2
, sijk = sij + sjk + ski , (3.4)
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How can we calculate the relevant SMEFT matrix elements?

Figure 1: Tree-level SMEFT contributions to qq̄ ! Zh production. The diagram on
the left involves an insertion of one of the operators defined in (2.1), while the two graphs
on the right stem from an insertion of one of the operators given in (2.2). The operator
insertions are indicated by the green squares.

article [6]. This basis contains the following three independent operators

QHB = H
†
HBµ⌫B

µ⌫
, QHW = H

†
HW

a

µ⌫W
a,µ⌫

, QHWB = H
†
�
a
HW

a

µ⌫B
µ⌫

, (2.1)

that modify the couplings between the Higgs and two vector bosons at tree level. The SM
Higgs doublet is denoted by H, while Bµ⌫ and W

a
µ⌫ are the U(1)Y and SU(2)L gauge field

strength tensors and �
a are the Pauli matrices. In the case of the operators that result in

couplings between the Higgs, a W or a Z boson and light quarks, we consider the following
four effective interactions

Q
(1)
Hq

= (H†
i

$
DµH)(q̄�µq) , Q

(3)
Hq

= (H†
i

$
D

a

µH)(q̄�µ�a
q) ,

(2.2)
QHu = (H†

i

$
DµH)(ū�µu) , QHd = (H†

i

$
DµH)(d̄�µd) ,

where H
†
i

$
DµH = iH

†�
Dµ �

 
Dµ

�
H and H

†
i

$
D

a
µH = iH

†�
�
a
Dµ �

 
Dµ�

a
�
H with Dµ the

usual covariant derivative. The symbol q denotes left-handed quark doublets, while u and d

are the right-handed quark singlets of up and down type, respectively. Example tree-level
Feynman diagrams that contribute to Zh production and involve an insertion of one of the
operators in (2.1) or (2.2) are displayed in Figure 1.

Besides the two set of operators (2.1) and (2.2) that alter the pp ! V h production
process, we also consider effective interactions that modify the Z ! `

+
`
� and W ! `⌫

decays at tree level. In the Warsaw basis there are three such operators, namely

Q
(1)
H`

= (H†
i

$
DµH)(¯̀�µ`) , Q

(3)
H`

= (H†
i

$
D

a

µH)(¯̀�µ⌧a`) , QHe = (H†
i

$
DµH)(ē�µe) . (2.3)

Here ` and e denotes a left-handed lepton doublet and right-handed lepton singlet field,
respectively. Notice that in writing (2.2) and (2.3) we have assumed that the full SMEFT
Lagrangian respects an approximate U(3)5 flavour symmetry which allows us to drop all
flavour indices.

The final type of SMEFT corrections that change the Higgsstrahlungs process indi-
rectly is provided by the Wilson coefficients of the operators that shift the EW SM input
parameters. In order to fully describes these shifts the following two additional operators
are needed at tree level:

QHD = (H†
DµH)⇤(H†

D
µ
H) , Q`` = (¯̀�µ`)(¯̀�

µ
`) . (2.4)
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These contributions give overall factors to the SM amplitude. 
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Table 2: SMEFT input scheme corrections for the three EW input schemes implemented
in the MC code.

where

�g
(1)�
Zd

=
v
2
g+

2

⇣
C

(1)
Hq

+ C
(3)
Hq

⌘
, �g

(1)�
Zu

=
v
2
g+

2

⇣
C

(1)
Hq

� C
(3)
Hq

⌘
,

�g
(1)�
Ze

=
v
2
g+

2

⇣
C

(1)
H`

+ C
(3)
H`

⌘
, �g

(1)�
Z⌫

=
v
2
g+

2

⇣
C

(1)
H`

� C
(3)
H`

⌘
,

�g
(1)+
Zd

=
v
2
g+

2
CHd , �g

(1)+
Zu

=
v
2
g+

2
CHu , �g

(1)+
Ze

=
v
2
g+

2
CHe ,

(A.6)

are the relevant direct SMEFT corrections to the Zff̄ couplings.

B SMEFT corrections to gg ! Zh process

Our implementation of the gg ! Zh production channel is based on the spinor-helicity
amplitudes for the SM implemented in MCFM [49] and presented in [38]. The expressions
for the triangle contribution in unitary gauge read1

A0g2Z_tri
q

⇣
1+g , 2

+
g , 3

�
`
, 4+¯̀

⌘
= �

✓
1�

s12

m
2
Z

◆
2m2

q [21] ([41] h13i+ [42] h23i)

h12i

⇥ C0(s12, 0, 0,mq,mq,mq) ,

(B.1)

where q is the fermion running in the loop with mass mq and the two terms in the first
factor stem from the transversal and longitudinal part of the Z propagator in unitary gauge.
Similarly, we implemented the amplitudes for the box contributions

A0g2Z_box
q

⇣
1+g , 2

+
g , 3

�
`
, 4+¯̀

⌘
, A0g2Z_box

q

⇣
1�g , 2

+
g , 3

�
`
, 4+¯̀

⌘
, (B.2)

which are too lengthy to be written out here but may be inspected in the code. The
remaining non-zero helicity combinations are obtained via the parity and charge conjugation

1Here we follow the convention of [38] and state the amplitudes for all-outgoing momenta. Our convention
with incoming parton momenta is implemented numerically via analytic continuation.
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A Analytic expressions for parameters and couplings

In this appendix, we provide the analytic formulas for the parameters and couplings that
appear in Section 4. The presented expressions have been implemented into our MC code
which allows the user to choose between the ↵, the ↵µ and the LEP scheme. We refer
the interested reader to the articles [7, 29, 62] for additional technical details on EW input
schemes in the SMEFT context.

In order to write the expression in this appendix as compactly as possible we introduce
the following abbreviations

g± =
q
g
2
1 ± g

2
2 , �m =

q
m

2
Z
�m

2
W

,

sw =

vuuut1

2

2

41�

s

1�
2
p
2⇡↵

GFm
2
Z

3

5 , cw =
p
1� s2w ,

(A.1)

where ↵ is the fine-structure constant, GF is the Fermi constant as extracted from muon
decay and mZ (mW ) is the mass of the Z (W ) boson in the on-shell scheme. The relevant ex-
pressions for the U(1)Y and SU(2)L gauge couplings g1 and g2 and the Higgs VEV v in terms
of the EW input parameters are given in Table 1 for the ↵, the ↵µ and the LEP scheme.

In terms of the parameters g1, g2 and v the Zff̄ , �ff̄ and hZZ coupling strengths
take the following form in the SM

g
±
Zf

=
g
2
1 Y

±
f

� 2g22 T
3±
f

2g+
, g

±
�f

= �
g1g2Q

±
f

g+
, ghZZ =

vg
2
+

2
. (A.2)

Notice that these relations are independent of the employed EW input scheme. Here the
symbol Yf represents the weak hypercharge, T 3

f
is the third component of the weak isospin

and Qf denotes the electric charge. The fermions are f = q, ` with q = d, u and ` = e, ⌫,
and the helicity states f+ and f� are identical to the chirality states fR and fL in the
massless limit.

The relations among the EW input parameters and g1, g2 and v are modified at tree level
by the presence of some of the dimension-six SMEFT operators listed in (2.1) to (2.4),
leading to so-called input scheme corrections. These can be accounted for via the shifts
x ! x + �x for x = g1, g2, v. We summarise the relevant shifts in Table 2. The input
scheme corrections �g1 �g2 and �v themselves lead to the shifts �g(0)±

Zf
and �g

(0)
hZZ

of the Zff̄
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„Quartic“ contributions

Figure 3: Example graphs that contribute to the B1g0Z matrix elements. The diagram
on the left shows a SM contribution. On the right we instead depict a SMEFT correction
that receives contributions from the generalised hZZ and h�Z currents introduced in (3.9).
The four-momentum flow is indicated by the grey arrows and labels. See the main text for
additional explanations.

are the �qq̄ coupling strengths while �g
(1)
hZZ

, �g(2)
hZZ

, �g(3)
hZZ

, �g(1)
h�Z

and �g
(2)
h�Z

are anomalous
couplings that describe the interactions between the Higgs boson and the relevant vector
bosons as indicated by the subscript. The explicit expressions for all the couplings appear-
ing in (3.9) can be found in Appendix A. We stress that although the anomalous couplings
�g

(2)
hZZ

and �g
(2)
h�Z

do not receive corrections from the Wilson coefficients CHB, CHW and
CHWB our POWHEG-BOX implementation contains the full generalised neutral currents (3.9).
The presented MC code can therefore be used to extend the Higgsstrahlungs computations
in the anomalous-coupling framework [19–21] to the NNLO+PS level.

By looking at (3.7) and (3.9) it is now readily seen that in order to obtain the spin-
averaged matrix element B1g0Z that contains the contributions from the SM as well as the
Wilson coefficients CHB, CHW and CHWB one just has to replace the expression in the
modulus of (3.3) by the following spinor contraction

Aqgq,µ

⇣
1
hq

q , 2
hg

g , 3
�hq

q̄

⌘ h
A

µ

hZZ
(p123, 4

h`

`
, 5�h`

¯̀ ) +A
µ

h�Z
(p123, 4

h`

`
, 5�h`

¯̀ )
i
. (3.10)

A schematic depiction of (3.10) is given on the right in Figure 3. Notice that all helicity
configurations of Aµ

qgq can be obtained from (3.7) and (3.8) using the relations (3.2) while
in the case of A

µ

hZZ
and A

µ

h�Z
one just has to perform the replacements g

�
V f

! g
hf

V f
for

f = q, ` and V = Z, �.
Insertions of the operators (2.2) and (2.3) lead to the Feynman diagrams shown on the

right-hand side in Figure 1 at tree level. In order to capture this contribution in the case
of the matrix element B1g0Z, one simply has to add the following term

0

@�g
(1)hq

hZq
g
h`

Z`

DZ(s45)
+

g
hq

Zq
�g

(1)h`

hZ`

DZ(s123)

1

A AB1g0Z

⇣
1
hq

q , 2
hg

g , 3
�hq

q̄ ; 4h`

`
, 5�h`

¯̀

⌘
, (3.11)

to the corresponding SM contribution in the modulus of (3.3). The analytic expressions
for the couplings �g

(1)hf

hZf
are given in Appendix A. In (3.11) the first term in the brackets

describes the contribution from Q
(1)
Hq

, Q(3)
Hq

, QHd and QHu, while the second term is induced
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Table 1: The parameters g1, g2 and v expressed in terms of the input parameters for the
three EW input schemes implemented in the POWHEG-BOX code.

and hZZ couplings, respectively. We find the following scheme-independent results
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At the same time, the SMEFT operators listed in (2.1) to (2.4) give direct contributions
to the Z-boson couplings to two gauge bosons. We find the following analytic expressions
for the non-zero couplings

�g
(1)
hZZ

=
4v

g
2
+

h
g
2
1CHB + g

2
2CHW + g1g2CHWB

i
,

�g
(1)
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=
4v
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2
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
g1g2CHB � g1g2CHW �

g
2
�
2

CHWB

�
,

�g
(3)
hZZ

= v
3


g1g2CHWB +

3g2+
8

CH2 +
g
2
+

2
CHD

�
.

(A.4)

Furthermore, we obtain �g
(2)
hZZ

= �g
(2)
h�Z

= 0 meaning that the corresponding Dirac struc-
tures are not generated at the dimension-six level in the SMEFT. The expressions for
the hZff̄ couplings can finally be written as

�g
(1)±
hZf

=
2�g(1)±

Zf

v
. (A.5)
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Figure 2: Examples of higher-order QCD corrections to pp ! Zh production within the
SM. The diagram on the left features additional virtual and real gluon lines (B-type), the
diagram in the middle involves a second quark line (C- and D-type) and the diagram on the
right is gluon-gluon initiated (A-type). Consult the main text for further details.
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The technically most involved part of the SMEFT calculation results from insertions of

the three operators introduced in (2.1) since QHB, QHW and QHWB generate modified hV V

vertices with helicity structures different from the SM one. These modifications can be
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Figure 2: Examples of higher-order QCD corrections to pp ! Zh production within the
SM. The diagram on the left features additional virtual and real gluon lines (B-type), the
diagram in the middle involves a second quark line (C- and D-type) and the diagram on the
right is gluon-gluon initiated (A-type). Consult the main text for further details.
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with �Z denoting the total decay width of the Z boson. In (4.3) the variable ↵s denotes
the strong coupling constant while CF = 4/3 and CA = 3 are the relevant colour factors.
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and ghZZ represent the Zff̄ and hZZ coupling strengths, respectively.

The explicit expressions for these quantities are given in Appendix A.
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the three operators introduced in (2.1) since QHB, QHW and QHWB generate modified hV V
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included at the level of (4.1) by means of generalised currents that describe the splitting
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Figure 9: Examples of contributions to gg ! Zh production within the SMEFT.
All graphs involve an insertion of one of the operators given in (2.2) as indicated by the
blue squares. Further details can be found in the main text.

as a result of the anomaly cancellation in the SM. It follows that the sum over q that
appears in (B.4) evaluates to

X

q=t,b

(g�
Zq

� g
+
Zq
)A0g2Z_tri

q
= (g�

Zt
� g

+
Zt
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�
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� A0g2Z_tri

b

�
, (B.9)

and in consequence any scheme-dependent constant shift in the amplitude A0g2Z_tri
q

cancels in the combination (A0g2Z_tri
t
� A0g2Z_tri

b
). Notice that in the degenerate or

zero mass case the sum (B.9) vanishes identically. Since we treat the light-quark generations
as massless, down-, up-, strange- and charm-quark loops hence do not need to be included
in the spin-averaged matrix element (B.4).

The fixed-order matrix elements for the SMEFT contributions to (B.4) were computed
with the procedure outlined in Section 4.1. Since the SM amplitudes were derived in
unitary gauge, only SMEFT contributions to vertices involving the Z boson have to be
considered. We have checked explicitly that in Feynman gauge, the SMEFT effects in the
Goldstone diagrams are equivalent to the effects in the longitudinal part of the amplitude in
unitary gauge. Another important point is that in the SMEFT, the coupling shifts �g

(0)±
Zq

and �g
(1)±
Zq

as given in (A.3) and (A.6), respectively, in general do not obey (B.8) and
the scheme-dependent constant shift in A0g2Z_tri

q
thus does not automatically cancel in

the sum (B.9). Under the assumption that the SMEFT Wilson coefficients arise from the
matching to an anomaly-free renormalisable theory, one can however show [66–70] that the
dependence of the anomaly on the non-renormalisable part can always be removed by adding
a local counterterm, i.e. a Wess-Zumino term [71], to the SMEFT. As a result the condition
for gauge anomaly cancellation is completely controlled by the charge assignment of the
fermion sector in the SMEFT, as one would naively expect from an effective field theory
point of view. To cancel the unphysical terms in the amplitudes depicted in Figure 9 we
employ the covariant anomaly scheme [65, 72–74]. In the case of the triangle contributions,
the covariant anomaly scheme can be implemented by the following simple replacement

A0g2Z_tri
q
! A0g2Z_tri

q
� lim

mq!1
A0g2Z_tri

q
, (B.10)

for what concerns the SMEFT contribution to (B.4). Since the replacement (B.10) is the
same for all q in the sum appearing in A0g2Z, it drops out for an anomaly-free UV theory.
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Figure 2: Examples of higher-order QCD corrections to pp ! Zh production within the
SM. The diagram on the left features additional virtual and real gluon lines (B-type), the
diagram in the middle involves a second quark line (C- and D-type) and the diagram on the
right is gluon-gluon initiated (A-type). Consult the main text for further details.
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the strong coupling constant while CF = 4/3 and CA = 3 are the relevant colour factors.
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The explicit expressions for these quantities are given in Appendix A.
The technically most involved part of the SMEFT calculation results from insertions of

the three operators introduced in (2.1) since QHB, QHW and QHWB generate modified hV V

vertices with helicity structures different from the SM one. These modifications can be
included at the level of (4.1) by means of generalised currents that describe the splitting
of the initial vector boson V1 into the outgoing vector boson V2 and the Higgs boson h [8].
If the initial-state quarks and final-state leptons are left-handed the relevant generalised
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Figure 9: Examples of contributions to gg ! Zh production within the SMEFT.
All graphs involve an insertion of one of the operators given in (2.2) as indicated by the
blue squares. Further details can be found in the main text.

as a result of the anomaly cancellation in the SM. It follows that the sum over q that
appears in (B.4) evaluates to
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and in consequence any scheme-dependent constant shift in the amplitude A0g2Z_tri
q

cancels in the combination (A0g2Z_tri
t
� A0g2Z_tri

b
). Notice that in the degenerate or

zero mass case the sum (B.9) vanishes identically. Since we treat the light-quark generations
as massless, down-, up-, strange- and charm-quark loops hence do not need to be included
in the spin-averaged matrix element (B.4).

The fixed-order matrix elements for the SMEFT contributions to (B.4) were computed
with the procedure outlined in Section 4.1. Since the SM amplitudes were derived in
unitary gauge, only SMEFT contributions to vertices involving the Z boson have to be
considered. We have checked explicitly that in Feynman gauge, the SMEFT effects in the
Goldstone diagrams are equivalent to the effects in the longitudinal part of the amplitude in
unitary gauge. Another important point is that in the SMEFT, the coupling shifts �g

(0)±
Zq

and �g
(1)±
Zq

as given in (A.3) and (A.6), respectively, in general do not obey (B.8) and
the scheme-dependent constant shift in A0g2Z_tri

q
thus does not automatically cancel in

the sum (B.9). Under the assumption that the SMEFT Wilson coefficients arise from the
matching to an anomaly-free renormalisable theory, one can however show [66–70] that the
dependence of the anomaly on the non-renormalisable part can always be removed by adding
a local counterterm, i.e. a Wess-Zumino term [71], to the SMEFT. As a result the condition
for gauge anomaly cancellation is completely controlled by the charge assignment of the
fermion sector in the SMEFT, as one would naively expect from an effective field theory
point of view. To cancel the unphysical terms in the amplitudes depicted in Figure 9 we
employ the covariant anomaly scheme [65, 72–74]. In the case of the triangle contributions,
the covariant anomaly scheme can be implemented by the following simple replacement
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� lim
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, (B.10)

for what concerns the SMEFT contribution to (B.4). Since the replacement (B.10) is the
same for all q in the sum appearing in A0g2Z, it drops out for an anomaly-free UV theory.
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Table 2: SMEFT input scheme corrections for the three EW input schemes implemented
in the MC code.
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are the relevant direct SMEFT corrections to the Zff̄ couplings.

B SMEFT corrections to gg ! Zh process

Our calculation of gg ! Zh production is based on the spinor-helicity amplitudes for the
SM derived in [29] and implemented into MCFM [47]. In unitary gauge, the expression for the
triangle contributions with positive gluon helicities and left-handed fermion chiralities reads
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(B.1)

Notice that we have followed the convention of [29] and written the amplitude for all mo-
menta outgoing. Our convention with incoming parton momenta is implemented numeri-
cally via analytic continuation. In (B.1) the two terms in the last factor in the first line stem
from the transversal and longitudinal part of the Z-boson propagator in unitary gauge, re-
spectively, q is the quark running in the loop with mass mq and C0 is the scalar Passarino-
Veltman (PV) triangle integral defined as in [38, 73]. The corresponding SM Feynman
diagram is displayed on the right-hand side in Figure 2. Similarly, we have implemented
the box amplitudes
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Figure 2: Examples of higher-order QCD corrections to pp ! Zh production within the
SM. The diagram on the left features additional virtual and real gluon lines (B-type), the
diagram in the middle involves a second quark line (C- and D-type) and the diagram on the
right is gluon-gluon initiated (A-type). Consult the main text for further details.
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Figure 2: Examples of higher-order QCD corrections to pp ! Zh production within the
SM. The diagram on the left features additional virtual and real gluon lines (B-type), the
diagram in the middle involves a second quark line (C- and D-type) and the diagram on the
right is gluon-gluon initiated (A-type). Consult the main text for further details.
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Figure 9: Examples of contributions to gg ! Zh production within the SMEFT.
All graphs involve an insertion of one of the operators given in (2.2) as indicated by the
blue squares. Further details can be found in the main text.

as a result of the anomaly cancellation in the SM. It follows that the sum over q that
appears in (B.4) evaluates to

X

q=t,b

(g�
Zq

� g
+
Zq
)A0g2Z_tri

q
= (g�

Zt
� g

+
Zt
)
�
A0g2Z_tri

t
� A0g2Z_tri

b

�
, (B.9)

and in consequence any scheme-dependent constant shift in the amplitude A0g2Z_tri
q

cancels in the combination (A0g2Z_tri
t
� A0g2Z_tri

b
). Notice that in the degenerate or

zero mass case the sum (B.9) vanishes identically. Since we treat the light-quark generations
as massless, down-, up-, strange- and charm-quark loops hence do not need to be included
in the spin-averaged matrix element (B.4).

The fixed-order matrix elements for the SMEFT contributions to (B.4) were computed
with the procedure outlined in Section 4.1. Since the SM amplitudes were derived in
unitary gauge, only SMEFT contributions to vertices involving the Z boson have to be
considered. We have checked explicitly that in Feynman gauge, the SMEFT effects in the
Goldstone diagrams are equivalent to the effects in the longitudinal part of the amplitude in
unitary gauge. Another important point is that in the SMEFT, the coupling shifts �g

(0)±
Zq

and �g
(1)±
Zq

as given in (A.3) and (A.6), respectively, in general do not obey (B.8) and
the scheme-dependent constant shift in A0g2Z_tri

q
thus does not automatically cancel in

the sum (B.9). Under the assumption that the SMEFT Wilson coefficients arise from the
matching to an anomaly-free renormalisable theory, one can however show [66–70] that the
dependence of the anomaly on the non-renormalisable part can always be removed by adding
a local counterterm, i.e. a Wess-Zumino term [71], to the SMEFT. As a result the condition
for gauge anomaly cancellation is completely controlled by the charge assignment of the
fermion sector in the SMEFT, as one would naively expect from an effective field theory
point of view. To cancel the unphysical terms in the amplitudes depicted in Figure 9 we
employ the covariant anomaly scheme [65, 72–74]. In the case of the triangle contributions,
the covariant anomaly scheme can be implemented by the following simple replacement

A0g2Z_tri
q
! A0g2Z_tri

q
� lim

mq!1
A0g2Z_tri

q
, (B.10)

for what concerns the SMEFT contribution to (B.4). Since the replacement (B.10) is the
same for all q in the sum appearing in A0g2Z, it drops out for an anomaly-free UV theory.
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Table 2: SMEFT input scheme corrections for the three EW input schemes implemented
in the MC code.
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are the relevant direct SMEFT corrections to the Zff̄ couplings.

B SMEFT corrections to gg ! Zh process

Our calculation of gg ! Zh production is based on the spinor-helicity amplitudes for the
SM derived in [29] and implemented into MCFM [47]. In unitary gauge, the expression for the
triangle contributions with positive gluon helicities and left-handed fermion chiralities reads

A
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(B.1)

Notice that we have followed the convention of [29] and written the amplitude for all mo-
menta outgoing. Our convention with incoming parton momenta is implemented numeri-
cally via analytic continuation. In (B.1) the two terms in the last factor in the first line stem
from the transversal and longitudinal part of the Z-boson propagator in unitary gauge, re-
spectively, q is the quark running in the loop with mass mq and C0 is the scalar Passarino-
Veltman (PV) triangle integral defined as in [38, 73]. The corresponding SM Feynman
diagram is displayed on the right-hand side in Figure 2. Similarly, we have implemented
the box amplitudes
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, (B.2)
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which are, however, too lengthy to be reported here but may be inspected in our POWHEG code.
The remaining non-zero helicity combinations may be obtained via parity and charge con-
jugation relations. In the case of the triangle contributions, these relations take the form
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(B.3)

where the overline means that the brackets should be exchanged, i.e. [. . .] $ h. . .i. Ana-
log relations hold for the box contributions including the cases where the gluons have
opposite helicities which are only present for A

q

A0g2Z2.
Including the triangle and box contributions the resulting spin-averaged matrix element

takes the form
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Here DZ(s) has been defined in (3.5) while the expressions for the couplings g±
Zf

and ghZZ

can be found in (A.2). The coupling ghZZ appearing in (B.6) requires some explanation.
In fact, the box contributions do not involve a hZZ vertex but instead the Higgs boson
couples directly to the quarks. However, since

ghZZ

m
2
q

m
2
Z

=
v
�
g
2
1 + g

2
2

�

2

m
2
q

m
2
Z

=
2m2

Z

v

m
2
q

m
2
Z

=
2m2

q

v
, (B.7)

with a factor mq/v coming from the hqq̄ vertex and another mq stemming from the mass
insertion in the box diagram the expected mass dependence for A

q

A0g2Z2 is recovered.
It is important to realise that as a result of the generalised Furry theorem the vector-

current coupling of the Z boson, which is proportional to the combination (g�
Zq

+ g
+
Zq
) of

couplings, does not contribute to the spin-averaged matrix element A0g2Z as given in (B.4).
However, the axial-current part contributes, as signalled by the factor (g�

Zq
� g

+
Zq
) in

both (B.5) and (B.6), and this contribution is directly connected to the U(1)A ⇥ SU(3)c
gauge anomaly. In fact, a regulator and a loop routing scheme must be introduced
to properly define the amplitude A

q

A0g2Z4, rendering its expression scheme-dependent —
for a detailed explanation of this point see for example [74]. Within the SM, the axial parts
of the top- and bottom-quark coupling obey

(g�
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) = �(g�
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� g
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) , (B.8)
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2.2 -initiated contributionsgg

Figure 2: Examples of higher-order QCD corrections to pp ! Zh production within the
SM. The diagram on the left features additional virtual and real gluon lines (B-type), the
diagram in the middle involves a second quark line (C- and D-type) and the diagram on the
right is gluon-gluon initiated (A-type). Consult the main text for further details.
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sij = (pi + pj)

2
, sijk = sij + sjk + ski , (4.4)

are the usual Mandelstam invariants with pi the four-momentum of particle i. We have
furthermore introduced

DZ(s) = s�M
2
Z + iMZ�Z , (4.5)

with �Z denoting the total decay width of the Z boson. In (4.3) the variable ↵s denotes
the strong coupling constant while CF = 4/3 and CA = 3 are the relevant colour factors.
The symbols g

hf

Zf
and ghZZ represent the Zff̄ and hZZ coupling strengths, respectively.

The explicit expressions for these quantities are given in Appendix A.
The technically most involved part of the SMEFT calculation results from insertions of

the three operators introduced in (2.1) since QHB, QHW and QHWB generate modified hV V

vertices with helicity structures different from the SM one. These modifications can be
included at the level of (4.1) by means of generalised currents that describe the splitting
of the initial vector boson V1 into the outgoing vector boson V2 and the Higgs boson h [8].
If the initial-state quarks and final-state leptons are left-handed the relevant generalised
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as a result of the anomaly cancellation in the SM. It follows that the sum over q that
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and in consequence any scheme-dependent constant shift in the amplitude A0g2Z_tri
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). Notice that in the degenerate or

zero mass case the sum (B.9) vanishes identically. Since we treat the light-quark generations
as massless, down-, up-, strange- and charm-quark loops hence do not need to be included
in the spin-averaged matrix element (B.4).

The fixed-order matrix elements for the SMEFT contributions to (B.4) were computed
with the procedure outlined in Section 4.1. Since the SM amplitudes were derived in
unitary gauge, only SMEFT contributions to vertices involving the Z boson have to be
considered. We have checked explicitly that in Feynman gauge, the SMEFT effects in the
Goldstone diagrams are equivalent to the effects in the longitudinal part of the amplitude in
unitary gauge. Another important point is that in the SMEFT, the coupling shifts �g
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Zq

and �g
(1)±
Zq

as given in (A.3) and (A.6), respectively, in general do not obey (B.8) and
the scheme-dependent constant shift in A0g2Z_tri

q
thus does not automatically cancel in

the sum (B.9). Under the assumption that the SMEFT Wilson coefficients arise from the
matching to an anomaly-free renormalisable theory, one can however show [66–70] that the
dependence of the anomaly on the non-renormalisable part can always be removed by adding
a local counterterm, i.e. a Wess-Zumino term [71], to the SMEFT. As a result the condition
for gauge anomaly cancellation is completely controlled by the charge assignment of the
fermion sector in the SMEFT, as one would naively expect from an effective field theory
point of view. To cancel the unphysical terms in the amplitudes depicted in Figure 9 we
employ the covariant anomaly scheme [65, 72–74]. In the case of the triangle contributions,
the covariant anomaly scheme can be implemented by the following simple replacement
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, (B.10)

for what concerns the SMEFT contribution to (B.4). Since the replacement (B.10) is the
same for all q in the sum appearing in A0g2Z, it drops out for an anomaly-free UV theory.
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Table 2: SMEFT input scheme corrections for the three EW input schemes implemented
in the MC code.
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are the relevant direct SMEFT corrections to the Zff̄ couplings.

B SMEFT corrections to gg ! Zh process

Our calculation of gg ! Zh production is based on the spinor-helicity amplitudes for the
SM derived in [29] and implemented into MCFM [47]. In unitary gauge, the expression for the
triangle contributions with positive gluon helicities and left-handed fermion chiralities reads
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Notice that we have followed the convention of [29] and written the amplitude for all mo-
menta outgoing. Our convention with incoming parton momenta is implemented numeri-
cally via analytic continuation. In (B.1) the two terms in the last factor in the first line stem
from the transversal and longitudinal part of the Z-boson propagator in unitary gauge, re-
spectively, q is the quark running in the loop with mass mq and C0 is the scalar Passarino-
Veltman (PV) triangle integral defined as in [38, 73]. The corresponding SM Feynman
diagram is displayed on the right-hand side in Figure 2. Similarly, we have implemented
the box amplitudes
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which are, however, too lengthy to be reported here but may be inspected in our POWHEG code.
The remaining non-zero helicity combinations may be obtained via parity and charge con-
jugation relations. In the case of the triangle contributions, these relations take the form
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where the overline means that the brackets should be exchanged, i.e. [. . .] $ h. . .i. Ana-
log relations hold for the box contributions including the cases where the gluons have
opposite helicities which are only present for A

q

A0g2Z2.
Including the triangle and box contributions the resulting spin-averaged matrix element

takes the form
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Here DZ(s) has been defined in (3.5) while the expressions for the couplings g±
Zf

and ghZZ

can be found in (A.2). The coupling ghZZ appearing in (B.6) requires some explanation.
In fact, the box contributions do not involve a hZZ vertex but instead the Higgs boson
couples directly to the quarks. However, since
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with a factor mq/v coming from the hqq̄ vertex and another mq stemming from the mass
insertion in the box diagram the expected mass dependence for A

q

A0g2Z2 is recovered.
It is important to realise that as a result of the generalised Furry theorem the vector-

current coupling of the Z boson, which is proportional to the combination (g�
Zq

+ g
+
Zq
) of

couplings, does not contribute to the spin-averaged matrix element A0g2Z as given in (B.4).
However, the axial-current part contributes, as signalled by the factor (g�

Zq
� g

+
Zq
) in

both (B.5) and (B.6), and this contribution is directly connected to the U(1)A ⇥ SU(3)c
gauge anomaly. In fact, a regulator and a loop routing scheme must be introduced
to properly define the amplitude A

q

A0g2Z4, rendering its expression scheme-dependent —
for a detailed explanation of this point see for example [74]. Within the SM, the axial parts
of the top- and bottom-quark coupling obey

(g�
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+
Zt
) = �(g�

Zb
� g

+
Zb
) , (B.8)

– 30 –

which are, however, too lengthy to be reported here but may be inspected in our POWHEG code.
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with a factor mq/v coming from the hqq̄ vertex and another mq stemming from the mass
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2. Details of the calculation
2.2 -initiated contributionsgg

Figure 2: Examples of higher-order QCD corrections to pp ! Zh production within the
SM. The diagram on the left features additional virtual and real gluon lines (B-type), the
diagram in the middle involves a second quark line (C- and D-type) and the diagram on the
right is gluon-gluon initiated (A-type). Consult the main text for further details.

where
sij = (pi + pj)

2
, sijk = sij + sjk + ski , (4.4)

are the usual Mandelstam invariants with pi the four-momentum of particle i. We have
furthermore introduced

DZ(s) = s�M
2
Z + iMZ�Z , (4.5)

with �Z denoting the total decay width of the Z boson. In (4.3) the variable ↵s denotes
the strong coupling constant while CF = 4/3 and CA = 3 are the relevant colour factors.
The symbols g

hf

Zf
and ghZZ represent the Zff̄ and hZZ coupling strengths, respectively.

The explicit expressions for these quantities are given in Appendix A.
The technically most involved part of the SMEFT calculation results from insertions of

the three operators introduced in (2.1) since QHB, QHW and QHWB generate modified hV V

vertices with helicity structures different from the SM one. These modifications can be
included at the level of (4.1) by means of generalised currents that describe the splitting
of the initial vector boson V1 into the outgoing vector boson V2 and the Higgs boson h [8].
If the initial-state quarks and final-state leptons are left-handed the relevant generalised
neutral currents are given by
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Figure 2: Examples of higher-order QCD corrections to pp ! Zh production within the
SM. The diagram on the left features additional virtual and real gluon lines (B-type), the
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(B-type) (C,D-type) (A-type)

U

How can we calculate the relevant SMEFT matrix elements?

Figure 9: Examples of contributions to gg ! Zh production within the SMEFT.
All graphs involve an insertion of one of the operators given in (2.2) as indicated by the
blue squares. Further details can be found in the main text.

as a result of the anomaly cancellation in the SM. It follows that the sum over q that
appears in (B.4) evaluates to
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and in consequence any scheme-dependent constant shift in the amplitude A0g2Z_tri
q

cancels in the combination (A0g2Z_tri
t
� A0g2Z_tri

b
). Notice that in the degenerate or

zero mass case the sum (B.9) vanishes identically. Since we treat the light-quark generations
as massless, down-, up-, strange- and charm-quark loops hence do not need to be included
in the spin-averaged matrix element (B.4).

The fixed-order matrix elements for the SMEFT contributions to (B.4) were computed
with the procedure outlined in Section 4.1. Since the SM amplitudes were derived in
unitary gauge, only SMEFT contributions to vertices involving the Z boson have to be
considered. We have checked explicitly that in Feynman gauge, the SMEFT effects in the
Goldstone diagrams are equivalent to the effects in the longitudinal part of the amplitude in
unitary gauge. Another important point is that in the SMEFT, the coupling shifts �g

(0)±
Zq

and �g
(1)±
Zq

as given in (A.3) and (A.6), respectively, in general do not obey (B.8) and
the scheme-dependent constant shift in A0g2Z_tri

q
thus does not automatically cancel in

the sum (B.9). Under the assumption that the SMEFT Wilson coefficients arise from the
matching to an anomaly-free renormalisable theory, one can however show [66–70] that the
dependence of the anomaly on the non-renormalisable part can always be removed by adding
a local counterterm, i.e. a Wess-Zumino term [71], to the SMEFT. As a result the condition
for gauge anomaly cancellation is completely controlled by the charge assignment of the
fermion sector in the SMEFT, as one would naively expect from an effective field theory
point of view. To cancel the unphysical terms in the amplitudes depicted in Figure 9 we
employ the covariant anomaly scheme [65, 72–74]. In the case of the triangle contributions,
the covariant anomaly scheme can be implemented by the following simple replacement
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for what concerns the SMEFT contribution to (B.4). Since the replacement (B.10) is the
same for all q in the sum appearing in A0g2Z, it drops out for an anomaly-free UV theory.
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are the relevant direct SMEFT corrections to the Zff̄ couplings.

B SMEFT corrections to gg ! Zh process

Our calculation of gg ! Zh production is based on the spinor-helicity amplitudes for the
SM derived in [29] and implemented into MCFM [47]. In unitary gauge, the expression for the
triangle contributions with positive gluon helicities and left-handed fermion chiralities reads
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Notice that we have followed the convention of [29] and written the amplitude for all mo-
menta outgoing. Our convention with incoming parton momenta is implemented numeri-
cally via analytic continuation. In (B.1) the two terms in the last factor in the first line stem
from the transversal and longitudinal part of the Z-boson propagator in unitary gauge, re-
spectively, q is the quark running in the loop with mass mq and C0 is the scalar Passarino-
Veltman (PV) triangle integral defined as in [38, 73]. The corresponding SM Feynman
diagram is displayed on the right-hand side in Figure 2. Similarly, we have implemented
the box amplitudes
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which are, however, too lengthy to be reported here but may be inspected in our POWHEG code.
The remaining non-zero helicity combinations may be obtained via parity and charge con-
jugation relations. In the case of the triangle contributions, these relations take the form
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where the overline means that the brackets should be exchanged, i.e. [. . .] $ h. . .i. Ana-
log relations hold for the box contributions including the cases where the gluons have
opposite helicities which are only present for A

q

A0g2Z2.
Including the triangle and box contributions the resulting spin-averaged matrix element

takes the form
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Here DZ(s) has been defined in (3.5) while the expressions for the couplings g±
Zf

and ghZZ

can be found in (A.2). The coupling ghZZ appearing in (B.6) requires some explanation.
In fact, the box contributions do not involve a hZZ vertex but instead the Higgs boson
couples directly to the quarks. However, since
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with a factor mq/v coming from the hqq̄ vertex and another mq stemming from the mass
insertion in the box diagram the expected mass dependence for A

q

A0g2Z2 is recovered.
It is important to realise that as a result of the generalised Furry theorem the vector-

current coupling of the Z boson, which is proportional to the combination (g�
Zq

+ g
+
Zq
) of

couplings, does not contribute to the spin-averaged matrix element A0g2Z as given in (B.4).
However, the axial-current part contributes, as signalled by the factor (g�

Zq
� g

+
Zq
) in

both (B.5) and (B.6), and this contribution is directly connected to the U(1)A ⇥ SU(3)c
gauge anomaly. In fact, a regulator and a loop routing scheme must be introduced
to properly define the amplitude A

q

A0g2Z4, rendering its expression scheme-dependent —
for a detailed explanation of this point see for example [74]. Within the SM, the axial parts
of the top- and bottom-quark coupling obey
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which are, however, too lengthy to be reported here but may be inspected in our POWHEG code.
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with a factor mq/v coming from the hqq̄ vertex and another mq stemming from the mass
insertion in the box diagram the expected mass dependence for A
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gauge anomaly. In fact, a regulator and a loop routing scheme must be introduced
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Figure 9: Examples of contributions to gg ! Zh production within the SMEFT.
All graphs involve an insertion of one of the operators given in (2.2) as indicated by the
blue squares. Further details can be found in the main text.

as a result of the anomaly cancellation in the SM. It follows that the sum over q that
appears in (B.4) evaluates to
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and in consequence any scheme-dependent constant shift in the amplitude A0g2Z_tri
q

cancels in the combination (A0g2Z_tri
t
� A0g2Z_tri

b
). Notice that in the degenerate or

zero mass case the sum (B.9) vanishes identically. Since we treat the light-quark generations
as massless, down-, up-, strange- and charm-quark loops hence do not need to be included
in the spin-averaged matrix element (B.4).

The fixed-order matrix elements for the SMEFT contributions to (B.4) were computed
with the procedure outlined in Section 4.1. Since the SM amplitudes were derived in
unitary gauge, only SMEFT contributions to vertices involving the Z boson have to be
considered. We have checked explicitly that in Feynman gauge, the SMEFT effects in the
Goldstone diagrams are equivalent to the effects in the longitudinal part of the amplitude in
unitary gauge. Another important point is that in the SMEFT, the coupling shifts �g

(0)±
Zq

and �g
(1)±
Zq

as given in (A.3) and (A.6), respectively, in general do not obey (B.8) and
the scheme-dependent constant shift in A0g2Z_tri

q
thus does not automatically cancel in

the sum (B.9). Under the assumption that the SMEFT Wilson coefficients arise from the
matching to an anomaly-free renormalisable theory, one can however show [66–70] that the
dependence of the anomaly on the non-renormalisable part can always be removed by adding
a local counterterm, i.e. a Wess-Zumino term [71], to the SMEFT. As a result the condition
for gauge anomaly cancellation is completely controlled by the charge assignment of the
fermion sector in the SMEFT, as one would naively expect from an effective field theory
point of view. To cancel the unphysical terms in the amplitudes depicted in Figure 9 we
employ the covariant anomaly scheme [65, 72–74]. In the case of the triangle contributions,
the covariant anomaly scheme can be implemented by the following simple replacement
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q
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q
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q
, (B.10)

for what concerns the SMEFT contribution to (B.4). Since the replacement (B.10) is the
same for all q in the sum appearing in A0g2Z, it drops out for an anomaly-free UV theory.
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Table 2: SMEFT input scheme corrections for the three EW input schemes implemented
in the MC code.
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are the relevant direct SMEFT corrections to the Zff̄ couplings.

B SMEFT corrections to gg ! Zh process

Our calculation of gg ! Zh production is based on the spinor-helicity amplitudes for the
SM derived in [29] and implemented into MCFM [47]. In unitary gauge, the expression for the
triangle contributions with positive gluon helicities and left-handed fermion chiralities reads
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Notice that we have followed the convention of [29] and written the amplitude for all mo-
menta outgoing. Our convention with incoming parton momenta is implemented numeri-
cally via analytic continuation. In (B.1) the two terms in the last factor in the first line stem
from the transversal and longitudinal part of the Z-boson propagator in unitary gauge, re-
spectively, q is the quark running in the loop with mass mq and C0 is the scalar Passarino-
Veltman (PV) triangle integral defined as in [38, 73]. The corresponding SM Feynman
diagram is displayed on the right-hand side in Figure 2. Similarly, we have implemented
the box amplitudes
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are the relevant direct SMEFT corrections to the Zff̄ couplings.

B SMEFT corrections to gg ! Zh process

Our calculation of gg ! Zh production is based on the spinor-helicity amplitudes for the
SM derived in [29] and implemented into MCFM [47]. In unitary gauge, the expression for the
triangle contributions with positive gluon helicities and left-handed fermion chiralities reads
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Notice that we have followed the convention of [29] and written the amplitude for all mo-
menta outgoing. Our convention with incoming parton momenta is implemented numeri-
cally via analytic continuation. In (B.1) the two terms in the last factor in the first line stem
from the transversal and longitudinal part of the Z-boson propagator in unitary gauge, re-
spectively, q is the quark running in the loop with mass mq and C0 is the scalar Passarino-
Veltman (PV) triangle integral defined as in [38, 73]. The corresponding SM Feynman
diagram is displayed on the right-hand side in Figure 2. Similarly, we have implemented
the box amplitudes
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which are, however, too lengthy to be reported here but may be inspected in our POWHEG code.
The remaining non-zero helicity combinations may be obtained via parity and charge con-
jugation relations. In the case of the triangle contributions, these relations take the form
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where the overline means that the brackets should be exchanged, i.e. [. . .] $ h. . .i. Ana-
log relations hold for the box contributions including the cases where the gluons have
opposite helicities which are only present for A
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Here DZ(s) has been defined in (3.5) while the expressions for the couplings g±
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with a factor mq/v coming from the hqq̄ vertex and another mq stemming from the mass
insertion in the box diagram the expected mass dependence for A

q

A0g2Z2 is recovered.
It is important to realise that as a result of the generalised Furry theorem the vector-
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11

2. Details of the calculation
2.2 -initiated contributionsgg

Figure 2: Examples of higher-order QCD corrections to pp ! Zh production within the
SM. The diagram on the left features additional virtual and real gluon lines (B-type), the
diagram in the middle involves a second quark line (C- and D-type) and the diagram on the
right is gluon-gluon initiated (A-type). Consult the main text for further details.
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are the usual Mandelstam invariants with pi the four-momentum of particle i. We have
furthermore introduced

DZ(s) = s�M
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Z + iMZ�Z , (4.5)

with �Z denoting the total decay width of the Z boson. In (4.3) the variable ↵s denotes
the strong coupling constant while CF = 4/3 and CA = 3 are the relevant colour factors.
The symbols g

hf

Zf
and ghZZ represent the Zff̄ and hZZ coupling strengths, respectively.

The explicit expressions for these quantities are given in Appendix A.
The technically most involved part of the SMEFT calculation results from insertions of

the three operators introduced in (2.1) since QHB, QHW and QHWB generate modified hV V

vertices with helicity structures different from the SM one. These modifications can be
included at the level of (4.1) by means of generalised currents that describe the splitting
of the initial vector boson V1 into the outgoing vector boson V2 and the Higgs boson h [8].
If the initial-state quarks and final-state leptons are left-handed the relevant generalised
neutral currents are given by
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Figure 2: Examples of higher-order QCD corrections to pp ! Zh production within the
SM. The diagram on the left features additional virtual and real gluon lines (B-type), the
diagram in the middle involves a second quark line (C- and D-type) and the diagram on the
right is gluon-gluon initiated (A-type). Consult the main text for further details.
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SM. The diagram on the left features additional virtual and real gluon lines (B-type), the
diagram in the middle involves a second quark line (C- and D-type) and the diagram on the
right is gluon-gluon initiated (A-type). Consult the main text for further details.
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(B-type) (C,D-type) (A-type)

U

How can we calculate the relevant SMEFT matrix elements?

Figure 9: Examples of contributions to gg ! Zh production within the SMEFT.
All graphs involve an insertion of one of the operators given in (2.2) as indicated by the
blue squares. Further details can be found in the main text.

as a result of the anomaly cancellation in the SM. It follows that the sum over q that
appears in (B.4) evaluates to

X

q=t,b
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q
= (g�
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b

�
, (B.9)

and in consequence any scheme-dependent constant shift in the amplitude A0g2Z_tri
q

cancels in the combination (A0g2Z_tri
t
� A0g2Z_tri

b
). Notice that in the degenerate or

zero mass case the sum (B.9) vanishes identically. Since we treat the light-quark generations
as massless, down-, up-, strange- and charm-quark loops hence do not need to be included
in the spin-averaged matrix element (B.4).

The fixed-order matrix elements for the SMEFT contributions to (B.4) were computed
with the procedure outlined in Section 4.1. Since the SM amplitudes were derived in
unitary gauge, only SMEFT contributions to vertices involving the Z boson have to be
considered. We have checked explicitly that in Feynman gauge, the SMEFT effects in the
Goldstone diagrams are equivalent to the effects in the longitudinal part of the amplitude in
unitary gauge. Another important point is that in the SMEFT, the coupling shifts �g

(0)±
Zq

and �g
(1)±
Zq

as given in (A.3) and (A.6), respectively, in general do not obey (B.8) and
the scheme-dependent constant shift in A0g2Z_tri

q
thus does not automatically cancel in

the sum (B.9). Under the assumption that the SMEFT Wilson coefficients arise from the
matching to an anomaly-free renormalisable theory, one can however show [66–70] that the
dependence of the anomaly on the non-renormalisable part can always be removed by adding
a local counterterm, i.e. a Wess-Zumino term [71], to the SMEFT. As a result the condition
for gauge anomaly cancellation is completely controlled by the charge assignment of the
fermion sector in the SMEFT, as one would naively expect from an effective field theory
point of view. To cancel the unphysical terms in the amplitudes depicted in Figure 9 we
employ the covariant anomaly scheme [65, 72–74]. In the case of the triangle contributions,
the covariant anomaly scheme can be implemented by the following simple replacement

A0g2Z_tri
q
! A0g2Z_tri

q
� lim

mq!1
A0g2Z_tri

q
, (B.10)

for what concerns the SMEFT contribution to (B.4). Since the replacement (B.10) is the
same for all q in the sum appearing in A0g2Z, it drops out for an anomaly-free UV theory.
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Table 2: SMEFT input scheme corrections for the three EW input schemes implemented
in the MC code.
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are the relevant direct SMEFT corrections to the Zff̄ couplings.

B SMEFT corrections to gg ! Zh process

Our calculation of gg ! Zh production is based on the spinor-helicity amplitudes for the
SM derived in [29] and implemented into MCFM [47]. In unitary gauge, the expression for the
triangle contributions with positive gluon helicities and left-handed fermion chiralities reads
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Notice that we have followed the convention of [29] and written the amplitude for all mo-
menta outgoing. Our convention with incoming parton momenta is implemented numeri-
cally via analytic continuation. In (B.1) the two terms in the last factor in the first line stem
from the transversal and longitudinal part of the Z-boson propagator in unitary gauge, re-
spectively, q is the quark running in the loop with mass mq and C0 is the scalar Passarino-
Veltman (PV) triangle integral defined as in [38, 73]. The corresponding SM Feynman
diagram is displayed on the right-hand side in Figure 2. Similarly, we have implemented
the box amplitudes
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which are, however, too lengthy to be reported here but may be inspected in our POWHEG code.
The remaining non-zero helicity combinations may be obtained via parity and charge con-
jugation relations. In the case of the triangle contributions, these relations take the form
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where the overline means that the brackets should be exchanged, i.e. [. . .] $ h. . .i. Ana-
log relations hold for the box contributions including the cases where the gluons have
opposite helicities which are only present for A

q

A0g2Z2.
Including the triangle and box contributions the resulting spin-averaged matrix element

takes the form

A0g2Z =
↵
2
s

8⇡2 (C2
A
� 1)2

X

hg ,h`=±

������

X

q=t,b

 
A

q

4 +
X

s=±

m
2
q

m
2
Z

A
q,s

2

!������

2

, (B.4)

with

A
q

4 =
(g�

Zq
� g

+
Zq
)gh`

Z`
ghZZ

DZ(s12)DZ(s34)
A

q

A0g2Z4

⇣
1
hg

g , 2
hg

g , 3h`

`
, 4�h`

¯̀

⌘
, (B.5)

A
q,±
2 =

(g�
Zq

� g
+
Zq
)gh`

Z`
ghZZ

DZ(s34)
A

q

A0g2Z2
⇣
1
hg

g , 2
±hg

g , 3h`

`
, 4�h`

¯̀

⌘
. (B.6)

Here DZ(s) has been defined in (3.5) while the expressions for the couplings g±
Zf

and ghZZ

can be found in (A.2). The coupling ghZZ appearing in (B.6) requires some explanation.
In fact, the box contributions do not involve a hZZ vertex but instead the Higgs boson
couples directly to the quarks. However, since
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with a factor mq/v coming from the hqq̄ vertex and another mq stemming from the mass
insertion in the box diagram the expected mass dependence for A

q

A0g2Z2 is recovered.
It is important to realise that as a result of the generalised Furry theorem the vector-

current coupling of the Z boson, which is proportional to the combination (g�
Zq

+ g
+
Zq
) of

couplings, does not contribute to the spin-averaged matrix element A0g2Z as given in (B.4).
However, the axial-current part contributes, as signalled by the factor (g�

Zq
� g

+
Zq
) in

both (B.5) and (B.6), and this contribution is directly connected to the U(1)A ⇥ SU(3)c
gauge anomaly. In fact, a regulator and a loop routing scheme must be introduced
to properly define the amplitude A

q

A0g2Z4, rendering its expression scheme-dependent —
for a detailed explanation of this point see for example [74]. Within the SM, the axial parts
of the top- and bottom-quark coupling obey

(g�
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+
Zt
) = �(g�

Zb
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+
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) , (B.8)
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Figure 2: Examples of higher-order QCD corrections to pp ! Zh production within the
SM. The diagram on the left features additional virtual and real gluon lines (B-type), the
diagram in the middle involves a second quark line (C- and D-type) and the diagram on the
right is gluon-gluon initiated (A-type). Consult the main text for further details.

where
sij = (pi + pj)

2
, sijk = sij + sjk + ski , (4.4)

are the usual Mandelstam invariants with pi the four-momentum of particle i. We have
furthermore introduced

DZ(s) = s�M
2
Z + iMZ�Z , (4.5)

with �Z denoting the total decay width of the Z boson. In (4.3) the variable ↵s denotes
the strong coupling constant while CF = 4/3 and CA = 3 are the relevant colour factors.
The symbols g

hf
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and ghZZ represent the Zff̄ and hZZ coupling strengths, respectively.

The explicit expressions for these quantities are given in Appendix A.
The technically most involved part of the SMEFT calculation results from insertions of

the three operators introduced in (2.1) since QHB, QHW and QHWB generate modified hV V

vertices with helicity structures different from the SM one. These modifications can be
included at the level of (4.1) by means of generalised currents that describe the splitting
of the initial vector boson V1 into the outgoing vector boson V2 and the Higgs boson h [8].
If the initial-state quarks and final-state leptons are left-handed the relevant generalised
neutral currents are given by
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Figure 2: Examples of higher-order QCD corrections to pp ! Zh production within the
SM. The diagram on the left features additional virtual and real gluon lines (B-type), the
diagram in the middle involves a second quark line (C- and D-type) and the diagram on the
right is gluon-gluon initiated (A-type). Consult the main text for further details.
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furthermore introduced
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with �Z denoting the total decay width of the Z boson. In (4.3) the variable ↵s denotes
the strong coupling constant while CF = 4/3 and CA = 3 are the relevant colour factors.
The symbols g
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and ghZZ represent the Zff̄ and hZZ coupling strengths, respectively.

The explicit expressions for these quantities are given in Appendix A.
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SM. The diagram on the left features additional virtual and real gluon lines (B-type), the
diagram in the middle involves a second quark line (C- and D-type) and the diagram on the
right is gluon-gluon initiated (A-type). Consult the main text for further details.
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(B-type) (C,D-type) (A-type)

U

How can we calculate the relevant SMEFT matrix elements?

Figure 9: Examples of contributions to gg ! Zh production within the SMEFT.
All graphs involve an insertion of one of the operators given in (2.2) as indicated by the
blue squares. Further details can be found in the main text.

as a result of the anomaly cancellation in the SM. It follows that the sum over q that
appears in (B.4) evaluates to

X
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(g�
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, (B.9)

and in consequence any scheme-dependent constant shift in the amplitude A0g2Z_tri
q

cancels in the combination (A0g2Z_tri
t
� A0g2Z_tri

b
). Notice that in the degenerate or

zero mass case the sum (B.9) vanishes identically. Since we treat the light-quark generations
as massless, down-, up-, strange- and charm-quark loops hence do not need to be included
in the spin-averaged matrix element (B.4).

The fixed-order matrix elements for the SMEFT contributions to (B.4) were computed
with the procedure outlined in Section 4.1. Since the SM amplitudes were derived in
unitary gauge, only SMEFT contributions to vertices involving the Z boson have to be
considered. We have checked explicitly that in Feynman gauge, the SMEFT effects in the
Goldstone diagrams are equivalent to the effects in the longitudinal part of the amplitude in
unitary gauge. Another important point is that in the SMEFT, the coupling shifts �g

(0)±
Zq

and �g
(1)±
Zq

as given in (A.3) and (A.6), respectively, in general do not obey (B.8) and
the scheme-dependent constant shift in A0g2Z_tri

q
thus does not automatically cancel in

the sum (B.9). Under the assumption that the SMEFT Wilson coefficients arise from the
matching to an anomaly-free renormalisable theory, one can however show [66–70] that the
dependence of the anomaly on the non-renormalisable part can always be removed by adding
a local counterterm, i.e. a Wess-Zumino term [71], to the SMEFT. As a result the condition
for gauge anomaly cancellation is completely controlled by the charge assignment of the
fermion sector in the SMEFT, as one would naively expect from an effective field theory
point of view. To cancel the unphysical terms in the amplitudes depicted in Figure 9 we
employ the covariant anomaly scheme [65, 72–74]. In the case of the triangle contributions,
the covariant anomaly scheme can be implemented by the following simple replacement

A0g2Z_tri
q
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q
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q
, (B.10)

for what concerns the SMEFT contribution to (B.4). Since the replacement (B.10) is the
same for all q in the sum appearing in A0g2Z, it drops out for an anomaly-free UV theory.
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Table 2: SMEFT input scheme corrections for the three EW input schemes implemented
in the MC code.
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are the relevant direct SMEFT corrections to the Zff̄ couplings.

B SMEFT corrections to gg ! Zh process

Our calculation of gg ! Zh production is based on the spinor-helicity amplitudes for the
SM derived in [29] and implemented into MCFM [47]. In unitary gauge, the expression for the
triangle contributions with positive gluon helicities and left-handed fermion chiralities reads
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Notice that we have followed the convention of [29] and written the amplitude for all mo-
menta outgoing. Our convention with incoming parton momenta is implemented numeri-
cally via analytic continuation. In (B.1) the two terms in the last factor in the first line stem
from the transversal and longitudinal part of the Z-boson propagator in unitary gauge, re-
spectively, q is the quark running in the loop with mass mq and C0 is the scalar Passarino-
Veltman (PV) triangle integral defined as in [38, 73]. The corresponding SM Feynman
diagram is displayed on the right-hand side in Figure 2. Similarly, we have implemented
the box amplitudes
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which are, however, too lengthy to be reported here but may be inspected in our POWHEG code.
The remaining non-zero helicity combinations may be obtained via parity and charge con-
jugation relations. In the case of the triangle contributions, these relations take the form
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where the overline means that the brackets should be exchanged, i.e. [. . .] $ h. . .i. Ana-
log relations hold for the box contributions including the cases where the gluons have
opposite helicities which are only present for A

q

A0g2Z2.
Including the triangle and box contributions the resulting spin-averaged matrix element

takes the form
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Here DZ(s) has been defined in (3.5) while the expressions for the couplings g±
Zf

and ghZZ

can be found in (A.2). The coupling ghZZ appearing in (B.6) requires some explanation.
In fact, the box contributions do not involve a hZZ vertex but instead the Higgs boson
couples directly to the quarks. However, since
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with a factor mq/v coming from the hqq̄ vertex and another mq stemming from the mass
insertion in the box diagram the expected mass dependence for A

q

A0g2Z2 is recovered.
It is important to realise that as a result of the generalised Furry theorem the vector-

current coupling of the Z boson, which is proportional to the combination (g�
Zq

+ g
+
Zq
) of

couplings, does not contribute to the spin-averaged matrix element A0g2Z as given in (B.4).
However, the axial-current part contributes, as signalled by the factor (g�

Zq
� g

+
Zq
) in

both (B.5) and (B.6), and this contribution is directly connected to the U(1)A ⇥ SU(3)c
gauge anomaly. In fact, a regulator and a loop routing scheme must be introduced
to properly define the amplitude A

q

A0g2Z4, rendering its expression scheme-dependent —
for a detailed explanation of this point see for example [74]. Within the SM, the axial parts
of the top- and bottom-quark coupling obey

(g�
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+
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) = �(g�
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) , (B.8)
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The axial current contributes. 
 gauge anomalies?→

Sources: [1] ArXiv:2012.13989 (F. Feruglio), [2] ArXiv:2012.07740 (Q. Bonnefoy, L. Di Luzio, Ch. Grojean, A. Paul, A.N. Rossia), ArXiv:1801.03505 (P.J. Fox, I. Low, Y. Zhang).
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with a factor mq/v coming from the hqq̄ vertex and another mq stemming from the mass
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2. Details of the calculation
2.2 -initiated contributionsgg

Figure 2: Examples of higher-order QCD corrections to pp ! Zh production within the
SM. The diagram on the left features additional virtual and real gluon lines (B-type), the
diagram in the middle involves a second quark line (C- and D-type) and the diagram on the
right is gluon-gluon initiated (A-type). Consult the main text for further details.

where
sij = (pi + pj)

2
, sijk = sij + sjk + ski , (4.4)

are the usual Mandelstam invariants with pi the four-momentum of particle i. We have
furthermore introduced

DZ(s) = s�M
2
Z + iMZ�Z , (4.5)

with �Z denoting the total decay width of the Z boson. In (4.3) the variable ↵s denotes
the strong coupling constant while CF = 4/3 and CA = 3 are the relevant colour factors.
The symbols g

hf

Zf
and ghZZ represent the Zff̄ and hZZ coupling strengths, respectively.

The explicit expressions for these quantities are given in Appendix A.
The technically most involved part of the SMEFT calculation results from insertions of

the three operators introduced in (2.1) since QHB, QHW and QHWB generate modified hV V

vertices with helicity structures different from the SM one. These modifications can be
included at the level of (4.1) by means of generalised currents that describe the splitting
of the initial vector boson V1 into the outgoing vector boson V2 and the Higgs boson h [8].
If the initial-state quarks and final-state leptons are left-handed the relevant generalised
neutral currents are given by
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Figure 2: Examples of higher-order QCD corrections to pp ! Zh production within the
SM. The diagram on the left features additional virtual and real gluon lines (B-type), the
diagram in the middle involves a second quark line (C- and D-type) and the diagram on the
right is gluon-gluon initiated (A-type). Consult the main text for further details.
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Figure 2: Examples of higher-order QCD corrections to pp ! Zh production within the
SM. The diagram on the left features additional virtual and real gluon lines (B-type), the
diagram in the middle involves a second quark line (C- and D-type) and the diagram on the
right is gluon-gluon initiated (A-type). Consult the main text for further details.

where
sij = (pi + pj)

2
, sijk = sij + sjk + ski , (4.4)

are the usual Mandelstam invariants with pi the four-momentum of particle i. We have
furthermore introduced

DZ(s) = s�M
2
Z + iMZ�Z , (4.5)

with �Z denoting the total decay width of the Z boson. In (4.3) the variable ↵s denotes
the strong coupling constant while CF = 4/3 and CA = 3 are the relevant colour factors.
The symbols g

hf

Zf
and ghZZ represent the Zff̄ and hZZ coupling strengths, respectively.

The explicit expressions for these quantities are given in Appendix A.
The technically most involved part of the SMEFT calculation results from insertions of

the three operators introduced in (2.1) since QHB, QHW and QHWB generate modified hV V

vertices with helicity structures different from the SM one. These modifications can be
included at the level of (4.1) by means of generalised currents that describe the splitting
of the initial vector boson V1 into the outgoing vector boson V2 and the Higgs boson h [8].
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(B-type) (C,D-type) (A-type)

U

How can we calculate the relevant SMEFT matrix elements?

Figure 9: Examples of contributions to gg ! Zh production within the SMEFT.
All graphs involve an insertion of one of the operators given in (2.2) as indicated by the
blue squares. Further details can be found in the main text.

as a result of the anomaly cancellation in the SM. It follows that the sum over q that
appears in (B.4) evaluates to

X

q=t,b

(g�
Zq

� g
+
Zq
)A0g2Z_tri

q
= (g�

Zt
� g

+
Zt
)
�
A0g2Z_tri

t
� A0g2Z_tri

b

�
, (B.9)

and in consequence any scheme-dependent constant shift in the amplitude A0g2Z_tri
q

cancels in the combination (A0g2Z_tri
t
� A0g2Z_tri

b
). Notice that in the degenerate or

zero mass case the sum (B.9) vanishes identically. Since we treat the light-quark generations
as massless, down-, up-, strange- and charm-quark loops hence do not need to be included
in the spin-averaged matrix element (B.4).

The fixed-order matrix elements for the SMEFT contributions to (B.4) were computed
with the procedure outlined in Section 4.1. Since the SM amplitudes were derived in
unitary gauge, only SMEFT contributions to vertices involving the Z boson have to be
considered. We have checked explicitly that in Feynman gauge, the SMEFT effects in the
Goldstone diagrams are equivalent to the effects in the longitudinal part of the amplitude in
unitary gauge. Another important point is that in the SMEFT, the coupling shifts �g

(0)±
Zq

and �g
(1)±
Zq

as given in (A.3) and (A.6), respectively, in general do not obey (B.8) and
the scheme-dependent constant shift in A0g2Z_tri

q
thus does not automatically cancel in

the sum (B.9). Under the assumption that the SMEFT Wilson coefficients arise from the
matching to an anomaly-free renormalisable theory, one can however show [66–70] that the
dependence of the anomaly on the non-renormalisable part can always be removed by adding
a local counterterm, i.e. a Wess-Zumino term [71], to the SMEFT. As a result the condition
for gauge anomaly cancellation is completely controlled by the charge assignment of the
fermion sector in the SMEFT, as one would naively expect from an effective field theory
point of view. To cancel the unphysical terms in the amplitudes depicted in Figure 9 we
employ the covariant anomaly scheme [65, 72–74]. In the case of the triangle contributions,
the covariant anomaly scheme can be implemented by the following simple replacement

A0g2Z_tri
q
! A0g2Z_tri

q
� lim

mq!1
A0g2Z_tri

q
, (B.10)

for what concerns the SMEFT contribution to (B.4). Since the replacement (B.10) is the
same for all q in the sum appearing in A0g2Z, it drops out for an anomaly-free UV theory.
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Table 2: SMEFT input scheme corrections for the three EW input schemes implemented
in the MC code.
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are the relevant direct SMEFT corrections to the Zff̄ couplings.

B SMEFT corrections to gg ! Zh process

Our calculation of gg ! Zh production is based on the spinor-helicity amplitudes for the
SM derived in [29] and implemented into MCFM [47]. In unitary gauge, the expression for the
triangle contributions with positive gluon helicities and left-handed fermion chiralities reads
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Notice that we have followed the convention of [29] and written the amplitude for all mo-
menta outgoing. Our convention with incoming parton momenta is implemented numeri-
cally via analytic continuation. In (B.1) the two terms in the last factor in the first line stem
from the transversal and longitudinal part of the Z-boson propagator in unitary gauge, re-
spectively, q is the quark running in the loop with mass mq and C0 is the scalar Passarino-
Veltman (PV) triangle integral defined as in [38, 73]. The corresponding SM Feynman
diagram is displayed on the right-hand side in Figure 2. Similarly, we have implemented
the box amplitudes
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which are, however, too lengthy to be reported here but may be inspected in our POWHEG code.
The remaining non-zero helicity combinations may be obtained via parity and charge con-
jugation relations. In the case of the triangle contributions, these relations take the form
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(B.3)

where the overline means that the brackets should be exchanged, i.e. [. . .] $ h. . .i. Ana-
log relations hold for the box contributions including the cases where the gluons have
opposite helicities which are only present for A

q

A0g2Z2.
Including the triangle and box contributions the resulting spin-averaged matrix element

takes the form
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Here DZ(s) has been defined in (3.5) while the expressions for the couplings g±
Zf

and ghZZ

can be found in (A.2). The coupling ghZZ appearing in (B.6) requires some explanation.
In fact, the box contributions do not involve a hZZ vertex but instead the Higgs boson
couples directly to the quarks. However, since
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with a factor mq/v coming from the hqq̄ vertex and another mq stemming from the mass
insertion in the box diagram the expected mass dependence for A

q

A0g2Z2 is recovered.
It is important to realise that as a result of the generalised Furry theorem the vector-

current coupling of the Z boson, which is proportional to the combination (g�
Zq

+ g
+
Zq
) of

couplings, does not contribute to the spin-averaged matrix element A0g2Z as given in (B.4).
However, the axial-current part contributes, as signalled by the factor (g�

Zq
� g

+
Zq
) in

both (B.5) and (B.6), and this contribution is directly connected to the U(1)A ⇥ SU(3)c
gauge anomaly. In fact, a regulator and a loop routing scheme must be introduced
to properly define the amplitude A

q

A0g2Z4, rendering its expression scheme-dependent —
for a detailed explanation of this point see for example [74]. Within the SM, the axial parts
of the top- and bottom-quark coupling obey

(g�
Zt

� g
+
Zt
) = �(g�

Zb
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+
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) , (B.8)
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The axial current contributes. 
 gauge anomalies?→

which are, however, too lengthy to be reported here but may be inspected in our POWHEG code.
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with a factor mq/v coming from the hqq̄ vertex and another mq stemming from the mass
insertion in the box diagram the expected mass dependence for A
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A0g2Z2 is recovered.
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) in
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to properly define the amplitude A
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Is required in the SM to cancel the relevant 
anomalies in the SM.

Sources: [1] ArXiv:2012.13989 (F. Feruglio), [2] ArXiv:2012.07740 (Q. Bonnefoy, L. Di Luzio, Ch. Grojean, A. Paul, A.N. Rossia), ArXiv:1801.03505 (P.J. Fox, I. Low, Y. Zhang).
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with a factor mq/v coming from the hqq̄ vertex and another mq stemming from the mass
insertion in the box diagram the expected mass dependence for A

q

A0g2Z2 is recovered.
It is important to realise that as a result of the generalised Furry theorem the vector-

current coupling of the Z boson, which is proportional to the combination (g�
Zq

+ g
+
Zq
) of

couplings, does not contribute to the spin-averaged matrix element A0g2Z as given in (B.4).
However, the axial-current part contributes, as signalled by the factor (g�

Zq
� g

+
Zq
) in

both (B.5) and (B.6), and this contribution is directly connected to the U(1)A ⇥ SU(3)c
gauge anomaly. In fact, a regulator and a loop routing scheme must be introduced
to properly define the amplitude A

q

A0g2Z4, rendering its expression scheme-dependent —
for a detailed explanation of this point see for example [74]. Within the SM, the axial parts
of the top- and bottom-quark coupling obey

(g�
Zt

� g
+
Zt
) = �(g�

Zb
� g

+
Zb
) , (B.8)

– 30 –

11

2. Details of the calculation
2.2 -initiated contributionsgg

Figure 2: Examples of higher-order QCD corrections to pp ! Zh production within the
SM. The diagram on the left features additional virtual and real gluon lines (B-type), the
diagram in the middle involves a second quark line (C- and D-type) and the diagram on the
right is gluon-gluon initiated (A-type). Consult the main text for further details.

where
sij = (pi + pj)

2
, sijk = sij + sjk + ski , (4.4)

are the usual Mandelstam invariants with pi the four-momentum of particle i. We have
furthermore introduced

DZ(s) = s�M
2
Z + iMZ�Z , (4.5)

with �Z denoting the total decay width of the Z boson. In (4.3) the variable ↵s denotes
the strong coupling constant while CF = 4/3 and CA = 3 are the relevant colour factors.
The symbols g

hf

Zf
and ghZZ represent the Zff̄ and hZZ coupling strengths, respectively.

The explicit expressions for these quantities are given in Appendix A.
The technically most involved part of the SMEFT calculation results from insertions of

the three operators introduced in (2.1) since QHB, QHW and QHWB generate modified hV V

vertices with helicity structures different from the SM one. These modifications can be
included at the level of (4.1) by means of generalised currents that describe the splitting
of the initial vector boson V1 into the outgoing vector boson V2 and the Higgs boson h [8].
If the initial-state quarks and final-state leptons are left-handed the relevant generalised
neutral currents are given by
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Figure 2: Examples of higher-order QCD corrections to pp ! Zh production within the
SM. The diagram on the left features additional virtual and real gluon lines (B-type), the
diagram in the middle involves a second quark line (C- and D-type) and the diagram on the
right is gluon-gluon initiated (A-type). Consult the main text for further details.
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with �Z denoting the total decay width of the Z boson. In (4.3) the variable ↵s denotes
the strong coupling constant while CF = 4/3 and CA = 3 are the relevant colour factors.
The symbols g
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and ghZZ represent the Zff̄ and hZZ coupling strengths, respectively.

The explicit expressions for these quantities are given in Appendix A.
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vertices with helicity structures different from the SM one. These modifications can be
included at the level of (4.1) by means of generalised currents that describe the splitting
of the initial vector boson V1 into the outgoing vector boson V2 and the Higgs boson h [8].
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Figure 2: Examples of higher-order QCD corrections to pp ! Zh production within the
SM. The diagram on the left features additional virtual and real gluon lines (B-type), the
diagram in the middle involves a second quark line (C- and D-type) and the diagram on the
right is gluon-gluon initiated (A-type). Consult the main text for further details.
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U

How can we calculate the relevant SMEFT matrix elements?

Figure 9: Examples of contributions to gg ! Zh production within the SMEFT.
All graphs involve an insertion of one of the operators given in (2.2) as indicated by the
blue squares. Further details can be found in the main text.

as a result of the anomaly cancellation in the SM. It follows that the sum over q that
appears in (B.4) evaluates to

X

q=t,b

(g�
Zq
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Zq
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q
= (g�

Zt
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�
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� A0g2Z_tri

b

�
, (B.9)

and in consequence any scheme-dependent constant shift in the amplitude A0g2Z_tri
q

cancels in the combination (A0g2Z_tri
t
� A0g2Z_tri

b
). Notice that in the degenerate or

zero mass case the sum (B.9) vanishes identically. Since we treat the light-quark generations
as massless, down-, up-, strange- and charm-quark loops hence do not need to be included
in the spin-averaged matrix element (B.4).

The fixed-order matrix elements for the SMEFT contributions to (B.4) were computed
with the procedure outlined in Section 4.1. Since the SM amplitudes were derived in
unitary gauge, only SMEFT contributions to vertices involving the Z boson have to be
considered. We have checked explicitly that in Feynman gauge, the SMEFT effects in the
Goldstone diagrams are equivalent to the effects in the longitudinal part of the amplitude in
unitary gauge. Another important point is that in the SMEFT, the coupling shifts �g

(0)±
Zq

and �g
(1)±
Zq

as given in (A.3) and (A.6), respectively, in general do not obey (B.8) and
the scheme-dependent constant shift in A0g2Z_tri

q
thus does not automatically cancel in

the sum (B.9). Under the assumption that the SMEFT Wilson coefficients arise from the
matching to an anomaly-free renormalisable theory, one can however show [66–70] that the
dependence of the anomaly on the non-renormalisable part can always be removed by adding
a local counterterm, i.e. a Wess-Zumino term [71], to the SMEFT. As a result the condition
for gauge anomaly cancellation is completely controlled by the charge assignment of the
fermion sector in the SMEFT, as one would naively expect from an effective field theory
point of view. To cancel the unphysical terms in the amplitudes depicted in Figure 9 we
employ the covariant anomaly scheme [65, 72–74]. In the case of the triangle contributions,
the covariant anomaly scheme can be implemented by the following simple replacement

A0g2Z_tri
q
! A0g2Z_tri

q
� lim

mq!1
A0g2Z_tri

q
, (B.10)

for what concerns the SMEFT contribution to (B.4). Since the replacement (B.10) is the
same for all q in the sum appearing in A0g2Z, it drops out for an anomaly-free UV theory.
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Table 2: SMEFT input scheme corrections for the three EW input schemes implemented
in the MC code.
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are the relevant direct SMEFT corrections to the Zff̄ couplings.

B SMEFT corrections to gg ! Zh process

Our calculation of gg ! Zh production is based on the spinor-helicity amplitudes for the
SM derived in [29] and implemented into MCFM [47]. In unitary gauge, the expression for the
triangle contributions with positive gluon helicities and left-handed fermion chiralities reads
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Notice that we have followed the convention of [29] and written the amplitude for all mo-
menta outgoing. Our convention with incoming parton momenta is implemented numeri-
cally via analytic continuation. In (B.1) the two terms in the last factor in the first line stem
from the transversal and longitudinal part of the Z-boson propagator in unitary gauge, re-
spectively, q is the quark running in the loop with mass mq and C0 is the scalar Passarino-
Veltman (PV) triangle integral defined as in [38, 73]. The corresponding SM Feynman
diagram is displayed on the right-hand side in Figure 2. Similarly, we have implemented
the box amplitudes
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which are, however, too lengthy to be reported here but may be inspected in our POWHEG code.
The remaining non-zero helicity combinations may be obtained via parity and charge con-
jugation relations. In the case of the triangle contributions, these relations take the form
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where the overline means that the brackets should be exchanged, i.e. [. . .] $ h. . .i. Ana-
log relations hold for the box contributions including the cases where the gluons have
opposite helicities which are only present for A

q

A0g2Z2.
Including the triangle and box contributions the resulting spin-averaged matrix element

takes the form
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Here DZ(s) has been defined in (3.5) while the expressions for the couplings g±
Zf

and ghZZ

can be found in (A.2). The coupling ghZZ appearing in (B.6) requires some explanation.
In fact, the box contributions do not involve a hZZ vertex but instead the Higgs boson
couples directly to the quarks. However, since
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with a factor mq/v coming from the hqq̄ vertex and another mq stemming from the mass
insertion in the box diagram the expected mass dependence for A

q

A0g2Z2 is recovered.
It is important to realise that as a result of the generalised Furry theorem the vector-

current coupling of the Z boson, which is proportional to the combination (g�
Zq

+ g
+
Zq
) of

couplings, does not contribute to the spin-averaged matrix element A0g2Z as given in (B.4).
However, the axial-current part contributes, as signalled by the factor (g�

Zq
� g

+
Zq
) in

both (B.5) and (B.6), and this contribution is directly connected to the U(1)A ⇥ SU(3)c
gauge anomaly. In fact, a regulator and a loop routing scheme must be introduced
to properly define the amplitude A

q

A0g2Z4, rendering its expression scheme-dependent —
for a detailed explanation of this point see for example [74]. Within the SM, the axial parts
of the top- and bottom-quark coupling obey

(g�
Zt
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+
Zt
) = �(g�
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The axial current contributes. 
 gauge anomalies?→

which are, however, too lengthy to be reported here but may be inspected in our POWHEG code.
The remaining non-zero helicity combinations may be obtained via parity and charge con-
jugation relations. In the case of the triangle contributions, these relations take the form

A
q

A0g2Z4

⇣
1�g , 2

�
g , 3

⌥
`
, 4±¯̀

⌘
= �A

q

A0g2Z4

⇣
1+g , 2

+
g , 4

⌥
`
, 3±¯̀

⌘
,

A
q

A0g2Z4

⇣
1±g , 2

±
g , 3

+
`
, 4�¯̀

⌘
= A

q

A0g2Z4

⇣
1±g , 2

±
g , 4

�
`
, 3+¯̀

⌘
,

(B.3)
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with a factor mq/v coming from the hqq̄ vertex and another mq stemming from the mass
insertion in the box diagram the expected mass dependence for A
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A0g2Z2 is recovered.
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gauge anomaly. In fact, a regulator and a loop routing scheme must be introduced
to properly define the amplitude A
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Is required in the SM to cancel the relevant 
anomalies in the SM.

Sources: [1] ArXiv:2012.13989 (F. Feruglio), [2] ArXiv:2012.07740 (Q. Bonnefoy, L. Di Luzio, Ch. Grojean, A. Paul, A.N. Rossia), ArXiv:1801.03505 (P.J. Fox, I. Low, Y. Zhang).
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with a factor mq/v coming from the hqq̄ vertex and another mq stemming from the mass
insertion in the box diagram the expected mass dependence for A
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2. Details of the calculation
2.2 -initiated contributionsgg

Figure 2: Examples of higher-order QCD corrections to pp ! Zh production within the
SM. The diagram on the left features additional virtual and real gluon lines (B-type), the
diagram in the middle involves a second quark line (C- and D-type) and the diagram on the
right is gluon-gluon initiated (A-type). Consult the main text for further details.

where
sij = (pi + pj)

2
, sijk = sij + sjk + ski , (4.4)

are the usual Mandelstam invariants with pi the four-momentum of particle i. We have
furthermore introduced

DZ(s) = s�M
2
Z + iMZ�Z , (4.5)

with �Z denoting the total decay width of the Z boson. In (4.3) the variable ↵s denotes
the strong coupling constant while CF = 4/3 and CA = 3 are the relevant colour factors.
The symbols g

hf

Zf
and ghZZ represent the Zff̄ and hZZ coupling strengths, respectively.

The explicit expressions for these quantities are given in Appendix A.
The technically most involved part of the SMEFT calculation results from insertions of

the three operators introduced in (2.1) since QHB, QHW and QHWB generate modified hV V

vertices with helicity structures different from the SM one. These modifications can be
included at the level of (4.1) by means of generalised currents that describe the splitting
of the initial vector boson V1 into the outgoing vector boson V2 and the Higgs boson h [8].
If the initial-state quarks and final-state leptons are left-handed the relevant generalised
neutral currents are given by
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Figure 2: Examples of higher-order QCD corrections to pp ! Zh production within the
SM. The diagram on the left features additional virtual and real gluon lines (B-type), the
diagram in the middle involves a second quark line (C- and D-type) and the diagram on the
right is gluon-gluon initiated (A-type). Consult the main text for further details.
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are the usual Mandelstam invariants with pi the four-momentum of particle i. We have
furthermore introduced
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with �Z denoting the total decay width of the Z boson. In (4.3) the variable ↵s denotes
the strong coupling constant while CF = 4/3 and CA = 3 are the relevant colour factors.
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and ghZZ represent the Zff̄ and hZZ coupling strengths, respectively.

The explicit expressions for these quantities are given in Appendix A.
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vertices with helicity structures different from the SM one. These modifications can be
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(B-type) (C,D-type) (A-type)

U

How can we calculate the relevant SMEFT matrix elements?

Figure 9: Examples of contributions to gg ! Zh production within the SMEFT.
All graphs involve an insertion of one of the operators given in (2.2) as indicated by the
blue squares. Further details can be found in the main text.

as a result of the anomaly cancellation in the SM. It follows that the sum over q that
appears in (B.4) evaluates to

X

q=t,b

(g�
Zq

� g
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Zq
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q
= (g�

Zt
� g

+
Zt
)
�
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t
� A0g2Z_tri

b

�
, (B.9)

and in consequence any scheme-dependent constant shift in the amplitude A0g2Z_tri
q

cancels in the combination (A0g2Z_tri
t
� A0g2Z_tri

b
). Notice that in the degenerate or

zero mass case the sum (B.9) vanishes identically. Since we treat the light-quark generations
as massless, down-, up-, strange- and charm-quark loops hence do not need to be included
in the spin-averaged matrix element (B.4).

The fixed-order matrix elements for the SMEFT contributions to (B.4) were computed
with the procedure outlined in Section 4.1. Since the SM amplitudes were derived in
unitary gauge, only SMEFT contributions to vertices involving the Z boson have to be
considered. We have checked explicitly that in Feynman gauge, the SMEFT effects in the
Goldstone diagrams are equivalent to the effects in the longitudinal part of the amplitude in
unitary gauge. Another important point is that in the SMEFT, the coupling shifts �g

(0)±
Zq

and �g
(1)±
Zq

as given in (A.3) and (A.6), respectively, in general do not obey (B.8) and
the scheme-dependent constant shift in A0g2Z_tri

q
thus does not automatically cancel in

the sum (B.9). Under the assumption that the SMEFT Wilson coefficients arise from the
matching to an anomaly-free renormalisable theory, one can however show [66–70] that the
dependence of the anomaly on the non-renormalisable part can always be removed by adding
a local counterterm, i.e. a Wess-Zumino term [71], to the SMEFT. As a result the condition
for gauge anomaly cancellation is completely controlled by the charge assignment of the
fermion sector in the SMEFT, as one would naively expect from an effective field theory
point of view. To cancel the unphysical terms in the amplitudes depicted in Figure 9 we
employ the covariant anomaly scheme [65, 72–74]. In the case of the triangle contributions,
the covariant anomaly scheme can be implemented by the following simple replacement

A0g2Z_tri
q
! A0g2Z_tri

q
� lim

mq!1
A0g2Z_tri

q
, (B.10)

for what concerns the SMEFT contribution to (B.4). Since the replacement (B.10) is the
same for all q in the sum appearing in A0g2Z, it drops out for an anomaly-free UV theory.
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Table 2: SMEFT input scheme corrections for the three EW input schemes implemented
in the MC code.
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are the relevant direct SMEFT corrections to the Zff̄ couplings.

B SMEFT corrections to gg ! Zh process

Our calculation of gg ! Zh production is based on the spinor-helicity amplitudes for the
SM derived in [29] and implemented into MCFM [47]. In unitary gauge, the expression for the
triangle contributions with positive gluon helicities and left-handed fermion chiralities reads
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Notice that we have followed the convention of [29] and written the amplitude for all mo-
menta outgoing. Our convention with incoming parton momenta is implemented numeri-
cally via analytic continuation. In (B.1) the two terms in the last factor in the first line stem
from the transversal and longitudinal part of the Z-boson propagator in unitary gauge, re-
spectively, q is the quark running in the loop with mass mq and C0 is the scalar Passarino-
Veltman (PV) triangle integral defined as in [38, 73]. The corresponding SM Feynman
diagram is displayed on the right-hand side in Figure 2. Similarly, we have implemented
the box amplitudes
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which are, however, too lengthy to be reported here but may be inspected in our POWHEG code.
The remaining non-zero helicity combinations may be obtained via parity and charge con-
jugation relations. In the case of the triangle contributions, these relations take the form
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where the overline means that the brackets should be exchanged, i.e. [. . .] $ h. . .i. Ana-
log relations hold for the box contributions including the cases where the gluons have
opposite helicities which are only present for A

q

A0g2Z2.
Including the triangle and box contributions the resulting spin-averaged matrix element
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Here DZ(s) has been defined in (3.5) while the expressions for the couplings g±
Zf

and ghZZ

can be found in (A.2). The coupling ghZZ appearing in (B.6) requires some explanation.
In fact, the box contributions do not involve a hZZ vertex but instead the Higgs boson
couples directly to the quarks. However, since
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with a factor mq/v coming from the hqq̄ vertex and another mq stemming from the mass
insertion in the box diagram the expected mass dependence for A

q

A0g2Z2 is recovered.
It is important to realise that as a result of the generalised Furry theorem the vector-

current coupling of the Z boson, which is proportional to the combination (g�
Zq

+ g
+
Zq
) of

couplings, does not contribute to the spin-averaged matrix element A0g2Z as given in (B.4).
However, the axial-current part contributes, as signalled by the factor (g�

Zq
� g

+
Zq
) in

both (B.5) and (B.6), and this contribution is directly connected to the U(1)A ⇥ SU(3)c
gauge anomaly. In fact, a regulator and a loop routing scheme must be introduced
to properly define the amplitude A

q

A0g2Z4, rendering its expression scheme-dependent —
for a detailed explanation of this point see for example [74]. Within the SM, the axial parts
of the top- and bottom-quark coupling obey

(g�
Zt
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+
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) = �(g�
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The axial current contributes. 
 gauge anomalies?→

which are, however, too lengthy to be reported here but may be inspected in our POWHEG code.
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with a factor mq/v coming from the hqq̄ vertex and another mq stemming from the mass
insertion in the box diagram the expected mass dependence for A
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Is required in the SM to cancel the relevant 
anomalies in the SM.

There are no relevant anomalies induced 
by the SMEFT operators. 

Sources: [1] ArXiv:2012.13989 (F. Feruglio), [2] ArXiv:2012.07740 (Q. Bonnefoy, L. Di Luzio, Ch. Grojean, A. Paul, A.N. Rossia), ArXiv:1801.03505 (P.J. Fox, I. Low, Y. Zhang).
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2. Details of the calculation
2.2 -initiated contributionsgg

Figure 2: Examples of higher-order QCD corrections to pp ! Zh production within the
SM. The diagram on the left features additional virtual and real gluon lines (B-type), the
diagram in the middle involves a second quark line (C- and D-type) and the diagram on the
right is gluon-gluon initiated (A-type). Consult the main text for further details.
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(B-type) (C,D-type) (A-type)

U

How can we calculate the relevant SMEFT matrix elements?

Figure 9: Examples of contributions to gg ! Zh production within the SMEFT.
All graphs involve an insertion of one of the operators given in (2.2) as indicated by the
blue squares. Further details can be found in the main text.

as a result of the anomaly cancellation in the SM. It follows that the sum over q that
appears in (B.4) evaluates to

X

q=t,b

(g�
Zq

� g
+
Zq
)A0g2Z_tri

q
= (g�

Zt
� g

+
Zt
)
�
A0g2Z_tri

t
� A0g2Z_tri

b

�
, (B.9)

and in consequence any scheme-dependent constant shift in the amplitude A0g2Z_tri
q

cancels in the combination (A0g2Z_tri
t
� A0g2Z_tri

b
). Notice that in the degenerate or

zero mass case the sum (B.9) vanishes identically. Since we treat the light-quark generations
as massless, down-, up-, strange- and charm-quark loops hence do not need to be included
in the spin-averaged matrix element (B.4).

The fixed-order matrix elements for the SMEFT contributions to (B.4) were computed
with the procedure outlined in Section 4.1. Since the SM amplitudes were derived in
unitary gauge, only SMEFT contributions to vertices involving the Z boson have to be
considered. We have checked explicitly that in Feynman gauge, the SMEFT effects in the
Goldstone diagrams are equivalent to the effects in the longitudinal part of the amplitude in
unitary gauge. Another important point is that in the SMEFT, the coupling shifts �g

(0)±
Zq

and �g
(1)±
Zq

as given in (A.3) and (A.6), respectively, in general do not obey (B.8) and
the scheme-dependent constant shift in A0g2Z_tri

q
thus does not automatically cancel in

the sum (B.9). Under the assumption that the SMEFT Wilson coefficients arise from the
matching to an anomaly-free renormalisable theory, one can however show [66–70] that the
dependence of the anomaly on the non-renormalisable part can always be removed by adding
a local counterterm, i.e. a Wess-Zumino term [71], to the SMEFT. As a result the condition
for gauge anomaly cancellation is completely controlled by the charge assignment of the
fermion sector in the SMEFT, as one would naively expect from an effective field theory
point of view. To cancel the unphysical terms in the amplitudes depicted in Figure 9 we
employ the covariant anomaly scheme [65, 72–74]. In the case of the triangle contributions,
the covariant anomaly scheme can be implemented by the following simple replacement

A0g2Z_tri
q
! A0g2Z_tri

q
� lim

mq!1
A0g2Z_tri

q
, (B.10)

for what concerns the SMEFT contribution to (B.4). Since the replacement (B.10) is the
same for all q in the sum appearing in A0g2Z, it drops out for an anomaly-free UV theory.
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Table 2: SMEFT input scheme corrections for the three EW input schemes implemented
in the MC code.
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are the relevant direct SMEFT corrections to the Zff̄ couplings.

B SMEFT corrections to gg ! Zh process

Our calculation of gg ! Zh production is based on the spinor-helicity amplitudes for the
SM derived in [29] and implemented into MCFM [47]. In unitary gauge, the expression for the
triangle contributions with positive gluon helicities and left-handed fermion chiralities reads
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Notice that we have followed the convention of [29] and written the amplitude for all mo-
menta outgoing. Our convention with incoming parton momenta is implemented numeri-
cally via analytic continuation. In (B.1) the two terms in the last factor in the first line stem
from the transversal and longitudinal part of the Z-boson propagator in unitary gauge, re-
spectively, q is the quark running in the loop with mass mq and C0 is the scalar Passarino-
Veltman (PV) triangle integral defined as in [38, 73]. The corresponding SM Feynman
diagram is displayed on the right-hand side in Figure 2. Similarly, we have implemented
the box amplitudes
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which are, however, too lengthy to be reported here but may be inspected in our POWHEG code.
The remaining non-zero helicity combinations may be obtained via parity and charge con-
jugation relations. In the case of the triangle contributions, these relations take the form
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where the overline means that the brackets should be exchanged, i.e. [. . .] $ h. . .i. Ana-
log relations hold for the box contributions including the cases where the gluons have
opposite helicities which are only present for A

q

A0g2Z2.
Including the triangle and box contributions the resulting spin-averaged matrix element

takes the form
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Here DZ(s) has been defined in (3.5) while the expressions for the couplings g±
Zf

and ghZZ

can be found in (A.2). The coupling ghZZ appearing in (B.6) requires some explanation.
In fact, the box contributions do not involve a hZZ vertex but instead the Higgs boson
couples directly to the quarks. However, since
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with a factor mq/v coming from the hqq̄ vertex and another mq stemming from the mass
insertion in the box diagram the expected mass dependence for A

q

A0g2Z2 is recovered.
It is important to realise that as a result of the generalised Furry theorem the vector-

current coupling of the Z boson, which is proportional to the combination (g�
Zq

+ g
+
Zq
) of

couplings, does not contribute to the spin-averaged matrix element A0g2Z as given in (B.4).
However, the axial-current part contributes, as signalled by the factor (g�

Zq
� g

+
Zq
) in

both (B.5) and (B.6), and this contribution is directly connected to the U(1)A ⇥ SU(3)c
gauge anomaly. In fact, a regulator and a loop routing scheme must be introduced
to properly define the amplitude A

q

A0g2Z4, rendering its expression scheme-dependent —
for a detailed explanation of this point see for example [74]. Within the SM, the axial parts
of the top- and bottom-quark coupling obey

(g�
Zt
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+
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) = �(g�
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) , (B.8)
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The axial current contributes. 
 gauge anomalies?→

which are, however, too lengthy to be reported here but may be inspected in our POWHEG code.
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Is required in the SM to cancel the relevant 
anomalies in the SM.

There are no relevant anomalies induced 
by the SMEFT operators. 

The irrelevant anomalies (depending on the 
loop momentum routing scheme) can be 
cancelled with a local counterterm. 

Sources: [1] ArXiv:2012.13989 (F. Feruglio), [2] ArXiv:2012.07740 (Q. Bonnefoy, L. Di Luzio, Ch. Grojean, A. Paul, A.N. Rossia), ArXiv:1801.03505 (P.J. Fox, I. Low, Y. Zhang).

 how does this work in the SMEFT?→

https://arxiv.org/abs/2012.13989
https://arxiv.org/pdf/2012.07740.pdf
https://arxiv.org/abs/1801.03505
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2. Details of the calculation
2.3 Matrix element library

We implemented all squared matrix elements in a self-contained Fortran library.

It includes the spinor-helicity amplitudes for the dimension-four SM and 
dimension-six SMEFT contributions as well as the definitions for the couplings and 
the propagators depending on the EW input scheme. 

Figure 1: Tree-level SMEFT contributions to qq̄ ! Zh production. The diagram on
the left involves an insertion of one of the operators defined in (2.1), while the two graphs
on the right stem from an insertion of one of the operators given in (2.2). The operator
insertions are indicated by the blue squares.

3 Calculation in a nutshell

In this section, we sketch the different ingredients of our NNLO+PS SMEFT calculation of
pp ! V h production. We begin by recalling the basic steps of the NNLO QCD computation
within the SM and then detail the general method that we employ to calculate the relevant
matrix elements in the SMEFT and their implementation into the POWHEG-BOX. It is then
explained how the fixed-order NNLO SMEFT calculations of the pp ! V h processes are
consistently matched to a PS using the MiNNLOPS method.

3.1 SM calculation

To explain how we calculate the matrix elements of pp ! V h including the effects of SMEFT
operators let us recall the structure of the NNLO computation in the SM. Within the SM
the relevant higher-order corrections can be classified into three different types. In the case
of pp ! Zh production relevant sample Feynman diagrams are shown in Figure 2. The
first class of corrections, represented by the graph on the left, involves up to two additional
real or virtual gluon lines compared to the tree-level contribution. The corresponding ma-
trix elements are called B0g0V, B1g0V, B0g1V, B1g1V, B2g0V, B0g2V, where the number
before (after) the g refers to the number of additional real (virtual) gluons. In the case of
the SM, the analytic expressions for the corresponding spinor-helicity amplitudes can be
found in [25–28]. The second class of corrections, represented by the graph in the middle
of Figure 2, features the real emission of two additional quarks. These matrix elements are
called C0g0V and D0g0V and within the SM the analytic expressions for the corresponding
spinor-helicity amplitudes are provided in [28]. Finally, the gluon-gluon initiated contri-
butions shown on the right in Figure 2 constitute the third type of corrections. They are
referred to as A0g0V and the corresponding SM spinor-helicity amplitudes are given in [29].
Notice that due to charge conservation the third type of corrections only contributes to the
pp ! Zh but not the pp ! Wh process. We add that the qq̄ ! V h corrections called VI,II

and RI,II that are related to top-quark loops [30] are neglected in our SM calculation. Since
in total the numerical effect of these contributions amounts to only around 1% [18, 30, 31],
ignoring the VI,II and RI,II terms seems justified at present.
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Figure 1: Tree-level SMEFT contributions to qq̄ ! Zh production. The diagram on
the left involves an insertion of one of the operators defined in (2.1), while the two graphs
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The file Bridge contains the general routines that are required to evaluate the squared
matrix elements for an event, which is represented internally by an object of type Event_t.
These routines allow to set up the numerical expressions for the spinor-helicity brackets,
pass the input parameters to the Event_t object and calculate the dependent parame-
ters for a chosen EW input scheme. The file squaredamps contains the squared matrix
elements. The squared matrix element B1g0Z discussed above, for example, has the form
B1g0Z(i1,i2,i3,i4,i5,K,f1,f2), where the integers i1, ..., i5 2 {1, ..., 5} allow to specify
the crossing of the external legs, K is the Event_t object of the event, and f1 and f2 indi-
cate the flavours of the quark and lepton lines present in the relevant topology, respectively.
Our implementation employs the Monte Carlo Particle Numbering Scheme conventions of
the PDG [35]. The dimension-four, -six and -eight contributions to the squared matrix
elements are calculated individually and their inclusion can be controlled via the flags SM,
Linear and Quadratic of the Event_t object, respectively. Notice that the dimension-six
or linear (dimension-eight or quadratic) SMEFT contributions arise from the interference of
the SMEFT and SM amplitudes (self-interference of the SMEFT amplitudes). The spinor-
helicity amplitudes, the loop coefficients and the functions implementing the parity and
charge conjugation relations are collected in the amplib file.

Two further comments seem to be in order. First, besides including the squared matrix
elements described above, we also provide the corresponding colour- and spin-correlated
squared matrix elements that are required to build the infrared (IR) subtraction terms
in the NNLO+PS implementation of pp ! V h production. In the case of B1g0V for
instance the colour- and spin-correlated squared matrix elements are called B1g0V_colour
and B1g0V_spin, respectively. The definition of these squared matrix elements follows the
POWHEG conventions specified in (2.6) and (2.8) of the publication [22]. While the elements
of B1g0V_colour are simply equal to B1g0V times colour factors, calculating B1g0V_spin
requires a bit more care. In our notation, it takes the form
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(3.12)

where the ✏
µ

± are polarisation vectors normalised as
X
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with gµ⌫ = diag (1,�1,�1,�1). The polarisation vectors ✏µ± are implemented in POWHEG as
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where the form of the four-vectors ✏
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2 can be found in (A.12) of [39]. In order to
obtain AB1g0Z as given in (3.1), we have however employed
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Figure 2: Examples of higher-order QCD corrections to pp ! Zh production within the
SM. The diagram on the left features additional virtual and real gluon lines (B-type), the
diagram in the middle involves a second quark line (C- and D-type) and the diagram on the
right is gluon-gluon initiated (A-type). Consult the main text for further details.

where
sij = (pi + pj)

2
, sijk = sij + sjk + ski , (4.4)

are the usual Mandelstam invariants with pi the four-momentum of particle i. We have
furthermore introduced

DZ(s) = s�M
2
Z + iMZ�Z , (4.5)

with �Z denoting the total decay width of the Z boson. In (4.3) the variable ↵s denotes
the strong coupling constant while CF = 4/3 and CA = 3 are the relevant colour factors.
The symbols g

hf

Zf
and ghZZ represent the Zff̄ and hZZ coupling strengths, respectively.

The explicit expressions for these quantities are given in Appendix A.
The technically most involved part of the SMEFT calculation results from insertions of

the three operators introduced in (2.1) since QHB, QHW and QHWB generate modified hV V

vertices with helicity structures different from the SM one. These modifications can be
included at the level of (4.1) by means of generalised currents that describe the splitting
of the initial vector boson V1 into the outgoing vector boson V2 and the Higgs boson h [8].
If the initial-state quarks and final-state leptons are left-handed the relevant generalised
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Figure 2: Examples of higher-order QCD corrections to pp ! Zh production within the
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U

In the paper, we will refer to this set of numbers as Xborn. We recall that the Born

phase space Φn, defined in [2], is given by

dΦn = dx⊕ dx"(2π)
4δ4
(

k⊕ + k" −
n∑

i=1

ki

)
n∏

i=1

d3ki
(2π)32k0i

. (2.4)

The born phsp routine should perform the following tasks:

1. Set kn pborn(mu=0:3,k=1:nlegborn) and kn cmpborn(mu=0:3,k=1:nlegborn)1 to

the Born momenta in the laboratory frame and in the center-of-mass (CM) frame. The

Lorentz index µ = 0 denotes the time component, 1, 2 the transverse components x, y,

and 3 the longitudinal component z. Set the variables kn xb1 and kn xb2 to the value

of the parton momentum fraction x⊕ and x". Set the variable kn sborn to the squared

CM energy of the Born process.

2. The array kn masses should be filled with the masses of the legs of the process. Fur-

thermore, the variable kn minmass should be set to a fixed (i.e. independent upon the

kinematics) lower bound on the mass of the final state. Thus, if no resonances are

present, it is typically set to the sum of the masses of the final-state particles. If there

are resonances, it will be set to the sum of the lower limits of the windows imposed

around the resonances.

3. Set the variable kn jacborn to the Jacobian

Jborn =

∣∣∣∣
∂Φn

∂Xborn

∣∣∣∣ . (2.5)

2.3 The Born and Born-correlated squared amplitudes

The user of the POWHEG BOX should provide the routine

setborn(p(0:3,1:nlegborn),bflav(1:nlegborn),born,

bornjk(1:nlegborn,1:nlegborn),bmunu(0:3,0:3,1:nlegborn)).

Given the four-momenta p and the flavour structure bflav of a Born subprocess, the routine

should return the Born squared matrix element 2sbB in born, the colour correlated one in

bornjk and the spin correlated one in bmunu. The flux factor 1/(2 sb) =1/(2*kn sborn)

(where sb is the center-of-mass energy squared of the Born process) should not be included,2

since it is supplied by the POWHEG BOX.

The colour correlated Born amplitude is defined in eq. (2.97) of ref. [2]. We report it

here for completeness

2sbBij = −N
∑

spins
colours

M{ck}

(
M†

{ck}

)
ci→c′i
cj→c′j

T a
ci,c′i

T a
cj ,c′j

. (2.6)

Here M{ck} is the Born amplitude, and {ck} stands for the colour indexes of all external

coloured particles in the amplitude. The suffix on the parentheses that enclose M†
{ck}

1All variables with the kn prefix are defined in the header file pwhg kn.h.
2In the notation of ref [2], B includes the flux factor
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indicates that the colour indexes of partons i, j are substituted with primed indexes in

M†
{ck}

. The factor N is the appropriate normalization factor including averages over initial

spin and colour and symmetry factors. We assume summation over repeated colour indexes

(ck, c′i, c
′
j and a) and spin indexes. For gluons T a

cb = ifcab, where fabc are the structure

constants of the SU(3) algebra. For incoming quarks T a
αβ = taαβ , where t are the colour

matrices in the fundamental representation (normalized as Tr[t t] = 1/2). For antiquarks

T a
αβ = −taβα. It follows from colour conservation that Bij satisfy

∑

i,i "=j

Bij = CfjB , (2.7)

where i runs over all coloured particles entering or exiting the process, and Cfj is the

Casimir constant for the colour representation of particle j. The spin correlated Born

squared amplitude Bµν
j is defined to be non-zero if the jth Born leg is a gluon, and is

basically the Born cross section obtained by leaving the gluon indexes of the jth leg un-

contracted. More precisely, we can write

Bµν
j = N

∑

{i},sj ,s′j

M ({i}, sj) M†
(
{i}, s′j

)
(εµsj)

∗ ενs′j
, (2.8)

where M ({i}, sj) is the Born amplitude, {i} represent collectively all remaining spins and

colours of the incoming and outgoing particles, and sj represents the spin of the jth particle.

The εµsj are polarization vectors, normalized as

∑

µ,ν

gµν (ε
µ
sj )

∗ ενs′j
= −δsjs′j . (2.9)

Thus ∑

µ,ν

gµν Bµν
j = −B . (2.10)

Notice that the Born squared amplitude is requested for each individual flavour structure

of the contributing subprocesses. Many different flavour structures will return identical or

proportional values of the Born cross section. For example dd̄ → Z is identical to ss̄ → Z,

and uū → γ∗ is proportional to dd̄ → γ∗. The POWHEG BOX identifies these identical

contributions initially, and stores the proportionality constants. When computing the

Born cross section for all needed flavour structures, it computes only the minimum number

of squared amplitudes it needs, and obtains the others using the proportionality relations

found initially.

2.4 The virtual amplitudes

The user should provide a subroutine

setvirtual(p(0:3,1:nlegborn),vflav(1:nlegborn),virtual),

that returns in virtual the finite part Vfin of the virtual cross section for the process

with flavour structure vflav and external momenta p. The Vfin contribution is defined, in

– 9 –

finite part of virtual cross section

o

The file Bridge contains the general routines that are required to evaluate the squared
matrix elements for an event, which is represented internally by an object of type Event_t.
These routines allow to set up the numerical expressions for the spinor-helicity brackets,
pass the input parameters to the Event_t object and calculate the dependent parame-
ters for a chosen EW input scheme. The file squaredamps contains the squared matrix
elements. The squared matrix element B1g0Z discussed above, for example, has the form
B1g0Z(i1,i2,i3,i4,i5,K,f1,f2), where the integers i1, ..., i5 2 {1, ..., 5} allow to specify
the crossing of the external legs, K is the Event_t object of the event, and f1 and f2 indi-
cate the flavours of the quark and lepton lines present in the relevant topology, respectively.
Our implementation employs the Monte Carlo Particle Numbering Scheme conventions of
the PDG [35]. The dimension-four, -six and -eight contributions to the squared matrix
elements are calculated individually and their inclusion can be controlled via the flags SM,
Linear and Quadratic of the Event_t object, respectively. Notice that the dimension-six
or linear (dimension-eight or quadratic) SMEFT contributions arise from the interference of
the SMEFT and SM amplitudes (self-interference of the SMEFT amplitudes). The spinor-
helicity amplitudes, the loop coefficients and the functions implementing the parity and
charge conjugation relations are collected in the amplib file.

Two further comments seem to be in order. First, besides including the squared matrix
elements described above, we also provide the corresponding colour- and spin-correlated
squared matrix elements that are required to build the infrared (IR) subtraction terms
in the NNLO+PS implementation of pp ! V h production. In the case of B1g0V for
instance the colour- and spin-correlated squared matrix elements are called B1g0V_colour
and B1g0V_spin, respectively. The definition of these squared matrix elements follows the
POWHEG conventions specified in (2.6) and (2.8) of the publication [22]. While the elements
of B1g0V_colour are simply equal to B1g0V times colour factors, calculating B1g0V_spin
requires a bit more care. In our notation, it takes the form

B1g0Z_spinµ⌫ =
8⇡↵sCF

CA

X

hq ,h`=±

�����
g
hq

Zq
g
h`

Z`
ghZZ

DZ(s123)DZ(s45)

�����

2 X

hg1 ,hg2=±
✏
µ ⇤
hg1

✏
⌫

hg2

⇥AB1g0Z

⇣
1
hq

q , 2
hg1
g , 3

�hq

q̄ ; 4h`

`
, 5�h`

¯̀

⌘
A

†
B1g0Z

⇣
1
hq

q , 2
hg2
g , 3

�hq

q̄ ; 4h`

`
, 5�h`

¯̀

⌘
,

(3.12)

where the ✏
µ

± are polarisation vectors normalised as
X

µ,⌫

gµ⌫ ✏
µ ⇤
hg1

✏
⌫

hg2
= ��hg1hg2

, (3.13)

with gµ⌫ = diag (1,�1,�1,�1). The polarisation vectors ✏µ± are implemented in POWHEG as

✏
µ

[PWG]± = ⌥
1
p
2
(✏µ1 ± i✏

µ

2 ) , (3.14)

where the form of the four-vectors ✏
µ

1 and ✏
µ

2 can be found in (A.12) of [39]. In order to
obtain AB1g0Z as given in (3.1), we have however employed

✏
µ

[GHS]+ =
h3|�µ|2]
p
2 h32i

, ✏
µ

[GHS]� =
h2|�µ|1]
p
2 [21]

, (3.15)
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Sources: [1] gitlab.com/lucschnell/vh-amplitudes (R. Gauld, U. Haisch, LS).

https://gitlab.com/lucschnell/vh-amplitudes
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! ===============================================
! Cuts
! ===============================================
min_z_mass  10d0
max_z_mass  10000d0
min_h_mass  10d0
max_h_mass  10000d0
! ===============================================

! ===============================================
! Model parameters
! ===============================================
! Input scheme
InputScheme 2   ! Input scheme. 0 = (Alpha, MZ, MW), 1 = (GF, MZ, MW), 2 = (Alpha, GF, MZ)

! Input parameters
mz 91.1876d0
Gfermi 1.1663788d-5
alpha 7.81549186d-3

mh 125.09d0
gh 4.1d-3
mt 172.5d0
mb 4.78d0

! Cutting-edge calculations for the SM
mw 80.361d0
gw 2.089d0
gz 2.4952d0

! Switches
SM          0     ! Switch (on/off). Whether to include the SM contribution or not.
Linear      1     ! Switch (on/off). Whether to include the linear NP corrections or not.
Quadratic   0     ! Switch (on/off). Whether to include the quadratic NP corrections or not.

! Anomalous couplings
Anomalous   0     ! Switch (on/off)
ghzz1       0d0   ! Anomalous coupling
ghzz2       0d0   ! Anomalous coupling
ghzz3       0d0   ! Anomalous coupling
ghaz1       0d0   ! Anomalous coupling
ghaz2       0d0   ! Anomalous coupling

! SMEFT
SMEFTScale       1000d0   ! Scale of SMEFT operators

Warsaw              1     ! Switch (on/off)
CHe                 0d0  ! SMEFT coefficient
CHl1                0d0   ! SMEFT coefficient
CHl3                0d0   ! SMEFT coefficient
CHq1                0.05d0   ! SMEFT coefficient
CHq3                0d0   ! SMEFT coefficient
CHu                 0d0   ! SMEFT coefficient
CHd                 0d0   ! SMEFT coefficient

CHB                 0d0   ! SMEFT coefficient
CHW                 0d0   ! SMEFT coefficient
CHWB                0d0   ! SMEFT coefficient

! Linear combinations of SMEFT operators
WarsawRotated       0     ! Switch (on/off)
CHA                 0d0   ! SMEFT coefficient (sw2*CHW + cw2*CHB)
CHZ                 0d0   ! SMEFT coefficient (cw2*CHW - sw2*CHB)
! ===============================================

numevts 500000     ! number of events to be generated
ih1 1             ! hadron 1 (1 for protons, -1 for antiprotons)
ih2 1             ! hadron 2 (1 for protons, -1 for antiprotons)
ebeam1 6500d0     ! energy of beam 1
ebeam2 6500d0     ! energy of beam 2

! To be set only if using LHA pdfs
! 21100 MSTW2008nlo68cl
! 244800 NNPDF2.3_as_0119_qed
lhans1  303600         ! pdf set for hadron 1 (LHA numbering)
lhans2  303600         ! pdf set for hadron 2 (LHA numbering)
alphas_from_pdf  1     ! (default 0) if 1, use alphas from PDF evolution tool (e.e lhapdf or hoppet)

! To be set only if using different pdf sets for the two incoming hadrons
#QCDLambda5  0.25 ! for not equal pdf sets

bornktmin    0.26d0  ! (default 0d0) generation cut. Minimum kt in underlying Born
bornsuppfact    0d0  ! (default 0d0) mass param for Born suppression factor. If < 0 suppfact = 1
#bornsuppfactV 700d0  ! (default 0d0) pt of the V boson at Born level, as suppression factor. If < 0 suppfact = 1
bornzerodamp      1  ! (default 0d0) activate damping factors for Born amplitudes approching zero in some phase-space point
ubexcess_correct  1  ! correct for upperbound violations

renscfact  1d0   ! (default 1d0) ren scale factor: muren  = muref * renscfact
facscfact  1d0   ! (default 1d0) fac scale factor: mufact = muref * facscfact

! Parameters to allow or not the use of stored data
use-old-grid    1 ! if 1 use old grid if file pwggrids.dat is present (<> 1 regenerate)
use-old-ubound  1 ! if 1 use norm of upper bounding function stored in pwgubound.dat, if present; <> 1 regenerate

2. Details of the calculation
2.4 POWHEG event generator

We implemented the matrix element library in a POWHEG MiNNLOPS event generator. 

We will make it available for download on the POWHEG-BOX web page [1]. 

Sources: [1] powhegbox.mib.infn.it (S. Aioli, K. Hamilton, P. Nason, C. Oleari, E. Re. G. Zanderighi, T. Jezo).

https://powhegbox.mib.infn.it
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Figure 8: As Figure 4 but for benchmark scenario (4.26) assuming ⇤ = 1TeV.
The SMEFT predictions are coloured in magenta. In the case of the linear SMEFT contri-
butions the solid (dashed) lines correspond to positive (negative) corrections to the relevant
distribution.
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and to keep in mind that the down-quark luminosity in a proton is smaller
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Figure 5: As Figure 4 but for benchmark scenario (4.23) with ⇤ = 1TeV. The yellow
lines correspond to the BSM results.

linear SMEFT effects are largest in the benchmark scenario with C
(3)
Hq

= 0.05 where they
can exceed +50% compared to the SM for pT,Z > 300GeV. The respective effects in the
benchmark scenario with CHd = �0.1 (CHu = 0.1) just correspond to around +7% (+20%).
The observed hierarchy of SMEFT effects can be traced back to the approximate pattern
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Figure 4: NNLO+PS predictions for pp ! Zh ! `
+
`
�
h production in the SMEFT bench-

mark scenario (4.21) assuming a common operator suppression scale of ⇤ = 1TeV. The four
panels show the fiducial cross section differential in |⌘Z | (upper left), pT,Z (upper right),
|⌘Z � ⌘h| (lower left) and mZh (lower right) for proton-proton (pp) collisions at 13TeV.
The SM predictions are indicated by the solid black lines while the solid (dotted) orange
curves represent the SMEFT contribution linear (quadratic) in the Wilson coefficients. The
solid dark orange lines correspond to the sums of the linear and quadratic SMEFT contri-
butions. The lower panels depict the ratios between the BSM and the SM distributions with
the grey band representing the SM scale uncertainties. See main text for further details.
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16Sources: [1] ArXiv:1804.07407 (S. Alioli, W. Dekens, M. Girard, E. Mereghetti).

4. Results
4.2 NNLO vs NLO
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Figure 10: SM NLO+PS and NNLO+PS results for pp ! Zh ! `
+
`
�
h production.

The |⌘Z | (upper left), pT,Z (upper right), |⌘Z � ⌘h| (lower left) and mZh (lower right)
spectra are shown. The dashed (solid) lines illustrate the NLO+PS (NNLO+PS) results,
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‣ The associated Higgs production (Vh) channel is interesting phenomenologically, 
since it allows to measure Higgs couplings precisely. 

‣ We calculated SMEFT contributions to  at NNLO and implemented 
them in an NNLO+PS accurate POWHEG MiNNLOPS event generator. 

pp → V( → l+l−)h

‣ Higher-order SMEFT calculations come with interesting theoretical aspects, 
including the „recycling“ of SM spinor-helicity amplitudes and the treatment of gauge 
anomalies. 

 essential tool for future Higgs characterisation studies at the LHC→
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What about new effects?

Introduction
Theoretical predictions (BSM)
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The SMEFT allows us to study the indirect contributions from high-scale BSM physics in a (largely)

model-independent way. 
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, , CHB CHW CHWBVVh: 

Sources: [1] 10.1093/ptep/ptac097 (PDG), [2] hep-ex/0509008 (SLD et al.), [3] ATLAS-CONF-2021-053 (ATLAS), [4] CMS-PAS-HIG-19-005 (CMS), [5] ArXiv:2309.03501 (ATLAS and CMS)

What are the current constraints on these types of SMEFT operators?

V(h)qq: , , , C(1)
Hq C(3)

Hq CHu CHd

V(h)ll: , , C(1)
Hl C(3)

Hl CHe

The corresponding relative tree-level shift of mW induced in the U(3)5 symmetric SMEFT
is given by

�mW

mW

= �
cwsw

2 (c2w � s2w)

v
2

⇤2
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cw

⇣
2C(3)

H`
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⌘
+
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2sw
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�
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H`

� 0.022CHD + 0.013C`` ,

(3.4)

where we have employed (3.1), (3.2) and assumed ⇤ = 1TeV for the energy scale that
suppresses the dimension-six operators to obtain the numerical results presented in the
second line. Employing the latest world average of the measured W -boson mass obtained
by the PDG [25] and the state-of-the-art SM prediction [26], we obtain the following 95%
confidence level (CL) limit

�mW

mW

2 [�0.9, 5.6] · 10�4
, (3.5)

on the allowed relative shift of mW . This result in general sets stringent constraints on the
Wilson coefficients entering (3.4). For instance, in the case of the operator QHWB we find
the bound

CHWB

⇤2
2 [�1.2, 0.2] · 10�2TeV�2

, (3.6)

if all other Wilson coefficients in (3.4) are set to zero. Similar though weaker limits also
apply in the case of CHD, C(3)

H`
and C`` if each of the Wilson coefficient is treated as the

only non-zero contribution.

3.2 Z-boson couplings

The linear combinations of Wilson coefficients that modify the couplings of the W and Z

boson to fermions at tree level are strongly constrained by the EW precision measurements
performed at LEP and SLD. In the case of the Z boson the shifts of the left- and right-
handed couplings to a fermion  = {e, ⌫, d, u} take the following form
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(3.7)

with
g
T

3
 

= �C
(3)
H`

�
CHD

4
+

C``

2
, gQ =

cwsw

c2w � s2w


CHWB �

sw

cw
g
T

3
 

�
. (3.8)

Here the coupling g2 is defined via (3.2),  L = {`, q} and  R = {e, d, u}, while T
3
 
= ±1/2

denotes the weak isospin eigenvalue, Q is the electric charge of the fermion  in units
of e =

p
4⇡↵. Notice that the expressions given in (3.8) correspond to the LEP scheme and

that we have assumed that the Wilson coefficients of the operators that involve fermionic
fields are flavour universal. Below we will assume that such a flavour universality holds for
all SM fermions apart from the charm, bottom and top quark.
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right-handed coupling shifts
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when (3.1), (3.2) and ⇤ = 1TeV is used as a numerical input. The EW precision measure-
ments performed by LEP and SLD [25, 27] imply that at 95% CL one has
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. (3.10)

Ignoring cancellations these limits again put severe constraints on the Wilson coefficients
that appear in (3.9). Numerically, we obtain for instance the bounds
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from the constraint �g
e

L
and �g

e

R
, respectively, if we allow only the considered Wilson

coefficient to take a non-vanishing value. We add that the Wilson coefficients CHD, C(1)
H`

and C`` can also be constrained by the LEP and SLD measurements of the Z-boson coupling
to neutrinos. The obtained bounds, however, turn out to be weaker than those that derive
from (3.9) and (3.10).

Employing again (3.1), (3.2), (3.7) and (3.8) the left- and right-handed coupling shifts
in the case of the down and up quark take the following form
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for a common operator suppression scale of ⇤ = 1TeV. The measurements by LEP and
SLD performed at the Z-pole lead to the following limits
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at 95% CL. These bounds translate into
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R 2 [�4.8, 3.4] · 10�2
,

�g
u

L 2 [0.2, 6.8] · 10�2
, �g

u

R 2 [�1.3, 5.3] · 10�2
,

(3.13)

at 95% CL. These bounds translate into

C
(1)
Hq

⇤2
2 [�0.9, 2.8] TeV�2

,
C

(3)
Hq

⇤2
2 [�0.9, 2.8] TeV�2

,

CHd

⇤2
2 [�1.5, 2.1] TeV�2

,
CHu

⇤2
2 [�2.4, 0.6] TeV�2

,

(3.14)
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if each Wilson coefficient is treated independently and the limit on �g
d

L
as given in (3.13) is

used to constrain C
(1)
Hq

and C
(3)
Hq

. We emphasise that notably more stringent limits on the
Wilson coefficients in (3.14) would be obtained if one performs a complete EW fit including
heavy flavour measurements and assumes a SMEFT Lagrangian with an approximate U(3)5

symmetry. This is a simple consequence of the fact that in such a case one has �gb
L,R

= �g
d

L,R

(�gc
L,R

= �g
u

L,R
) and that the bottom (charm) couplings were significantly better determined

than the down (up) couplings at LEP and SLD — see for example Figure F.3 in [27]. The
limits (3.14) are relaxed because they assume flavour universality only for the down and
strange quark as far as quarks are concerned.

3.3 Higgs-boson observables

The Wilson coefficients of the operators (2.1) modify the Higgs signal strengths in final
states with two vector bosons. In the LEP scheme and including only the tree-level SMEFT
corrections due to CHB, CHW and CHWB the coupling modifiers relevant for h ! WW

and h ! ZZ can be written in the  framework as follows [28]

�WW ' �
v
2

⇤2

h
0.76CHW + 3.18CHWB

i
,

�ZZ '
v
2

⇤2

h
2.71CHB � 3.18CHW + 1.23CHWB

i
.

(3.15)

In the tree-level approximation the corresponding expressions for the h ! �� and h ! �Z

decays do not depend on the choice of the EW input scheme. One finds

��� '
1

gh��

v
2

⇤2

h
c
2
wCHB + s

2
wCHW � cwswCHWB

i
,

��Z ' �
1

gh�Z

v
2

⇤2

h
2cwsw (CHB � CHW ) +

�
c
2
w � s

2
w

�
CHWB

i
,

(3.16)

where gh�� ' �2.02 · 10�3 and gh�Z ' �7.23 · 10�3 parameterise the loop-induced h�� and
h�Z couplings within the SM. Explicit analytic formulas for gh�� and gh�Z can be found
for instance in [29].

Assuming that the ggF Higgs production cross section is SM-like and taking the SM
predictions for the total decay width of the Higgs and its branching ratios from [30], we
obtain for ⇤ = 1TeV the following linearised expressions for the relevant signal strenghts

µ
WW

ggF ' 1 + 0.074CHB � 0.0086CHW , µ
ZZ

ggF ' 1 + 0.40CHB � 0.30CHW ,

µ
��

ggF ' 1� 46.0CHB � 14.0CHW , µ
�Z

ggF ' 1 + 14.3CHB � 14.1CHW .

(3.17)

Notice that in view of (3.6) we have neglected the contributions of the Wilson coeffi-
cient CHWB in (3.17). The corresponding measured Higgs signal strenghts are

µ
WW

ggF = 1.18±0.13 , µ
ZZ

ggF = 0.96±0.08 , µ
��

ggF = 1.05±0.09 , µ
�Z

ggF = 2.2±0.7 . (3.18)
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Here the first three results represent unofficial weighted averages of the ATLAS [31] and
CMS [32] measurements, while the fourth result stems from an official combination per-
formed by the ATLAS and CMS collaborations in [33].

By comparing (3.17) and (3.18) it is evident that under the assumption of CHWB ' 0

the constraints on the Wilson coefficients CHB and CHW from h ! �� and h ! �Z are in
general more stringent than those that arise from h ! WW and h ! ZZ. In fact, since the
signal strength µ

��

ggF is at present significantly better measured than µ
�Z

ggF, all combinations
of Wilson coefficients that obey

CHB ' �
s
2
w

c2w
CHW ' �0.30CHW , (3.19)

are most weakly constrained by (3.18). Notice that for Wilson coefficients CHB and CWB

satisfying (3.19) and |CHW | sufficiently small the signal strengths µWW

ggF , µZZ

ggF and µ
��

ggF are
all predicted to be SM-like, while µ

�Z

ggF can at the same time be notably different from one.

3.4 Discussion

We are now in a position to identify simple benchmark scenarios of the full set of Wilson coef-
ficients of the operators defined in (2.1) to (2.4). As a common operator suppression scale we
hereafter take ⇤ = 1TeV. In view of the stringent constraints arising from (3.4), (3.5), (3.9)
and (3.10) we always employ

C
(1)
H`

= C
(3)
H`

= CHe = CH2 = CHD = C`` = 0 , (3.20)

when studying the numerical impact of the SMEFT dimension-six operators (2.1) to (2.4)
on Zh production at the LHC in Section 5.

In the case of the dimension-six operators that modify the couplings between the Higgs
and two vector bosons at tree level, we choose the following values for the Wilson coefficients

CHB = 0.015 , CHW = �0.05 , CHWB = 0 , (3.21)

where the choice of CHWB is motivated by (3.6). The values (3.21) lead to the following
Higgs signal strengths

µ
WW

ggF ' 1.00 , µ
ZZ

ggF ' 1.02 , µ
��

ggF ' 1.01 , µ
�Z

ggF ' 2.13 , (3.22)

if one assumes that the ggF Higgs production cross section in the SMEFT is equal to that
of the SM and sets to zero the Wilson coefficients of all the operators appearing in (2.2)
to (2.4). Notice that the predictions (3.22) are all SM-like apart from µ

�Z

ggF which is close
to the central value of the measured signal strength given in (3.18). When considering
the benchmark scenario (3.21) we will, besides employing (3.20), also set all the Wilson
coefficients of the operators (2.2) to zero.

In the case of the operators that result in couplings between the Higgs, a W or a Z

boson and light quarks, we consider the four benchmark scenarios

C
(3)
Hq

= 0.05 , C
(1)
Hq

= CHd = CHu = 0 , (3.23)
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Anatomy of SMEFT effects
Current constraints
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 couplings to lighter quark generations are less constrained than couplings to heavier quark generations: Z
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Figure F.3: Comparison of the effective vector and axial-vector coupling constants for fermions.
For the light-quark contours (u and d=s), a second solution exists, mirroring the contour curves
at the origin. The allowed area for neutrinos, assuming three generations of neutrinos with
identical vector couplings and identical axial-vector couplings, is bounded by circles centred at
the origin since the invisible partial width constrains the sum of the squares of the effective
couplings only.
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Source: hep-ex/0509008 (ALEPH, DELPHI, L3, OPAL, SLD,  
LEP EW Working Group, SLD EW and Heavy Flavour Groups)
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Figure 1: Tree-level SMEFT contributions to qq̄ ! Zh production. The diagram on
the left involves an insertion of one of the operators defined in (2.1), while the two graphs
on the right stem from an insertion of one of the operators given in (2.2). The operator
insertions are indicated by the green squares.

article [6]. This basis contains the following three independent operators

QHB = H
†
HBµ⌫B

µ⌫
, QHW = H

†
HW

a

µ⌫W
a,µ⌫

, QHWB = H
†
�
a
HW

a

µ⌫B
µ⌫

, (2.1)

that modify the couplings between the Higgs and two vector bosons at tree level. The SM
Higgs doublet is denoted by H, while Bµ⌫ and W

a
µ⌫ are the U(1)Y and SU(2)L gauge field

strength tensors and �
a are the Pauli matrices. In the case of the operators that result in

couplings between the Higgs, a W or a Z boson and light quarks, we consider the following
four effective interactions

Q
(1)
Hq

= (H†
i

$
DµH)(q̄�µq) , Q

(3)
Hq

= (H†
i

$
D

a

µH)(q̄�µ�a
q) ,

(2.2)
QHu = (H†

i

$
DµH)(ū�µu) , QHd = (H†

i

$
DµH)(d̄�µd) ,

where H
†
i

$
DµH = iH

†�
Dµ �

 
Dµ

�
H and H

†
i

$
D

a
µH = iH

†�
�
a
Dµ �

 
Dµ�

a
�
H with Dµ the

usual covariant derivative. The symbol q denotes left-handed quark doublets, while u and d

are the right-handed quark singlets of up and down type, respectively. Example tree-level
Feynman diagrams that contribute to Zh production and involve an insertion of one of the
operators in (2.1) or (2.2) are displayed in Figure 1.

Besides the two set of operators (2.1) and (2.2) that alter the pp ! V h production
process, we also consider effective interactions that modify the Z ! `

+
`
� and W ! `⌫

decays at tree level. In the Warsaw basis there are three such operators, namely

Q
(1)
H`

= (H†
i

$
DµH)(¯̀�µ`) , Q

(3)
H`

= (H†
i

$
D

a

µH)(¯̀�µ⌧a`) , QHe = (H†
i

$
DµH)(ē�µe) . (2.3)

Here ` and e denotes a left-handed lepton doublet and right-handed lepton singlet field,
respectively. Notice that in writing (2.2) and (2.3) we have assumed that the full SMEFT
Lagrangian respects an approximate U(3)5 flavour symmetry which allows us to drop all
flavour indices.

The final type of SMEFT corrections that change the Higgsstrahlungs process indi-
rectly is provided by the Wilson coefficients of the operators that shift the EW SM input
parameters. In order to fully describes these shifts the following two additional operators
are needed at tree level:

QHD = (H†
DµH)⇤(H†

D
µ
H) , Q`` = (¯̀�µ`)(¯̀�

µ
`) . (2.4)
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D
µ
H) , Q`` = (¯̀�µ`)(¯̀�

µ
`) . (2.4)
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Input scheme 
corrections:
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Input scheme 
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where we have employed (3.1), (3.2) and assumed ⇤ = 1TeV for the energy scale that
suppresses the dimension-six operators to obtain the numerical results presented in the
second line. Employing the latest world average of the measured W -boson mass obtained
by the PDG [25] and the state-of-the-art SM prediction [26], we obtain the following 95%
confidence level (CL) limit
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on the allowed relative shift of mW . This result in general sets stringent constraints on the
Wilson coefficients entering (3.4). For instance, in the case of the operator QHWB we find
the bound
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2 [�1.2, 0.2] · 10�2TeV�2

, (3.6)

if all other Wilson coefficients in (3.4) are set to zero. Similar though weaker limits also
apply in the case of CHD, C(3)

H`
and C`` if each of the Wilson coefficient is treated as the

only non-zero contribution.

3.2 Z-boson couplings

The linear combinations of Wilson coefficients that modify the couplings of the W and Z

boson to fermions at tree level are strongly constrained by the EW precision measurements
performed at LEP and SLD. In the case of the Z boson the shifts of the left- and right-
handed couplings to a fermion  = {e, ⌫, d, u} take the following form
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T
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�
. (3.8)

Here the coupling g2 is defined via (3.2),  L = {`, q} and  R = {e, d, u}, while T
3
 
= ±1/2

denotes the weak isospin eigenvalue, Q is the electric charge of the fermion  in units
of e =

p
4⇡↵. Notice that the expressions given in (3.8) correspond to the LEP scheme and

that we have assumed that the Wilson coefficients of the operators that involve fermionic
fields are flavour universal. Below we will assume that such a flavour universality holds for
all SM fermions apart from the charm, bottom and top quark.
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Anatomy of SMEFT Effects
Input scheme corrections

perturbed if the SMEFT (and not the SM) is the relevant theory at µ & mW . In that case one

finds that dimension-six operators a↵ect the Fermi constant as3

GF =
1

p
2v2

✓
1 +

�GF

GF

◆
,

�GF

GF

= v
2
⇣⇥

C
(3)
H`

⇤
µµ

+
⇥
C

(3)
H`

⇤
ee
�

1

2

⇥
C``

⇤
µeeµ

�
1

2

⇥
C``

⇤
eµµe

⌘
+O(⇤�4), (3.6)

where v is the VEV of the Higgs field in the presence of dimension-six operators, and C``, C
(3)
H`

are Wilson coe�cients of the corresponding operators in the Warsaw basis [20]. At this stage

we cannot assign a numerical value to v without knowing the Wilson coe�cients. Instead, it is

convenient to define the tilde VEV parameter ṽ via the relation

ṽ =
vp

1 + �GF/GF

= v

✓
1 +

�v

v

◆
,

�v

v
= �

1

2

�GF

GF

+O(⇤�4). (3.7)

With this definition we recover GF = (
p
2ṽ2)�1, and we can assign a numerical value to ṽ, which

is equal to that of v in the SM context, ṽ = 246.21965(6)GeV. In fact, this procedure is similar to

the renormalisation of the SM at one loop. Let us however stress that we are dealing with finite

tree-level corrections in the present situation.

At this point the dependence of the muon decay width on the SMEFT Wilson coe�cients has

been absorbed into the definition of ṽ, hence this observable alone does not constrain NP. However,

the physical e↵ect of �GF is not void. Using Eq. (3.7), we should replace v with ṽ in the expression

for any other EW observable sensitive to the Higgs VEV in the SM limit, in order to isolate the

SM prediction for that observable. This way, �GF will modify the linear combination of Wilson

coe�cients to which the observable is sensitive:

O = OSM(v) + �O
direct
NP = OSM(ṽ) + �O

indirect
NP + �O

direct
NP ,

�O
indirect
NP =

ṽ

2

�GF

GF

@OSM(ṽ)

@ṽ
+O(⇤�4) . (3.8)

The “direct” contribution comes from the computation using the initial SMEFT parameters,

whereas the “indirect” part comes from the redefinition of the Higgs VEV. We remark that the

separation between direct and indirect NP e↵ects is semantic. Both e↵ects are in general equally

large and physical, namely O(⇤�2) in the SMEFT expansion.

3.3 Strategy for the extraction of the CKM parameters in the SMEFT

We turn to the determination of CKM parameters in the general context of the SMEFT. There

are two distinct strategies one could envisage here. One could aim at performing a global fit to

3 Summing over the 4-lepton terms
P

ijkl

⇥
C``

⇤
ijkl

¯̀
i�µ`j

¯̀
k�

µ
`l in the SMEFT Lagrangian, the Wilson coe�cients⇥

C``

⇤
ijji

and
⇥
C``

⇤
jiij

are indistinguishable because they multiply exactly the same operator. In the literature one

often encounters the convention that the two Wilson coe�cients in this pair are equal, or that one of them is zero.

Our Eq. (3.6) is valid regardless of the convention.

9

Source: ArXiv:1812.08163 (S. Descotes-Genon, A. Falkowski, M. Fedele, 

M. González-Alonso, J. Virto)
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where L is the parton luminosity4

L = L(x⊕, x") = f⊕(x⊕) f"(x") , (2.6)

and

dΦn = dx⊕ dx" dΦn (k⊕ + k"; k1, . . . , kn) , (2.7)

with dΦn the n-body phase space

dΦn (q; k1, . . . , kn) = (2π)4 δ4
(

q −
n
∑

i=1

ki

)

n
∏

i=1

d3ki

(2π)3 2k0i
. (2.8)

In case of leptons in the initial state, the corresponding parton distribution function f(x)

in eq. (2.6) is replaced by δ(1 − x).

The real contributions at the NLO arise from the tree-level squared amplitudes for

the 2 → n + 1 parton process, which we denote by R. As before, we denote by Φn+1 the

corresponding set of variables

Φn+1 = {x⊕, x", k1, . . . , kn+1} (2.9)

constrained by momentum conservation and on-shell conditions.

The virtual contributions arise from the interference of the one-loop amplitudes times

the LO amplitudes. We denote by Vb the renormalized virtual corrections, that is, we

assume that all ultraviolet divergences have already been removed by renormalization.

These terms still contain infrared divergences. Therefore, they are computed in d = 4− 2ε

dimensions, and the divergences appear as 1/ε2 and 1/ε poles. The subscript b (for “bare”)

reminds us of the presence of infrared divergences in the amplitude.

In hadronic collisions, the complete cancellation of the initial-state collinear singular-

ities is achieved by adding two counterterms, one for each of the incoming partons (⊕,

$), to the differential cross section. We denote them by G⊕,b and G",b. The factorization

counterterms are infrared divergent in four dimensions. Therefore, they are computed in

d = 4− 2ε dimensions, and the divergences appear as 1/ε poles. To remind this fact, also

in this case a subscript b has been included in the notation.

The total NLO cross section is given by5

σNLO =

∫

dΦn L
[

B(Φn) + Vb(Φn)
]

+

∫

dΦn+1L R(Φn+1)

+

∫

dΦn,⊕ L G⊕,b(Φn,⊕) +

∫

dΦn," L G",b(Φn,") , (2.10)

where

dΦn+1 = dx⊕ dx" dΦn+1 (k⊕ + k"; k1, . . . , kn+1) . (2.11)

4In this section we drop the parton flavours and the scale dependence in the luminosity, for ease of

notation.
5The G©,b terms are present only for incoming hadrons. If one or both the incoming particles are leptons,

the corresponding Gb is zero.
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 how to deal with IR singularities?→

Soft/collinear 
divergences

Subtraction:

In the ISC case, we cannot factor out the luminosity so easily, since x̃© != x̄©. We define

[

C̄
(

Φ̄n, z
)

=

∫

dΦrad C(Φn+1) z δ (z − x̄©/x̃©)

]

α∈{ISC©}
, (2.33)

which formally introduces the momentum fraction z, and write

[
∫

dΦn+1 L̃On
(

Φ̄n
)

C(Φn+1) =

∫

dΦ̄n
dz

z
L̃On

(

Φ̄n
)

C̄
(

Φ̄n, z
)

]

α∈{ISC}

. (2.34)

Notice that, owing to the delta function in eq. (2.33) we have

L̃ = L(x̃⊕, x̃#) =

{

L(x̄⊕/z, x̄#) for α ∈ ISC⊕

L(x̄⊕, x̄#/z) for α ∈ ISC#

. (2.35)

We also notice that the variables
{

x̃⊕, x̃#, z, k̄1, . . . , k̄n
}

in the ISC regions can be identified

with the Φn,© variables in eqs. (2.12) and (2.13). In fact, the k̄i are integration variables,

and can be identify with the ki’s in eqs. (2.12) and (2.13). Furthermore, the x̃© variables

are identical to the x© in eqs. (2.12) and (2.13), since those equations refer to a singular

configuration, and (as we have remarked earlier) the mapping of eq. (2.18) is the identity

in the singular region. It follows that the z variables of eqs. (2.14) and (2.33) are identical.

Hence, from eqs. (2.15) and (2.16), we obtain

dΦn,© = dΦ̄n
dz

z
(2.36)

(the 1/z factor in the second equation being due to the Jacobian for the change of variables

x̄© → x̃©).

The choice of the counterterms in eq. (2.19) and of the mapping (2.18) should be such

that the integrals in eqs. (2.31) and (2.33) are easily performed analytically in d dimensions.

In this way, the C̄ terms contain explicitly the divergences as poles in ε.

We now write eq. (2.17) as

〈O〉 =
∫

dΦn LOn(Φn)
[

B(Φn) + Vb(Φn)
]

+

∫

dΦn+1

{

LOn+1(Φn+1) R(Φn+1)−
∑

α

[

L̃On
(

Φ̄n
)

C(Φn+1)
]

α

}

+
∑

α∈{FSC,S}

[
∫

dΦ̄n L̃On
(

Φ̄n
)

C̄
(

Φ̄n
)

]

α

+
∑

α∈{ISC©}

[
∫

dΦn,© L̃On
(

Φ̄n
)

C̄ (Φn,©)

]

α

+

∫

dΦn,⊕ L̃On
(

Φ̄n
)

G⊕,b(Φn,⊕) +

∫

dΦn,# L̃On
(

Φ̄n
)

G#,b(Φn,#) . (2.37)

Notice that, in the last line, we have substituted L → L̃ for uniformity of notation. This

is correct, since, as pointed out earlier, in the phase space of the collinear counterterms we

have x© = x̃©.
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 inclusive NLO→

In the POWHEG approach, one performs the generation of the hardest event with

NLO accuracy, in a framework that does not depend upon the SMC’s shower algorithm.

This is why it is fully independent from the SMC. Furthermore, the subsequent showers

takes place at softer transverse momenta, and thus affects infrared-safe observables only

at the next-to-next-to-leading order (NNLO). Thus, the matching problem considerably

simplifies, since it no longer requires a detailed examination of the properties of the SMC.

3.3 POWHEG

In the POWHEG formalism, the generation of the hardest emission is performed first,

using full NLO accuracy, and using the SMC to generate subsequent radiation. We give

here a simple illustration of the method, ignoring, for the moment, the complications due

to the presence of several singular regions in the NLO cross section. We begin by defining

B̄(Φn) = B(Φn) + V (Φn)

+

[
∫

dΦrad [R(Φn+1)−C(Φn+1)] +

∫

dz

z
[G⊕(Φn,⊕) +G"(Φn,")]

]Φ̄n=Φn

, (3.2)

where we have assumed that all the Φn+1, Φn,© are expressed in terms of the barred

variables. Next we introduce the Sudakov form factor14

∆ (Φn, pT) = exp







−
∫

[

dΦradR(Φn+1) θ(kT (Φn+1)− pT)
]Φ̄n=Φn

B(Φn)







. (3.3)

The function kT (Φn+1) should be equal, near the singular limit, to the transverse momen-

tum of the emitted parton relative to the emitting one. The POWHEG cross section for

the generation of the hardest event is then

dσ = B̄(Φn) dΦn

{

∆
(

Φn, p
min
T

)

+∆ (Φn, kT (Φn+1))
R (Φn+1)

B(Φn)
dΦrad

}

Φ̄n=Φn

, (3.4)

where it is assumed that Φn+1 is parametrized in terms of Φrad and Φn, and that values

of kT (Φn+1) < pmin
T are not allowed. The cross section (3.4) has the following properties:

• At large kT it coincides with the NLO cross section up to NNLO terms.

• It reproduces correctly the value of infrared safe observables at the NLO. Thus, also

its integral around the small kT region has NLO accuracy.

• At small kT it behaves no worse than standard Shower Monte Carlo generators.

Thus, it fulfills the requirement of the previous subsection for the inclusion of NLO correc-

tions in an SMC.

14Torbjörn Sjöstrand has pointed out to us that a similar Sudakov form factor is also used in PYTHIA for

weak vector-bosons decay and production, in order to implement a matrix-element matching for the first

emission in the shower, see refs. [30, 31].
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 exclusive NLO above → pmin
T

 parton shower for radiation below → pmin
T

Sources: [1] ArXiv:0709.2092 (S. Frixione, P. Nason, C. Oleari).
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 how to avoid double counting?→

Details of the calculation
The POWHEG method

https://arxiv.org/abs/0709.2092
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In practice, what one has to implement is

‣ Born matrix element (Vh)
‣Virtual
‣Double virtual

‣ Real (Vhj)
‣ Colour-correlated real
‣ Spin-correlated real

‣ Virtual-real (Vhj)
‣ Double real (Vhjj)

‣ Flavour structure for Vhj and Vhjj
‣ Vhj phase space

POWHEG-BOX for Vhj

In the paper, we will refer to this set of numbers as Xborn. We recall that the Born

phase space Φn, defined in [2], is given by

dΦn = dx⊕ dx"(2π)
4δ4
(

k⊕ + k" −
n∑

i=1

ki

)
n∏

i=1

d3ki
(2π)32k0i

. (2.4)

The born phsp routine should perform the following tasks:

1. Set kn pborn(mu=0:3,k=1:nlegborn) and kn cmpborn(mu=0:3,k=1:nlegborn)1 to

the Born momenta in the laboratory frame and in the center-of-mass (CM) frame. The

Lorentz index µ = 0 denotes the time component, 1, 2 the transverse components x, y,

and 3 the longitudinal component z. Set the variables kn xb1 and kn xb2 to the value

of the parton momentum fraction x⊕ and x". Set the variable kn sborn to the squared

CM energy of the Born process.

2. The array kn masses should be filled with the masses of the legs of the process. Fur-

thermore, the variable kn minmass should be set to a fixed (i.e. independent upon the

kinematics) lower bound on the mass of the final state. Thus, if no resonances are

present, it is typically set to the sum of the masses of the final-state particles. If there

are resonances, it will be set to the sum of the lower limits of the windows imposed

around the resonances.

3. Set the variable kn jacborn to the Jacobian

Jborn =

∣∣∣∣
∂Φn

∂Xborn

∣∣∣∣ . (2.5)

2.3 The Born and Born-correlated squared amplitudes

The user of the POWHEG BOX should provide the routine

setborn(p(0:3,1:nlegborn),bflav(1:nlegborn),born,

bornjk(1:nlegborn,1:nlegborn),bmunu(0:3,0:3,1:nlegborn)).

Given the four-momenta p and the flavour structure bflav of a Born subprocess, the routine

should return the Born squared matrix element 2sbB in born, the colour correlated one in

bornjk and the spin correlated one in bmunu. The flux factor 1/(2 sb) =1/(2*kn sborn)

(where sb is the center-of-mass energy squared of the Born process) should not be included,2

since it is supplied by the POWHEG BOX.

The colour correlated Born amplitude is defined in eq. (2.97) of ref. [2]. We report it

here for completeness

2sbBij = −N
∑

spins
colours

M{ck}

(
M†

{ck}

)
ci→c′i
cj→c′j

T a
ci,c′i

T a
cj ,c′j

. (2.6)

Here M{ck} is the Born amplitude, and {ck} stands for the colour indexes of all external

coloured particles in the amplitude. The suffix on the parentheses that enclose M†
{ck}

1All variables with the kn prefix are defined in the header file pwhg kn.h.
2In the notation of ref [2], B includes the flux factor

– 8 –
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indicates that the colour indexes of partons i, j are substituted with primed indexes in

M†
{ck}

. The factor N is the appropriate normalization factor including averages over initial

spin and colour and symmetry factors. We assume summation over repeated colour indexes

(ck, c′i, c
′
j and a) and spin indexes. For gluons T a

cb = ifcab, where fabc are the structure

constants of the SU(3) algebra. For incoming quarks T a
αβ = taαβ , where t are the colour

matrices in the fundamental representation (normalized as Tr[t t] = 1/2). For antiquarks

T a
αβ = −taβα. It follows from colour conservation that Bij satisfy

∑

i,i "=j

Bij = CfjB , (2.7)

where i runs over all coloured particles entering or exiting the process, and Cfj is the

Casimir constant for the colour representation of particle j. The spin correlated Born

squared amplitude Bµν
j is defined to be non-zero if the jth Born leg is a gluon, and is

basically the Born cross section obtained by leaving the gluon indexes of the jth leg un-

contracted. More precisely, we can write

Bµν
j = N

∑

{i},sj ,s′j

M ({i}, sj) M†
(
{i}, s′j

)
(εµsj)

∗ ενs′j
, (2.8)

where M ({i}, sj) is the Born amplitude, {i} represent collectively all remaining spins and

colours of the incoming and outgoing particles, and sj represents the spin of the jth particle.

The εµsj are polarization vectors, normalized as

∑

µ,ν

gµν (ε
µ
sj )

∗ ενs′j
= −δsjs′j . (2.9)

Thus ∑

µ,ν

gµν Bµν
j = −B . (2.10)

Notice that the Born squared amplitude is requested for each individual flavour structure

of the contributing subprocesses. Many different flavour structures will return identical or

proportional values of the Born cross section. For example dd̄ → Z is identical to ss̄ → Z,

and uū → γ∗ is proportional to dd̄ → γ∗. The POWHEG BOX identifies these identical

contributions initially, and stores the proportionality constants. When computing the

Born cross section for all needed flavour structures, it computes only the minimum number

of squared amplitudes it needs, and obtains the others using the proportionality relations

found initially.

2.4 The virtual amplitudes

The user should provide a subroutine

setvirtual(p(0:3,1:nlegborn),vflav(1:nlegborn),virtual),

that returns in virtual the finite part Vfin of the virtual cross section for the process

with flavour structure vflav and external momenta p. The Vfin contribution is defined, in

– 9 –
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Results
Event generator ! ===============================================

! Cuts
! ===============================================
min_z_mass  10d0
max_z_mass  10000d0
min_h_mass  10d0
max_h_mass  10000d0
! ===============================================

! ===============================================
! Model parameters
! ===============================================
! Input scheme
InputScheme 2   ! Input scheme. 0 = (Alpha, MZ, MW), 1 = (GF, MZ, MW), 2 = (Alpha, GF, MZ)

! Input parameters
mz 91.1876d0
Gfermi 1.1663788d-5
alpha 7.81549186d-3

mh 125.09d0
gh 4.1d-3
mt 172.5d0
mb 4.78d0

! Cutting-edge calculations for the SM
mw 80.361d0
gw 2.089d0
gz 2.4952d0

! Switches
SM          0     ! Switch (on/off). Whether to include the SM contribution or not.
Linear      1     ! Switch (on/off). Whether to include the linear NP corrections or not.
Quadratic   0     ! Switch (on/off). Whether to include the quadratic NP corrections or not.

! Anomalous couplings
Anomalous   0     ! Switch (on/off)
ghzz1       0d0   ! Anomalous coupling
ghzz2       0d0   ! Anomalous coupling
ghzz3       0d0   ! Anomalous coupling
ghaz1       0d0   ! Anomalous coupling
ghaz2       0d0   ! Anomalous coupling

! SMEFT
SMEFTScale       1000d0   ! Scale of SMEFT operators

Warsaw              1     ! Switch (on/off)
CHe                 0d0  ! SMEFT coefficient
CHl1                0d0   ! SMEFT coefficient
CHl3                0d0   ! SMEFT coefficient
CHq1                0.05d0   ! SMEFT coefficient
CHq3                0d0   ! SMEFT coefficient
CHu                 0d0   ! SMEFT coefficient
CHd                 0d0   ! SMEFT coefficient

CHB                 0d0   ! SMEFT coefficient
CHW                 0d0   ! SMEFT coefficient
CHWB                0d0   ! SMEFT coefficient

! Linear combinations of SMEFT operators
WarsawRotated       0     ! Switch (on/off)
CHA                 0d0   ! SMEFT coefficient (sw2*CHW + cw2*CHB)
CHZ                 0d0   ! SMEFT coefficient (cw2*CHW - sw2*CHB)
! ===============================================

numevts 500000     ! number of events to be generated
ih1 1             ! hadron 1 (1 for protons, -1 for antiprotons)
ih2 1             ! hadron 2 (1 for protons, -1 for antiprotons)
ebeam1 6500d0     ! energy of beam 1
ebeam2 6500d0     ! energy of beam 2

! To be set only if using LHA pdfs
! 21100 MSTW2008nlo68cl
! 244800 NNPDF2.3_as_0119_qed
lhans1  303600         ! pdf set for hadron 1 (LHA numbering)
lhans2  303600         ! pdf set for hadron 2 (LHA numbering)
alphas_from_pdf  1     ! (default 0) if 1, use alphas from PDF evolution tool (e.e lhapdf or hoppet)

! To be set only if using different pdf sets for the two incoming hadrons
#QCDLambda5  0.25 ! for not equal pdf sets

bornktmin    0.26d0  ! (default 0d0) generation cut. Minimum kt in underlying Born
bornsuppfact    0d0  ! (default 0d0) mass param for Born suppression factor. If < 0 suppfact = 1
#bornsuppfactV 700d0  ! (default 0d0) pt of the V boson at Born level, as suppression factor. If < 0 suppfact = 1
bornzerodamp      1  ! (default 0d0) activate damping factors for Born amplitudes approching zero in some phase-space point
ubexcess_correct  1  ! correct for upperbound violations

renscfact  1d0   ! (default 1d0) ren scale factor: muren  = muref * renscfact
facscfact  1d0   ! (default 1d0) fac scale factor: mufact = muref * facscfact

! Parameters to allow or not the use of stored data
use-old-grid    1 ! if 1 use old grid if file pwggrids.dat is present (<> 1 regenerate)
use-old-ubound  1 ! if 1 use norm of upper bounding function stored in pwgubound.dat, if present; <> 1 regenerate

Generation-level cuts

Input scheme

SM parameters

Switches for different 
contributions

SMEFT operators

Our code will be available for download on the POWHEG-BOX web page. 

https://powhegbox.mib.infn.it

