

SMEFT at NNLO+PS: *Vh* production

Luc Schnell

20th Workshop of the LHC Higgs Working Group November 15, 2023

Based on:

R. Gauld, U. Haisch, LS: SMEFT at NNLO+PS: Vh production. [2311.06107].

1. Introduction

1. Introduction **1.1 The importance of Higgsstrahlung**

Measure Higgs couplings (e.g. y_b) to appreciable precision.

SM:
$$y_b = \frac{\sqrt{2} m_b}{v} \rightarrow a$$

push this down to ± 0.05 [1,2].

Sources: [1] <u>ArXiv:1808.08238</u> (ATLAS), [2] <u>ArXiv:1808.08242</u> (CMS).

any deviation is a clear sign for NP.

Currently: $\mu_{h \to b\bar{b}} = 1.01 \pm 0.20 \rightarrow \text{HL-LHC}$ is projected to

Source: <u>nytimes.com</u>.

1. Introduction1.1 Theoretical predictions (SM)

In the SM, the higher-order QCD corrections to Vh at NNLO+PS are well-known [1,2,3].

A dedicated Monte Carlo event generator has for example been made available in the **POWHEG MiNNLO**_{PS} framework [4].

Sources: [1] DOI:10.1007/BF01679868 (G. Kramer, B. Lampe), [2] DOI:10.1016/0550-3213(91)90064-5 (R. Hamberg, W.L. van Neerven, T. Matsuura), [3] ArXiv:1112.1531 (T. Gehrmann, L. Tancredi), [4] ArXiv:2112.04168 (S. Zanoli, M. Chiesa, E. Re, M. Wiesemann, G. Zanderighi), [5] ArXiv:2209.06138 (J. Baglio, C. Duhr, B. Mistlberger, R. Szafron).

Sources: [1] ArXiv:2204.00663 (U. Haisch, D.J. Scott, M. Wiesemann, G. Zanderighi, S. Zanoli).

$$Q_{H\ell}^{(3)} = (H^{\dagger} i \overset{\leftrightarrow}{D}{}_{\mu}^{a} H) (\bar{\ell} \gamma^{\mu} \tau^{a} \ell)$$

$$Q_{He} = (H^{\dagger} i \overset{\leftrightarrow}{D}_{\mu} H) (\bar{e} \gamma^{\mu} e)$$

2. Details of the calculation

2. Details of the calculation

2.1 $q\bar{q}$ -initiated contributions

$$\mathcal{A}_{\mathsf{B1g0Z}}\left(1_{q}^{-}, 2_{g}^{-}, 3_{\bar{q}}^{+}; 4_{\ell}^{-}, 5_{\bar{\ell}}^{+}\right) = \frac{\langle 34 \rangle}{\langle 12 \rangle \langle 23 \rangle} \left(\langle 13 \rangle \left[51 \right] + \langle 23 \rangle \left(\langle 13 \rangle \left[51 \right] + \langle 23 \rangle \left(\langle 13 \rangle \left[51 \right] \right) \right) \right) \right)$$

 $23\rangle [52]$

$$\mathcal{A}_{\mathsf{B1g0Z}}\left(1_{q}^{-}, 2_{g}^{-}, 3_{\bar{q}}^{+}; 4_{\ell}^{-}, 5_{\bar{\ell}}^{+}\right) = \frac{\langle 34 \rangle}{\langle 12 \rangle \langle 23 \rangle} \left(\langle 13 \rangle [51] + \langle 23 \rangle \langle 23 \rangle \right) \left(\langle 13 \rangle [51] + \langle 23 \rangle \langle 23$$

$$\mathcal{A}_{\mathsf{B1g0Z}}\left(1_{q}^{-}, 2_{g}^{+}, 3_{\bar{q}}^{+}; 4_{\ell}^{-}, 5_{\bar{\ell}}^{+}\right) = -\mathcal{A}_{\mathsf{B1g0Z}}\left(3_{q}^{-}, 2_{g}^{-}, 1_{\bar{q}}^{+}; 5_{\ell}^{-}, 4_{\bar{\ell}}^{+}\right)^{*}$$
$$\mathcal{A}_{\mathsf{B1g0Z}}\left(1_{q}^{-}, 2_{g}^{h_{g}}, 3_{\bar{q}}^{+}; 4_{\ell}^{+}, 5_{\bar{\ell}}^{-}\right) = \mathcal{A}_{\mathsf{B1g0Z}}\left(1_{q}^{-}, 2_{g}^{h_{g}}, 3_{\bar{q}}^{+}; 5_{\ell}^{-}, 4_{\bar{\ell}}^{+}\right),$$

$$23\rangle [52]),$$

1+.5-4+)*

$$\mathcal{A}_{\mathsf{B1g0Z}}\left(1_{q}^{-}, 2_{g}^{-}, 3_{\bar{q}}^{+}; 4_{\ell}^{-}, 5_{\bar{\ell}}^{+}\right) = \frac{\langle 34 \rangle}{\langle 12 \rangle \langle 23 \rangle} \left(\langle 13 \rangle \left[51 \right] + \langle 23 \rangle \left(\langle 13 \rangle \left[51 \right] + \langle 23 \rangle \left(\langle 13 \rangle \left[51 \right] + \langle 23 \rangle \left(\langle 13 \rangle \left[51 \right] + \langle 23 \rangle \left(\langle 13 \rangle \left[51 \right] + \langle 23 \rangle \left(\langle 13 \rangle \left[51 \right] + \langle 23 \rangle \left(\langle 23 \rangle \left[(\langle 13 \rangle \left[51 \right] + \langle 23 \rangle \left(\langle 23 \rangle \left[(\langle 13 \rangle \left[51 \right] + \langle 23 \rangle \left[(\langle 13 \rangle \left[(\langle 13$$

$$\mathcal{A}_{\text{B1g0Z}}\left(1_{q}^{-}, 2_{g}^{+}, 3_{\bar{q}}^{+}; 4_{\ell}^{-}, 5_{\bar{\ell}}^{+}\right) = -\mathcal{A}_{\text{B1g0Z}}\left(3_{q}^{-}, 2_{g}^{-}, 1_{q}^{-}, 2_{g}^{h_{g}}, 3_{\bar{q}}^{+}; 4_{\ell}^{+}, 5_{\bar{\ell}}^{-}\right) = \mathcal{A}_{\text{B1g0Z}}\left(1_{q}^{-}, 2_{g}^{h_{g}}, 3_{\bar{q}}^{+}; 4_{\ell}^{+}, 5_{\bar{\ell}}^{-}\right)$$

$$\mathtt{B1g0Z} = \frac{8\pi\alpha_s C_F}{C_A} \sum_{h_q, h_g, h_\ell = \pm} \left| \frac{g_{Zq}^{h_q} g_{Z\ell}^{h_\ell} g_{hZZ}}{D_Z(s_{123}) D_Z(s_{45})} \, \mathcal{A}_{\mathtt{B1g}} \right|_{L^2}$$

$$\mathcal{A}_{\mathsf{B1g0Z}}\left(1_{q}^{-}, 2_{g}^{-}, 3_{\bar{q}}^{+}; 4_{\ell}^{-}, 5_{\bar{\ell}}^{+}\right) = \frac{\langle 34 \rangle}{\langle 12 \rangle \langle 23 \rangle} \left(\langle 13 \rangle \left[51 \right] + \langle 23 \rangle \left(\langle 13 \rangle \left[51 \right] + \langle 23 \rangle \left(\langle 13 \rangle \left[51 \right] + \langle 23 \rangle \left(\langle 13 \rangle \left[51 \right] + \langle 23 \rangle \left(\langle 13 \rangle \left[51 \right] + \langle 23 \rangle \left(\langle 13 \rangle \left[51 \right] + \langle 23 \rangle \left(\langle 23 \rangle \left[(\langle 13 \rangle \left[51 \right] + \langle 23 \rangle \left(\langle 23 \rangle \left[(\langle 13 \rangle \left[51 \right] + \langle 23 \rangle \left[(\langle 13 \rangle \left[(\langle 13$$

$$\mathcal{A}_{\text{B1g0Z}}\left(1_{q}^{-}, 2_{g}^{+}, 3_{\bar{q}}^{+}; 4_{\ell}^{-}, 5_{\bar{\ell}}^{+}\right) = -\mathcal{A}_{\text{B1g0Z}}\left(3_{q}^{-}, 2_{g}^{-}, 1_{q}^{-}, 2_{g}^{h_{g}}, 3_{\bar{q}}^{+}; 4_{\ell}^{+}, 5_{\bar{\ell}}^{-}\right) = \mathcal{A}_{\text{B1g0Z}}\left(1_{q}^{-}, 2_{g}^{h_{g}}, 3_{\bar{q}}^{+}; 4_{\ell}^{+}, 5_{\bar{\ell}}^{-}\right)$$

$$\mathtt{B1g0Z} = \frac{8\pi\alpha_s C_F}{C_A} \sum_{h_q, h_g, h_\ell = \pm} \left| \frac{g_{Zq}^{h_q} g_{Z\ell}^{h_\ell} g_{hZZ}}{D_Z(s_{123}) D_Z(s_{45})} \, \mathcal{A}_{\mathtt{B1g}} \right|_{L^2}$$

$$\mathcal{A}_{\mathsf{B1g0Z}}\left(1_{q}^{-}, 2_{g}^{-}, 3_{\bar{q}}^{+}; 4_{\ell}^{-}, 5_{\bar{\ell}}^{+}\right) = \frac{\langle 34 \rangle}{\langle 12 \rangle \langle 23 \rangle} \left(\left\langle 13 \right\rangle [51] + \left\langle 23 \right\rangle \langle 23 \rangle \right\rangle \left(\left\langle 13 \right\rangle [51] + \left\langle 23 \right\rangle \langle 23 \rangle \langle 23 \rangle \right\rangle \right) \left(\left\langle 13 \right\rangle [51] + \left\langle 23 \right\rangle \langle 23 \rangle \langle 23$$

$$\mathcal{A}_{\text{B1g0Z}}\left(1_{q}^{-}, 2_{g}^{+}, 3_{\bar{q}}^{+}; 4_{\ell}^{-}, 5_{\bar{\ell}}^{+}\right) = -\mathcal{A}_{\text{B1g0Z}}\left(3_{q}^{-}, 2_{g}^{-}, 1_{q}^{-}, 2_{g}^{h_{g}}, 3_{\bar{q}}^{+}; 4_{\ell}^{+}, 5_{\bar{\ell}}^{-}\right) = \mathcal{A}_{\text{B1g0Z}}\left(1_{q}^{-}, 2_{g}^{h_{g}}, 3_{\bar{q}}^{+}; 4_{\ell}^{+}, 5_{\bar{\ell}}^{-}\right)$$

$$\mathtt{B1g0Z} = \frac{8\pi\alpha_s C_F}{C_A} \sum_{h_q, h_g, h_\ell = \pm} \left| \frac{g_{Zq}^{h_q} g_{Z\ell}^{h_\ell} g_{hZZ}}{D_Z(s_{123}) D_Z(s_{45})} \, \mathcal{A}_{\mathtt{B1g}} \right|_{L^2}$$

$$\mathcal{A}_{\mathsf{B1g0Z}}\left(1_{q}^{-}, 2_{g}^{-}, 3_{\bar{q}}^{+}; 4_{\ell}^{-}, 5_{\bar{\ell}}^{+}\right) = \frac{\langle 34 \rangle}{\langle 12 \rangle \langle 23 \rangle} \left(\langle 13 \rangle \left[51 \right] + \langle 23 \rangle \left(\langle 13 \rangle \left[51 \right] + \langle 23 \rangle \left(\langle 13 \rangle \left[51 \right] + \langle 23 \rangle \left(\langle 13 \rangle \left[51 \right] + \langle 23 \rangle \left(\langle 23 \rangle \left[\langle 23 \rangle \left[51 \right] + \langle 23 \rangle \left[(23 \rangle \left[\langle 23 \rangle \left[(23 \rangle \left[(23 \rangle \left[(23 \rangle \left[(23 \rangle \left[$$

$$\mathcal{A}_{\text{B1g0Z}}\left(1_{q}^{-}, 2_{g}^{+}, 3_{\bar{q}}^{+}; 4_{\ell}^{-}, 5_{\bar{\ell}}^{+}\right) = -\mathcal{A}_{\text{B1g0Z}}\left(3_{q}^{-}, 2_{g}^{-}, 1_{q}^{-}, 2_{g}^{-}, 1_{q}^{-}, 2_{g}^{h_{g}}, 3_{\bar{q}}^{+}; 4_{\ell}^{+}, 5_{\bar{\ell}}^{-}\right) = \mathcal{A}_{\text{B1g0Z}}\left(1_{q}^{-}, 2_{g}^{h_{g}}, 3_{\bar{q}}^{+}; 4_{\ell}^{+}, 5_{\bar{\ell}}^{-}\right) = \mathcal{A}_{\text{B1g0Z}}\left(1_{q}^{-}, 2_{g}^{h_{g}}, 3_{\bar{q}}^{+}; 4_{\ell}^{-}, 5_{\bar{\ell}}^{-}\right)$$

$$\mathtt{B1g0Z} = \frac{8\pi\alpha_s C_F}{C_A} \sum_{h_q, h_g, h_\ell = \pm} \left| \frac{g_{Zq}^{h_q} g_{Z\ell}^{h_\ell} g_{hZZ}}{D_Z(s_{123}) D_Z(s_{45})} \, \mathcal{A}_{\mathtt{B1g}} \right|$$

$$\mathcal{A}_{\mathsf{B1g0Z}}\left(1_{q}^{-}, 2_{g}^{-}, 3_{\bar{q}}^{+}; 4_{\ell}^{-}, 5_{\bar{\ell}}^{+}\right) = \frac{\langle 34 \rangle}{\langle 12 \rangle \langle 23 \rangle} \left(\langle 13 \rangle \left[51 \right] + \langle 23 \rangle \left(\langle 13 \rangle \left[51 \right] + \langle 23 \rangle \left(\langle 13 \rangle \left[51 \right] + \langle 23 \rangle \left(\langle 13 \rangle \left[51 \right] + \langle 23 \rangle \left(\langle 23 \rangle \left[\langle 23 \rangle \left[51 \right] + \langle 23 \rangle \left[(23 \rangle \left[\langle 23 \rangle \left[(23 \rangle \left[(23 \rangle \left[(23 \rangle \left[(23 \rangle \left[$$

$$\mathcal{A}_{\text{B1g0Z}}\left(1_{q}^{-}, 2_{g}^{+}, 3_{\bar{q}}^{+}; 4_{\ell}^{-}, 5_{\bar{\ell}}^{+}\right) = -\mathcal{A}_{\text{B1g0Z}}\left(3_{q}^{-}, 2_{g}^{-}, 1_{q}^{-}, 2_{g}^{-}, 1_{q}^{-}, 2_{g}^{h_{g}}, 3_{\bar{q}}^{+}; 4_{\ell}^{+}, 5_{\bar{\ell}}^{-}\right) = \mathcal{A}_{\text{B1g0Z}}\left(1_{q}^{-}, 2_{g}^{h_{g}}, 3_{\bar{q}}^{+}; 4_{\ell}^{+}, 5_{\bar{\ell}}^{-}\right) = \mathcal{A}_{\text{B1g0Z}}\left(1_{q}^{-}, 2_{g}^{h_{g}}, 3_{\bar{q}}^{+}; 4_{\ell}^{-}, 5_{\bar{\ell}}^{-}\right)$$

$$\mathtt{B1g0Z} = \frac{8\pi\alpha_s C_F}{C_A} \sum_{h_q, h_g, h_\ell = \pm} \left| \frac{g_{Zq}^{h_q} g_{Z\ell}^{h_\ell} g_{hZZ}}{D_Z(s_{123}) D_Z(s_{45})} \, \mathcal{A}_{\mathtt{B1g}} \right|$$

How can we calculate the relevant **SMEFT matrix elements**?

How can we calculate the relevant **SMEFT matrix elements**?

$$\frac{1}{2} = \frac{\langle 13 \rangle \langle 3 | \gamma^{\mu} | 1] + \langle 23 \rangle \langle 3 | \gamma^{\mu} | 2]}{2 \langle 12 \rangle \langle 23 \rangle} \,.$$

$$\overline{z} = \frac{\langle 13 \rangle \langle 3 | \gamma^{\mu} | 1] + \langle 23 \rangle \langle 3 | \gamma^{\mu} | 2]}{2 \langle 12 \rangle \langle 23 \rangle} \,.$$

$$\begin{split} & \tilde{b}_{\ell}^{+} \right) = \frac{g_{Zq}^{-} g_{Z\ell}^{-}}{D_{Z}(s_{123}) D_{Z}(s_{45})} \left\{ \langle 4|\gamma^{\mu}|5] \left(g_{hZZ} + \delta g_{hZZ}^{(2)} \left(s_{123} + s_{34} \right) + \delta g_{hZZ}^{(3)} \right) \\ & \delta g_{hZZ}^{(2)} p_{123}^{\mu} \langle 4|\not p_{123}|5] - \frac{\delta g_{hZZ}^{(1)}}{2} \left(\langle 4|\gamma^{\mu}\not p_{123}|4\rangle [45] + \langle 45\rangle [5|\not p_{123}\gamma^{\mu}|5] \right) \right\}, \\ & \tilde{b}_{\ell}^{+} \right) = \frac{g_{\gamma q}^{-} g_{Z\ell}^{-}}{s_{123} D(s_{45})} \left\{ -\frac{\delta g_{h\gamma Z}^{(1)}}{2} \left(\langle 4|\gamma^{\mu}|5] \left(\langle 4|\not p_{123}|4] + \langle 5|\not p_{123}|5] \right) \right. \\ & 2 \left(p_{4}^{\mu} + p_{5}^{\mu} \right) \langle 4|\not p_{123}|5] \right) + \delta g_{h\gamma Z}^{(2)} \left(\langle 4|\gamma^{\mu}|5] s_{123} - p_{123}^{\mu} \left\langle 4|\not p_{123}|5] \right) \right\}, \end{split}$$

How can we calculate the relevant **SMEFT matrix elements**'s

—

$$\overline{z} = \frac{\langle 13 \rangle \langle 3 | \gamma^{\mu} | 1] + \langle 23 \rangle \langle 3 | \gamma^{\mu} | 2]}{2 \langle 12 \rangle \langle 23 \rangle} \,.$$

$$(3_{\bar{q}}^{-h_q}) \left[\mathcal{A}_{hZZ}^{\mu}(p_{123}, 4_{\ell}^{h_{\ell}}, 5_{\bar{\ell}}^{-h_{\ell}}) + \mathcal{A}_{h\gamma Z}^{\mu}(p_{123}, 4_{\ell}^{h_{\ell}}, 5_{\bar{\ell}}^{-h_{\ell}}) \right] .$$

 $\mathtt{B1g0Z} = \frac{8\pi\alpha_s C_F}{C_A} \sum_{h_q,h_g,h_\ell=\pm} \left| \frac{g_{Zq}^{h_q} g_{Z\ell}^{h_\ell} g_{hZZ}}{D_Z(s_{123}) D_Z(s_{45})} \,\mathcal{A}_{\mathtt{B1g0Z}} \left(1_q^{h_q}, 2_g^{h_g}, 3_{\bar{q}}^{-h_q}; 4_\ell^{h_\ell}, 5_{\bar{\ell}}^{-h_\ell} \right) \right|^2,$

How can we calculate the relevant **SMEFT matrix elements**?

These contributions give **overall factors** to the SM amplitude.

 $\mathtt{B1g0Z} = \frac{8\pi\alpha_s C_F}{C_A} \sum_{h_q,h_g,h_\ell=\pm} \left| \frac{g_{Zq}^{h_q} g_{Z\ell}^{h_\ell} g_{hZZ}}{D_Z(s_{123}) D_Z(s_{45})} \mathcal{A}_{\mathtt{B1g0Z}} \left(1_q^{h_q}, 2_g^{h_g}, 3_{\bar{q}}^{-h_q}; 4_\ell^{h_\ell}, 5_{\bar{\ell}}^{-h_\ell} \right) \right|^2,$

How can we calculate the relevant **SMEFT matrix elements**?

These contributions give **overall factors** to the SM amplitude.

$$g_{Zf}^{\pm} = \frac{g_1^2 Y_f^{\pm} - 2g_2^2 T_f^{3\pm}}{2g_+}$$

 $\mathsf{B1g0Z} = \frac{8\pi\alpha_s C_F}{C_A} \sum_{\substack{h=l_g, h_\ell = \pm}} \left| \frac{g_{Zq}^{h_q} g_{Z\ell}^{h_\ell} g_{hZZ}}{D_Z(s_{123}) D_Z(s_{45})} \mathcal{A}_{\mathsf{B1g0Z}} \left(1_q^{h_q}, 2_g^{h_g}, 3_{\bar{q}}^{-h_q}; 4_\ell^{h_\ell}, 5_{\bar{\ell}}^{-h_\ell} \right) \right|^2,$

How can we calculate the relevant **SMEFT matrix elements**?

These contributions give **overall factors** to the SM amplitude.

$$g_{Zf}^{\pm} = \frac{g_1^2 Y_f^{\pm} - 2g_2^2 T_f^{3\pm}}{2g_+}$$

$$\delta g_{Zf}^{(0)\pm} = \frac{g_1^3 \delta g_1 Y_f^{\pm} - 2g_2^3 \delta g_2 T_f^{3\pm} - g_1^2 g_2 \delta g_2 \left(Y_f^{\pm} + 4T_f^{3\pm}\right) + 2g_1 g_2^2 \delta g_1 \left(Y_f^{\pm} + T_f^{3\pm}\right)}{2^{3/\sqrt[2]{g_+}}}$$

Input scheme corrections

 $\mathsf{B1g0Z} = \frac{8\pi\alpha_s C_F}{C_A} \sum_{\substack{h=J_g, h_\ell = \pm \\ J_g, h_\ell = \pm \\ J_g, h_\ell = \pm \\ J_g(s_{123}) D_Z(s_{45}) } \mathcal{A}_{\mathsf{B1g0Z}} \left(1_q^{h_q}, 2_g^{h_g}, 3_{\bar{q}}^{-h_q}; 4_\ell^{h_\ell}, 5_{\bar{\ell}}^{-h_\ell} \right) \Big|^2,$

How can we calculate the relevant **SMEFT matrix elements**?

These contributions give **overall factors** to the SM amplitude.

$$g_{Zf}^{\pm} = \frac{g_1^2 Y_f^{\pm} - 2g_2^2 T_f^{3\pm}}{2g_+}$$

$$\delta g_{Zf}^{(0)\pm} = \frac{g_1^3 \delta g_1 Y_f^{\pm} - 2g_2^3 \delta g_2 T_f^{3\pm} - g_1^2 g_2 \delta g_2 \left(Y_f^{\pm} + 4T_f^{3\pm}\right) + 2g_1 g_2^2 \delta g_1 \left(Y_f^{\pm} + T_f^{3\pm}\right)}{2^{3/\sqrt[3]{g_+}}}.$$

Input scheme corrections

 $\mathsf{B1g0Z} = \frac{8\pi\alpha_s C_F}{C_A} \sum_{\substack{h=l_g, h_\ell = \pm \\ J_g, h_\ell = \pm \\ }} \left| \frac{g_{Zq}^{h_q} g_{Z\ell}^{h_\ell} g_{hZZ}}{D_Z(s_{123}) D_Z(s_{45})} \mathcal{A}_{\mathsf{B1g0Z}} \left(1_q^{h_q}, 2_g^{h_g}, 3_{\bar{q}}^{-h_q}; 4_\ell^{h_\ell}, 5_{\bar{\ell}}^{-h_\ell} \right) \right|^2,$

 α -scheme α_{μ} -schemeLEP-scheme $\{G_F, m_Z, m_W\}$ $\{\alpha, m_Z, m_W\}$ $\{\alpha, G_F, m_Z\}$

How can we calculate the relevant **SMEFT matrix elements**?

These contributions give **overall factors** to the SM amplitude.

$$g_{Zf}^{\pm} = \frac{g_1^2 Y_f^{\pm} - 2g_2^2 T_f^{3\pm}}{2g_+}$$

$$\delta g_{Zd}^{(1)-} = \frac{v^2 g_+}{2} \left(C_{Hq}^{(1)} + C_{Hq}^{(3)} \right), \qquad \delta g_{Zu}^{(1)-} = \frac{v^2 g_+}{2} \left(C_{Hq}^{(1)} - C_{Hq}^{(3)} \right),$$

$$\mathbf{Direct \ contributions}$$

$$\delta g_{Zf}^{(0)\pm} = \frac{g_1^3 \delta g_1 Y_f^{\pm} - 2g_2^3 \delta g_2 T_f^{3\pm} - g_1^2 g_2 \delta g_2 \left(Y_f^{\pm} + 4T_f^{3\pm} \right) + 2g_1 g_2^2 \delta g_1 \left(Y_f^{\pm} + T_f^{3\pm} \right)}{2^{3/2} \sqrt{g_+}}.$$

$$\alpha \text{-scheme}$$

Input scheme corrections

$$\left\| \frac{g_{Zq}^{h_q} g_{Z\ell}^{h_\ell} g_{hZZ}}{D_Z(s_{43}) D_Z(s_{45})} \mathcal{A}_{\mathsf{B1g0Z}} \left(1_q^{h_q}, 2_g^{h_g}, 3_{\bar{q}}^{-h_q}; 4_\ell^{h_\ell}, 5_{\bar{\ell}}^{-h_\ell} \right) \right\|^2,$$

 $\{G_F, m_Z, m_W\}$

 α_{μ} -scheme $\{\alpha, m_Z, m_W\}$

LEP-scheme $\{\alpha, G_F, m_Z\}$

How can we calculate the relevant **SMEFT matrix elements**?

How can we calculate the relevant **SMEFT matrix elements**?

How can we calculate the relevant **SMEFT matrix elements**?

How can we calculate the relevant **SMEFT matrix elements**?

How can we calculate the relevant **SMEFT matrix elements**?

$$\mathcal{A}_{A0g2Z\triangle}^{q}\left(1_{g}^{+}, 2_{g}^{+}, 3_{\ell}^{-}, 4_{\bar{\ell}}^{+}\right) = -\frac{2\left[21\right]\left(\left[41\right]\langle13\rangle + \left[42\right]\langle23\rangle\right)}{\langle12\rangle}\left(\times m_{q}^{2}C_{0}(s_{12}, 0, 0, m_{q}, m_{q}, m_{q})\right)\right)$$

How can we calculate the relevant **SMEFT matrix elements**?

$$\mathcal{A}_{A0g2Z\triangle}^{q} \left(1_{g}^{+}, 2_{g}^{+}, 3_{\ell}^{-}, 4_{\bar{\ell}}^{+}\right) = -\frac{2\left[21\right]\left(\left[41\right]\langle13\rangle + \left[42\right]\langle2z_{\ell}\rangle\right]}{\langle12\rangle} \times m_{q}^{2} C_{0}(s_{12}, 0, 0, m_{q}, m_{$$

$$\mathcal{A}_{\mathsf{A}\mathsf{O}\mathsf{g}\mathsf{2}\mathsf{Z}\bigtriangleup}^{q}\left(1_{g}^{-}, 2_{g}^{-}, 3_{\ell}^{\mp}, 4_{\bar{\ell}}^{\pm}\right) = -\mathcal{A}_{\mathsf{A}\mathsf{O}\mathsf{g}\mathsf{2}\mathsf{Z}\bigtriangleup}^{q}\left(1_{g}^{+}, 2_{g}^{\pm}, 3_{\ell}^{+}, 4_{\bar{\ell}}^{-}\right) = \mathcal{A}_{\mathsf{A}\mathsf{O}\mathsf{g}\mathsf{2}\mathsf{Z}\bigtriangleup}^{q}\left(1_{g}^{\pm}, 2_{g}^{\pm}, 3_{\ell}^{+}, 4_{\bar{\ell}}^{-}\right) = \mathcal{A}_{\mathsf{A}\mathsf{O}\mathsf{g}\mathsf{2}\mathsf{Z}\bigtriangleup}^{q}\left(1_{g}^{\pm}, 2_{g}^{\pm}, 3_{\ell}^{\pm}, 4_{\bar{\ell}}^{-}\right) = \mathcal{A}_{\mathsf{A}\mathsf{O}\mathsf{g}\mathsf{2}\mathsf{Z}\bigtriangleup}^{q}\left(1_{g}^{\pm}, 2_{g}^{\pm}, 3_{\ell}^{+}, 4_{\bar{\ell}}^{-}\right) = \mathcal{A}_{\mathsf{A}\mathsf{O}\mathsf{g}\mathsf{2}\mathsf{Z}\bigtriangleup}^{q}\left(1_{g}^{\pm}, 2_{g}^{\pm}, 3_{\ell}^{+}\right)$$

$$\overline{,4^{\mp}_{\ell},3^{\pm}_{\bar{\ell}}} ,$$

$$\overline{4^{-}_{\ell},3^{+}_{\bar{\ell}}} ,$$

How can we calculate the relevant **SMEFT matrix elements**?

 $\mathcal{A}_{\mathrm{A0g2Z}\bigtriangleup}^{q}\left(1_{g}^{+}, 2_{g}^{+}, 3_{\ell}^{-}, 4_{\bar{\ell}}^{+}\right) = -\frac{2\left[21\right]\left(\left[41\right]\left\langle13\right\rangle + \left[42\right]\left\langle23\right\rangle\right)}{\left\langle12\right\rangle}\left(1 - \frac{s_{12}}{m_{z}^{2}}\right)$ $\times m_q^2 C_0(s_{12}, 0, 0, m_q, m_q, m_q)$.

$$\begin{aligned} \mathcal{A}_{\mathsf{AOg2Z}\triangle}^{q} \left(1_{g}^{-}, 2_{g}^{-}, 3_{\ell}^{\mp}, 4_{\bar{\ell}}^{\pm}\right) &= -\overline{\mathcal{A}_{\mathsf{AOg2Z}\triangle}^{q}} \left(1_{g}^{+}, 2_{g}^{+}, 4_{\bar{\ell}}^{+}\right) \\ \mathcal{A}_{\mathsf{AOg2Z}\triangle}^{q} \left(1_{g}^{\pm}, 2_{g}^{\pm}, 3_{\ell}^{+}, 4_{\bar{\ell}}^{-}\right) &= \mathcal{A}_{\mathsf{AOg2Z}\triangle}^{q} \left(1_{g}^{\pm}, 2_{g}^{\pm}, 4_{\bar{\ell}}^{\pm}\right) \\ \mathcal{A}_{\mathsf{AOg2Z}\triangle}^{q} \left(1_{g}^{\pm}, 2_{g}^{\pm}, 3_{\ell}^{+}, 4_{\bar{\ell}}^{-}\right) &= \mathcal{A}_{\mathsf{AOg2Z}\triangle}^{q} \left(1_{g}^{\pm}, 2_{g}^{\pm}, 4_{\bar{\ell}}^{\pm}\right) \\ \mathcal{A}_{\mathsf{AOg2Z}\triangle}^{q} \left(1_{g}^{\pm}, 2_{g}^{\pm}, 3_{\ell}^{+}, 4_{\bar{\ell}}^{-}\right) \\ \mathcal{A}_{\mathsf{AOg2Z}\triangle}^{q} \left(1_{g}^{\pm}, 2_{g}^{\pm}, 3_{\ell}^{+}\right) \\ \mathcal{A}_{\mathsf{AOg2Z}\triangle}^{q} \left(1_{g}^{\pm}, 3_{\ell}^{+}\right) \\ \mathcal{A}_{\mathsf{AOg2Z}\triangle}^{q} \left(1_{g}^{+}\right)$$

$$\mathrm{A0g2Z} = \frac{\alpha_s^2}{8\pi^2 \, (C_A^2 - 1)^2} \sum_{h_g, h_\ell = \pm}$$

with

$$\mathcal{A}^{q}_{\Delta} = \frac{(g^{-}_{Zq} - g^{+}_{Zq}) g^{h_{\ell}}_{Z\ell} g_{hZZ}}{D_{Z}(s_{12}) D_{Z}(s_{34})}$$

How can we calculate the relevant **SMEFT matrix elements**?

 $\begin{aligned} \mathcal{A}_{\text{AOg2Z}\triangle}^{q} \left(1_{g}^{+}, 2_{g}^{+}, 3_{\ell}^{-}, 4_{\bar{\ell}}^{+}\right) &= -\frac{2\left[21\right]\left(\left[41\right]\langle13\rangle + \left[42\right]\langle23\rangle\right)}{\langle12\rangle} \left(1 - \frac{s_{12}}{m_{Z}^{2}}\right) \\ &\times m_{q}^{2} C_{0}(s_{12}, 0, 0, m_{q}, m_{q}, m_{q}) \,. \end{aligned}$

$$\begin{aligned} \mathcal{A}_{\mathsf{AOg2Z}\triangle}^{q} \left(1_{g}^{-}, 2_{g}^{-}, 3_{\ell}^{\mp}, 4_{\bar{\ell}}^{\pm}\right) &= -\overline{\mathcal{A}_{\mathsf{AOg2Z}\triangle}^{q}} \left(1_{g}^{+}, 2_{g}^{+}, 4_{\bar{\ell}}^{+}\right) \\ \mathcal{A}_{\mathsf{AOg2Z}\triangle}^{q} \left(1_{g}^{\pm}, 2_{g}^{\pm}, 3_{\ell}^{+}, 4_{\bar{\ell}}^{-}\right) &= \mathcal{A}_{\mathsf{AOg2Z}\triangle}^{q} \left(1_{g}^{\pm}, 2_{g}^{\pm}, 4_{\bar{\ell}}^{\pm}\right) \\ \mathcal{A}_{\mathsf{AOg2Z}\triangle}^{q} \left(1_{g}^{\pm}, 2_{g}^{\pm}, 3_{\ell}^{+}, 4_{\bar{\ell}}^{-}\right) &= \mathcal{A}_{\mathsf{AOg2Z}\triangle}^{q} \left(1_{g}^{\pm}, 2_{g}^{\pm}, 4_{\bar{\ell}}^{\pm}\right) \\ \mathcal{A}_{\mathsf{AOg2Z}\triangle}^{q} \left(1_{g}^{\pm}, 2_{g}^{\pm}, 3_{\ell}^{+}, 4_{\bar{\ell}}^{-}\right) \\ \mathcal{A}_{\mathsf{AOg2Z}\triangle}^{q} \left(1_{g}^{\pm}, 2_{g}^{\pm}, 3_{\ell}^{+}\right) \\ \mathcal{A}_{\mathsf{AOg2Z}\triangle}^{q} \left(1_{g}^{\pm}, 3_{\ell}^{+}\right) \\ \mathcal{A}_{\mathsf{AOg2Z}\triangle}^{q} \left(1_{g}^{+}\right)$$

$$\mathrm{A0g2Z} = \frac{\alpha_s^2}{8\pi^2 (C_A^2 - 1)^2} \sum_{h_g, h_\ell = \pm} \left| \sum_{q=t, b} \left(\mathcal{A}^q_{\triangle} + \sum_{s=\pm} \frac{m_q^2}{m_Z^2} \mathcal{A}^{q, s}_{\Box} \right) \right|^2 \,,$$

with

$$\mathcal{A}^{q}_{\Delta} = \frac{(g^{-}_{Zq} - g^{+}_{Zq}) g^{h_{\ell}}_{Z\ell} g_{hZZ}}{D_{Z}(s_{12}) D_{Z}(s_{34})} \mathcal{A}^{q}_{\text{Aog2Z}\Delta} \left(1^{h_{g}}_{g}, 2^{h_{g}}_{g}, 3^{h_{\ell}}_{\ell}, 4^{-h_{\ell}}_{\bar{\ell}}\right) ,$$

 $\frac{\overline{f}_{g}^{+}, 4_{\ell}^{\mp}, 3_{\overline{\ell}}^{\pm}}{, 4_{\ell}^{-}, 3_{\overline{\ell}}^{+}},$

(B-type)

$$\mathcal{A}^q_{\operatorname{AOg2Z\Box}}\left(1_g^+, 2_g^+, 3_\ell^-, 4_{\bar{\ell}}^+\right) \,,$$

$$\mathcal{A}^q_{\operatorname{AOg2ZD}}\left(1_g^-, 2_g^+, 3_\ell^-, 4_{\bar{\ell}}^+\right) ,$$

How can we calculate the relevant **SMEFT matrix elements**?

Sources: [1] ArXiv:2012.13989 (F. Feruglio), [2] ArXiv:2012.07740 (Q. Bonnefoy, L. Di Luzio, Ch. Grojean, A. Paul, A.N. Rossia), ArXiv:1801.03505 (P.J. Fox, I. Low, Y. Zhang).

Sources: [1] ArXiv:2012.13989 (F. Feruglio), [2] ArXiv:2012.07740 (Q. Bonnefoy, L. Di Luzio, Ch. Grojean, A. Paul, A.N. Rossia), ArXiv:1801.03505 (P.J. Fox, I. Low, Y. Zhang).

Sources: [1] ArXiv:2012.13989 (F. Feruglio), [2] ArXiv:2012.07740 (Q. Bonnefoy, L. Di Luzio, Ch. Grojean, A. Paul, A.N. Rossia), ArXiv:1801.03505 (P.J. Fox, I. Low, Y. Zhang).

The **axial current** contributes.

 \rightarrow gauge anomalies?

$$(g_{Zt}^{-} - g_{Zt}^{+}) = -(g_{Zb}^{-} - g_{Zb}^{+}),$$

Is required in the SM to cancel the **relevant** anomalies in the SM.

How can we calculate the relevant **SMEFT matrix elements**?

Sources: [1] ArXiv:2012.13989 (F. Feruglio), [2] ArXiv:2012.07740 (Q. Bonnefoy, L. Di Luzio, Ch. Grojean, A. Paul, A.N. Rossia), ArXiv:1801.03505 (P.J. Fox, I. Low, Y. Zhang).

The **axial current** contributes.

 \rightarrow gauge anomalies?

$$(g_{Zt}^{-} - g_{Zt}^{+}) = -(g_{Zb}^{-} - g_{Zb}^{+}),$$

Is required in the SM to cancel the **relevant** anomalies in the SM.

 \rightarrow how does this work in the SMEFT?

How can we calculate the relevant **SMEFT matrix elements**?

Sources: [1] ArXiv:2012.13989 (F. Feruglio), [2] ArXiv:2012.07740 (Q. Bonnefoy, L. Di Luzio, Ch. Grojean, A. Paul, A.N. Rossia), ArXiv:1801.03505 (P.J. Fox, I. Low, Y. Zhang).

The **axial current** contributes.

 \rightarrow gauge anomalies?

$$(g_{Zt}^{-} - g_{Zt}^{+}) = -(g_{Zb}^{-} - g_{Zb}^{+}),$$

Is required in the SM to cancel the **relevant** anomalies in the SM.

 \rightarrow how does this work in the SMEFT?

There are no relevant anomalies induced by the SMEFT operators.

How can we calculate the relevant **SMEFT matrix elements**?

Sources: [1] ArXiv:2012.13989 (F. Feruglio), [2] ArXiv:2012.07740 (Q. Bonnefoy, L. Di Luzio, Ch. Grojean, A. Paul, A.N. Rossia), ArXiv:1801.03505 (P.J. Fox, I. Low, Y. Zhang).

The **axial current** contributes.

 \rightarrow gauge anomalies?

$$(g_{Zt}^{-} - g_{Zt}^{+}) = -(g_{Zb}^{-} - g_{Zb}^{+}),$$

Is required in the SM to cancel the **relevant** anomalies in the SM.

 \rightarrow how does this work in the SMEFT?

There are no relevant anomalies induced by the SMEFT operators.

The **irrelevant anomalies** (depending on the loop momentum routing scheme) can be cancelled with a local counterterm.

2. Details of the calculation 2.3 Matrix element library

We implemented all squared matrix elements in a self-contained Fortran library.

It includes the spinor-helicity amplitudes for the dimension-four SM and **dimension-six SMEFT contributions** as well as the definitions for the **couplings** and the **propagators** depending on the EW input scheme.

Sources: [1] gitlab.com/lucschnell/vh-amplitudes (R. Gauld, U. Haisch, LS).

(A-type)

$$2s_{b}\mathcal{B}_{ij} = -N \sum_{\substack{\text{spins}\\\text{colours}}} \mathcal{M}_{\{c_{k}\}} \left(\mathcal{M}_{\{c_{k}\}}^{\dagger}\right)_{\substack{c_{i} \to c_{i}'\\c_{j} \to c_{j}'}} T_{c_{i},c_{i}'}^{a} T_{c_{j},c_{j}'}^{a}.$$
$$\mathcal{B}_{j}^{\mu\nu} = N \sum_{\{i\},s_{j},s_{j}'} \mathcal{M}\left(\{i\},s_{j}\right) \mathcal{M}^{\dagger}\left(\{i\},s_{j}'\right) \left(\epsilon_{s_{j}}^{\mu}\right)^{*} \epsilon_{s_{j}'}^{\nu},$$

ossings	event	flavours
2,i3,i4,i	5,K,	f1,f2)

2. Details of the calculation 2.4 POWHEG event generator

We implemented the matrix element library in a POWHEG MinnLO_{PS} event generator.

<pre>! ====================================</pre>						
<pre>min_z_mass 10d0 max_z_mass 10d0 max_l_mass 10d0 max_h_mass 10d0 max_h_mass 10000d0 ! ====================================</pre>	! ====================================		=======	=====	====	==:
<pre>! ====================================</pre>	: ====================================	0d0 0000d0 0d0 0000d0 ======				
<pre>! Input scheme InputScheme 2 ! Input scheme. 0 = (A ! Input parameters mz 91.1876d0 Gfermi 1.1663788d-5 alpha 7.81549186d-3 mh 125.09d0 gh 4.1d-3 mt 172.5d0 mb 4.78d0 ! Cutting-edge calculations for the SM mw 80.361d0 gw 2.089d0 gz 2.4952d0 ! Switches SM 0 ! Switch (on/off). W Linear 1 ! Switch (on/off). W Quadratic 0 ! Switch (on/off). W</pre>	! ========== ! Model param ! ===========	====== eters		=====	====	==:
<pre>! Input parameters mz 91.1876d0 Gfermi 1.1663788d-5 alpha 7.81549186d-3 mh 125.09d0 gh 4.1d-3 mt 172.5d0 mb 4.78d0 ! Cutting-edge calculations for the SM mw 80.361d0 gw 2.089d0 gz 2.4952d0 ! Switches SM 0 ! Switch (on/off). W Linear 1 ! Switch (on/off). W Quadratic 0 ! Switch (on/off). W</pre>	! Input schem InputScheme 2	e ! Iı	nput sch	ieme.	0 =	(A
<pre>mh 125.09d0 gh 4.1d-3 mt 172.5d0 mb 4.78d0 ! Cutting-edge calculations for the SM mw 80.361d0 gw 2.089d0 gz 2.4952d0 ! Switches SM 0 ! Switch (on/off). W Linear 1 ! Switch (on/off). W Quadratic 0 ! Switch (on/off). W</pre>	! Input param mz 91.1876d0 Gfermi 1.1663 alpha 7.81549	eters 788d–5 186d–3				
<pre>! Cutting-edge calculations for the SM mw 80.361d0 gw 2.089d0 gz 2.4952d0 ! Switches SM 0 ! Switch (on/off). W Linear 1 ! Switch (on/off). W Quadratic 0 ! Switch (on/off). W</pre>	mh 125.09d0 gh 4.1d-3 mt 172.5d0 mb 4.78d0					
! Switches SM 0 ! Switch (on/off). W Linear 1 ! Switch (on/off). W Quadratic 0 ! Switch (on/off). W	! Cutting-edg mw 80.361d0 gw 2.089d0 gz 2.4952d0	e calcu	ulations	for	the	SM
	! Switches SM 0 Linear 1 Quadratic 0	! ! !	Switch Switch Switch	(on/o (on/o (on/o	ff). ff). ff).	W W W

We will make it **available for download** on the POWHEG-BOX web page [1].

Sources: [1] powhegbox.mib.infn.it (S. Aioli, K. Hamilton, P. Nason, C. Oleari, E. Re. G. Zanderighi, T. Jezo).

============= ============ =========== ============= =========== Alpha, MZ, MW), 1 = (GF, MZ, MW), 2 = (Alpha, GF, MZ) Whether to include the SM contribution or not. hether to include the linear NP corrections or not. to include the quadratic NP corrections or not.

4. Results

4.1 Spectra

4.1 Spectra

4.2 NNLO vs NLO

Sources: [1] <u>ArXiv:1804.07407</u> (S. Alioli, W. Dekens, M. Girard, E. Mereghetti).

4.2 NNLO vs NLO

Sources: [1] <u>ArXiv:1804.07407</u> (S. Alioli, W. Dekens, M. Girard, E. Mereghetti).

4. Results 4.2 NNLO vs NLO

Our code can do $\left| M_{\text{dim-4}} \right|^2$, 2Re $\left\{ M_{\text{dim-4}}^{\dagger} M_{\text{dim-6}} \right\}$, $\left| M_{\text{dim-6}} \right|^2$ individually, for all three input schemes.

Sources: [1] ArXiv:1804.07407 (S. Alioli, W. Dekens, M. Girard, E. Mereghetti).

 The associated Higgs production (Vh) channel is interesting phenomenologically, since it allows to measure Higgs couplings precisely.

- The associated Higgs production (Vh) channel is interesting phenomenologically, since it allows to measure Higgs couplings precisely.
- We calculated SMEFT contributions to $pp \rightarrow V(\rightarrow l^+l^-)h$ at **NNLO** and implemented them in an NNLO+PS accurate POWHEG MiNNLO_{PS} event generator.

- The associated Higgs production (Vh) channel is interesting phenomenologically, since it allows to measure Higgs couplings precisely.
- We calculated SMEFT contributions to $pp \rightarrow V(\rightarrow l^+l^-)h$ at **NNLO** and implemented them in an NNLO+PS accurate POWHEG MiNNLO_{PS} event generator.
 - \rightarrow essential tool for future Higgs characterisation studies at the LHC

- The associated Higgs production (Vh) channel is interesting phenomenologically, since it allows to measure Higgs couplings precisely.
- We calculated SMEFT contributions to pp → V(→ l⁺l⁻)h at NNLO and implemented them in an NNLO+PS accurate POWHEG MiNNLO_{PS} event generator.
 → essential tool for future Higgs characterisation studies at the LHC

 Higher-order SMEFT calculations come with interesting theoretical aspects, including the "recycling" of SM spinor-helicity amplitudes and the treatment of gauge anomalies.

Thank you for your attention!

Candidate Event: $pp \rightarrow H(\rightarrow bb) + Z(\rightarrow ee)$ Run: 337215 Event: 1906922941 2017-10-05 07:55:20 CEST

Introduction Theoretical predictions (BSM)

What about **new effects**?

$$\int \frac{dk^D}{(2\pi)^D} \frac{\dots}{((p+k)^2 - M_S^2)}$$

The SMEFT allows us to study the **indirect contributions** from high-scale BSM physics in a (largely) model-independent way.

9

Ē

Anatomy of SMEFT effects Current constraints

What are the **current constraints** on these types of SMEFT operators?

V(h)qq: $C_{Hq}^{(1)}, C_{Hq}^{(3)}, C_{Hu}, C_{Hd}$ $\delta g_L^{\psi} = \frac{g_2}{c_w} \frac{v^2}{\Lambda^2} \left[g_{T_{\psi}^3} T_{\psi}^3 - g_{Q_{\psi}} Q_{\psi} - \frac{1}{2} \left(C_{H\psi_L}^{(1)} - 2T_{\psi}^3 C_{H\psi_L}^{(3)} \right) \right] \,,$ $C_{Hl}^{(1)}, C_{Hl}^{(3)}, C_{He}$ V(h)ll: $\delta \kappa_{\gamma\gamma} \simeq \frac{1}{g_{h\gamma\gamma}} \frac{v^2}{\Lambda^2} \left[c_w^2 C_{HB} + s_w^2 C_{HW} - \delta \kappa_{\gamma Z} \simeq -\frac{1}{g_{h\gamma Z}} \frac{v^2}{\Lambda^2} \left[2c_w s_w \left(C_{HB} - C_{HW} - C_{HW} \right) \right] \right]$ **VVh:** C_{HB}, C_{HW} C_{HWB}

Sources: [1] 10.1093/ptep/ptac097 (PDG), [2] hep-ex/0509008 (SLD et al.), [3] ATLAS-CONF-2021-053 (ATLAS), [4] CMS-PAS-HIG-19-005 (CMS), [5] ArXiv:2309.03501 (ATLAS and CMS)

$$LEP/SLD$$
:

$$\delta g_L^u \in [0.2, 6.8] \cdot 10^{-2}$$

 $\delta g_L^e \in [-7.1, 2.0] \cdot 10^{-4} \,,$

$$\frac{C_{Hq}^{(3)}}{\Lambda^2} \in [-0.9, 2.8] \text{ TeV}^{-2},$$
$$\frac{C_{H\ell}^{(3)}}{\Lambda^2} \in [-3.6, 1.0] \cdot 10^{-2} \text{ TeV}^{-2},$$

$$LHC: \qquad C_{HB} \simeq -\frac{s_w^2}{c_w^2} C_{HW} \\ \mu_{ggF}^{\gamma\gamma} = 1.05 \pm 0.09 , \\ C_{HB} = 0.015 , \\ C_{HB} = 0.015 , \\ \mu_{ggF}^{\gamma Z} = 2.2 \pm 0.7 \qquad C_{HW} = -0.05 , \\ C_{HW$$

Anatomy of SMEFT Effects **Current constraints**

Z couplings to lighter quark generations are less constrained than couplings to heavier quark generations:

Source: <u>hep-ex/0509008</u> (ALEPH, DELPHI, L3, OPAL, SLD, LEP EW Working Group, SLD EW and Heavy Flavour Groups)

Anatomy of SMEFT Effects Input scheme corrections

Input scheme corrections:

$$Q_{\ell\ell} = (\bar{\ell}\gamma_{\mu}\ell)(\bar{\ell}\gamma^{\mu}\ell)$$
 .

$$Q_{HD} = (H^{\dagger}D_{\mu}H)^*(H^{\dagger}D^{\mu}H)$$

Let us consider the situation in the LEP input scheme

Input scheme

$$\frac{\delta m_W}{m_W} = -\frac{c_w s_w}{2 \left(c_w^2 - s_w^2\right)} \frac{v^2}{\Lambda^2} \left[2C_{HWB} + \frac{s_w}{c_w} \left(2C_{H\ell}^{(3)} - C_{\ell\ell} \right) + \frac{c_w}{2s_w} C_{HD} \right]$$
corr.:

$$G_{F} = \frac{1}{\sqrt{2}v^{2}} \left(1 + \frac{\delta G_{F}}{G_{F}} \right),$$

$$\frac{\delta G_{F}}{G_{F}} = v^{2} \left(\left[C_{H\ell}^{(3)} \right]_{\mu\mu} + \left[C_{H\ell}^{(3)} \right]_{ee} - \frac{1}{2} \left[C_{\ell\ell} \right]_{\mu ee\mu} - \frac{1}{2} \left[C_{\ell\ell} \right]_{e\mu\mu e} \right) + \mathcal{O}(\Lambda^{-4}),$$

Source: <u>ArXiv:1812.08163</u> (S. Descotes-Genon, A. Falkowski, M. Fedele, M. González-Alonso, J. Virto)

$$\mathbf{e} \left\{ \alpha, G_F, M_Z \right\}:$$

$$\frac{\delta m_W}{m_W} \in [-0.9, 5.6] \cdot 10^{-4} ,$$

$$\frac{C_{HWB}}{\Lambda^2} \in [-1.2, 0.2] \cdot 10^{-2} \,\text{TeV}^{-2} ,$$

Details of the calculation The POWHEG method

$$egin{split} \sigma_{ ext{NLO}} &= \int d oldsymbol{\Phi}_n \, \mathcal{L} \left[\mathcal{B}(oldsymbol{\Phi}_n) + \mathcal{V}_{ ext{b}}(oldsymbol{\Phi}_n)
ight] + \int d oldsymbol{\Phi}_{n+1} \, \mathcal{L} \, \mathcal{R}(oldsymbol{\Phi}_{n+1}) \ &+ \int d oldsymbol{\Phi}_{n,\oplus} \, \mathcal{L} \, \mathcal{G}_{\oplus, ext{b}}(oldsymbol{\Phi}_{n,\oplus}) + \int d oldsymbol{\Phi}_{n,\ominus} \, \mathcal{L} \, \mathcal{G}_{\ominus, ext{b}}(oldsymbol{\Phi}_{n,\varepsilon}) \; , \end{split}$$

 \rightarrow how to deal with IR singularities?

Soft/collinear

divergences

 $\langle O \rangle = \int d\Phi_n \mathcal{L} O_n(\Phi_n) \left[\mathcal{B}(\Phi_n) + \mathcal{V}_{\mathrm{b}}(\Phi_n) \right]$ $+ \int d\mathbf{\Phi}_{n+1} \left\{ \mathcal{L} O_{n+1}(\mathbf{\Phi}_{n+1}) \ \mathcal{R}(\mathbf{\Phi}_{n+1}) - \sum_{\alpha} \left[\tilde{\mathcal{L}} O_n(\bar{\mathbf{\Phi}}_n) \ \mathcal{C}(\mathbf{\Phi}_{n+1}) \right]_{\alpha} \right\}$ $+\sum_{\alpha\in\{\mathrm{FSC},\mathrm{S}\}}\left[\int d\bar{\Phi}_n\,\tilde{\mathcal{L}}\,O_n\big(\bar{\Phi}_n\big)\,\,\bar{\mathcal{C}}\,\big(\bar{\Phi}_n\big)\right]_{\alpha}+\sum_{\alpha\in\{\mathrm{ISC}_{\textcircled{\bullet}}\}}\left[\int d\Phi_{n,\textcircled{\bullet}}\,\tilde{\mathcal{L}}\,O_n\big(\bar{\Phi}_n\big)\,\,\bar{\mathcal{C}}\,(\Phi_{n,\textcircled{\bullet}})\right]_{\alpha}$ $+ \int d\boldsymbol{\Phi}_{n,\oplus} \, \tilde{\mathcal{L}} \, O_n\big(\bar{\boldsymbol{\Phi}}_n\big) \, \mathcal{G}_{\oplus,\mathrm{b}}(\boldsymbol{\Phi}_{n,\oplus}) + \int d\boldsymbol{\Phi}_{n,\ominus} \, \tilde{\mathcal{L}} \, O_n\big(\bar{\boldsymbol{\Phi}}_n\big) \, \mathcal{G}_{\ominus,\mathrm{b}}(\boldsymbol{\Phi}_{n,\ominus}) \, .$

\rightarrow inclusive NLO

Sources: [1] <u>ArXiv:0709.2092</u> (S. Frixione, P. Nason, C. Oleari).

Subtraction:

 \rightarrow how to avoid **double counting**?

Sudakov form factor:

$$\Delta \left(\mathbf{\Phi}_{n}, p_{\mathrm{T}} \right) = \exp \left\{ -\int \frac{\left[d\Phi_{\mathrm{rad}} R(\mathbf{\Phi}_{n+1}) \ \theta(k_{\mathrm{T}} \left(\mathbf{\Phi}_{n+1} \right) - p_{\mathrm{T}} \right) \right]^{\mathbf{\bar{\Phi}}_{n} = \mathbf{\Phi}_{n}}}{B(\mathbf{\Phi}_{n})} \right\}$$

$$d\sigma = \bar{B}(\boldsymbol{\Phi}_{n}) d\boldsymbol{\Phi}_{n} \left\{ \Delta \left(\boldsymbol{\Phi}_{n}, p_{\mathrm{T}}^{\mathrm{min}} \right) + \Delta \left(\boldsymbol{\Phi}_{n}, k_{\mathrm{T}} \left(\boldsymbol{\Phi}_{n+1} \right) \right) \frac{R \left(\boldsymbol{\Phi}_{n+1} \right)}{B(\boldsymbol{\Phi}_{n})} d\Phi_{\mathrm{rad}} \right\}_{\bar{\boldsymbol{\Phi}}_{n} = \boldsymbol{\Phi}_{n}}$$

 \rightarrow exclusive NLO above p_T^{\min} \rightarrow **parton shower** for radiation below p_T^{\min}

Details of the calculation The POWHEG method

In practice, what one has to implement is

- Flavour structure for Vhj and Vhjj
- Vhj phase space
- Born matrix element (Vh)
- Virtual
- Double virtual
- Real (Vhj)
- Colour-correlated real
- Spin-correlated real
- Virtual-real (Vhj)
- Double real (Vhjj)

Sources: [1] <u>ArXiv:0709.2092</u> (S. Frixione, P. Nason, C. Oleari).

POWHEG-BOX for Vhj

$$2s_b \mathcal{B}_{ij} = -N \sum_{\substack{\text{spins}\\\text{colours}}} \mathcal{M}_{\{c_k\}} \left(\mathcal{M}_{\{c_k\}}^{\dagger} \right)_{\substack{c_i \to c'_i \\ c_j \to c'_j}} T^a_{c_i,c'_i} T^a_{c_j,c'_j}.$$

$$\mathcal{B}_{j}^{\mu\nu} = N \sum_{\{i\}, s_j, s'_j} \mathcal{M}\left(\{i\}, s_j\right) \, \mathcal{M}^{\dagger}\left(\{i\}, s'_j\right) \, \left(\epsilon_{s_j}^{\mu}\right)^* \epsilon_{s'_j}^{\nu} \,,$$

Results **Event generator**

Generation-level cuts

Input scheme

SM parameters

Switches for different contributions

SMEFT operators

Our code will be available for download on the <u>POWHEG-BOX web page</u>.

	! ====================================
)	! ====================================
	! ====================================
	<pre>InputScheme 2 ! Input scheme. 0 = (Alpha, MZ, MW), 1 = (GF, MZ, MW), 2 = (Alpha, GF, MZ) ! Input parameters mz 91.1876d0 Gfermi 1.1663788d-5 alpha 7.81549186d-3</pre>
	mh 125.09d0 gh 4.1d-3 mt 172.5d0 mb 4.78d0
	! Cutting-edge calculations for the SM mw 80.361d0 gw 2.089d0 gz 2.4952d0
	<pre>! Switches SM 0 ! Switch (on/off). Whether to include the SM contribution or not. Linear 1 ! Switch (on/off). Whether to include the linear NP corrections or not. Quadratic 0 ! Switch (on/off). Whether to include the quadratic NP corrections or not.</pre>
	<pre>! Anomalous couplings Anomalous 0 ! Switch (on/off) ghzz1 0d0 ! Anomalous coupling ghzz2 0d0 ! Anomalous coupling ghzz3 0d0 ! Anomalous coupling ghaz1 0d0 ! Anomalous coupling ghaz2 0d0 ! Anomalous coupling</pre>
	! SMEFT SMEFTScale 1000d0 ! Scale of SMEFT operators
	Warsaw1! Switch (on/off)CHe0d0 ! SMEFT coefficientCHl10d0 ! SMEFT coefficientCHl30d0 ! SMEFT coefficientCHq10.05d0 ! SMEFT coefficientCHq30d0 ! SMEFT coefficientCHu0d0 ! SMEFT coefficientCHd0d0 ! SMEFT coefficient
	CHB0d0! SMEFT coefficientCHW0d0! SMEFT coefficientCHWB0d0! SMEFT coefficient
	<pre>! Linear combinations of SMEFT operators WarsawRotated 0 ! Switch (on/off) CHA 0d0 ! SMEFT coefficient (sw2*CHW + cw2*CHB) CHZ 0d0 ! SMEFT coefficient (cw2*CHW - sw2*CHB) ! ====================================</pre>

