

1. Introduction

1. Introduction

1.1 The importance of Higgsstrahlung

Goal:
Measure Higgs couplings (e.g. y_{b}) to appreciable precision.
SM: $y_{b}=\frac{\sqrt{2} m_{b}}{v} \rightarrow$ any deviation is a clear sign for NP.
Currently: $\mu_{h \rightarrow b \bar{b}}=1.01 \pm 0.20 \rightarrow$ HL-LHC is projected to push this down to $\pm 0.05[1,2]$.

Source: nytimes.com

1. Introduction

1.1 Theoretical predictions (SM)

In the SM, the higher-order QCD corrections to $\mathbf{V h}$ at $\mathbf{N N L O}+\mathbf{P S}$ are well-known $[1,2,3]$.

A dedicated Monte Carlo event generator has for example been made available in the $\mathbf{P O W H E G}$ MiNNLOPS framework [4].

1. Introduction

1.2 Theoretical predictions (BSM)

What about new effects?
$Q_{H q}^{(1)}=\left(H^{\dagger} i \stackrel{\leftrightarrow}{D}_{\mu} H\right)\left(\bar{q} \gamma^{\mu} q\right)$
$Q_{H u}=\left(H^{\dagger} i \stackrel{\leftrightarrow}{D} \mu H\right)\left(\bar{u} \gamma^{\mu} u\right)$
V(h)qq
$Q_{H W}=H^{\dagger} H W_{\mu \nu}^{a} W^{a, \mu \nu}$
$Q_{H W B}=H^{\dagger} \sigma^{a} H W_{\mu \nu}^{a} B^{\mu \nu}$
VVh

QCD operators

$$
Q_{b G}=\frac{g_{s}^{3}}{(4 \pi)^{2}} y_{b} \bar{q}_{L} \sigma_{\mu \nu} T^{a} b_{R} H G^{a, \mu \nu}
$$

Have already been considered in ref. [1].

$$
Q_{H \ell}^{(3)}=\left(H^{\dagger} i \stackrel{\leftrightarrow}{D}_{\mu}^{a} H\right)\left(\bar{\ell} \gamma^{\mu} \tau^{a} \ell\right)
$$

$$
Q_{H e}=\left(H^{\dagger} i \stackrel{\leftrightarrow}{D} \mu H\right)\left(\bar{e} \gamma^{\mu} e\right)
$$

$$
\mathrm{V}(\mathrm{~h}) 11
$$

2. Details of the calculation

2. Details of the calculation

$2.1 q \bar{q}$-initiated contributions
How can we calculate the relevant SMEFT matrix elements?

2. Details of the calculation

$2.1 q \bar{q}$-initiated contributions
How can we calculate the relevant SMEFT matrix elements?

2. Details of the calculation

$2.1 q \bar{q}$-initiated contributions
How can we calculate the relevant SMEFT matrix elements?

2. Details of the calculation

$2.1 q \bar{q}$-initiated contributions
How can we calculate the relevant SMEFT matrix elements?

2. Details of the calculation

$2.1 q \bar{q}$-initiated contributions
How can we calculate the relevant SMEFT matrix elements?

$$
\mathcal{A}_{\mathrm{B} 1 \mathrm{~g} 0 Z}\left(1_{q}^{-}, 2_{g}^{-}, 3_{\bar{q}}^{+} ; 4_{\ell}^{-}, 5_{\ell}^{+}\right)=\frac{\langle 34\rangle}{\langle 12\rangle\langle 23\rangle}(\langle 13\rangle[51]+\langle 23\rangle[52]),
$$

2. Details of the calculation

$2.1 q \bar{q}$-initiated contributions
How can we calculate the relevant SMEFT matrix elements?

$$
\mathcal{A}_{\mathrm{B} 1 \mathrm{goZ}}\left(1_{q}^{-}, 2_{g}^{-}, 3_{\bar{q}}^{+} ; 4_{\ell}^{-}, 5_{\ell}^{ \pm}\right)=\frac{\langle 34\rangle}{\langle 12\rangle\langle 23\rangle}(\langle 13\rangle[51]+\langle 23\rangle[52]),
$$

$$
\begin{aligned}
& \mathcal{A}_{\mathrm{B} 1 \mathrm{goz}}\left(1_{q}^{-}, 2_{g}^{h_{g}}, 3_{q}^{+} ; 4_{\ell}^{+}, 5_{\bar{\ell}}^{-}\right)=\mathcal{A}_{\mathrm{B1g} \mathrm{~g} Z}\left(1_{q}^{-}, 2_{g}^{h_{g}}, 3_{q}^{+} ; 5_{\ell}^{-}, 4_{\ell}^{+}\right),
\end{aligned}
$$

2. Details of the calculation

$2.1 q \bar{q}$-initiated contributions
How can we calculate the relevant SMEFT matrix elements?

$$
\mathcal{A}_{B 1 \mathrm{~g} 0 Z}\left(1_{q}^{-}, 2_{g}^{-}, 3_{\bar{q}}^{+} ; 4_{\ell}^{-}, 5_{\ell}^{+}\right)=\frac{\langle 34\rangle}{\langle 12\rangle\langle 23\rangle}(\langle 13\rangle[51]+\langle 23\rangle[52]),
$$

$$
\begin{aligned}
& \mathcal{A}_{\mathrm{B} 1 \mathrm{goz}}\left(1_{q}^{-}, 2_{g}^{h_{g}}, 3_{q}^{+} ; 4_{\ell}^{+}, 5_{\bar{\ell}}^{-}\right)=\mathcal{A}_{\mathrm{B1g} \mathrm{~g} Z}\left(1_{q}^{-}, 2_{g}^{h_{g}}, 3_{q}^{+} ; 5_{\ell}^{-}, 4_{\ell}^{+}\right),
\end{aligned}
$$

2. Details of the calculation

$2.1 q \bar{q}$-initiated contributions

How can we calculate the relevant SMEFT matrix elements?

$$
\mathcal{A}_{\mathrm{B1goZ}}\left(1_{q}^{-}, 2_{g}^{-}, 3_{\bar{q}}^{+} ; 4_{\ell}^{-}, 5_{\ell}^{+}\right)=\frac{\langle 34\rangle}{\langle 12\rangle\langle 23\rangle}(\langle 13\rangle[51]+\langle 23\rangle[52]),
$$

$$
\left.\mathcal{A}_{\mathrm{B} 1 g 0 Z}\left(1_{q}^{-}, 2_{g}^{-}, 3_{\bar{q}}^{+} ; 4_{\ell}^{-}, 5_{\bar{\ell}}^{+}\right)=\langle 4| \gamma_{\mu} \mid 5\right] \mathcal{A}_{q g q}^{\mu}\left(1_{q}^{-}, 2_{g}^{-}, 3_{\bar{q}}^{+}\right)
$$

$$
\begin{aligned}
& \mathcal{A}_{\mathrm{B} 1 \mathrm{goz}}\left(1_{q}^{-}, 2_{g}^{+}, 3_{q}^{+} ; 4_{\ell}^{-}, 5_{\ell}^{+}\right)=-\mathcal{A}_{\mathrm{B} 1 \mathrm{~g} 02}\left(3_{q}^{-}, 2_{g}^{-}, 1_{q}^{+} ; 5_{\ell}^{-}, 4_{\ell}^{+}\right)^{*}
\end{aligned}
$$

2. Details of the calculation

$2.1 q \bar{q}$-initiated contributions

How can we calculate the relevant SMEFT matrix elements?

$$
\mathcal{A}_{\mathrm{B} 1 \mathrm{goZ}}\left(1_{q}^{-}, 2_{g}^{-}, 3_{\bar{q}}^{+} ; 4_{\ell}^{-}, 5_{\bar{\ell}}^{+}\right)=\frac{\langle 34\rangle}{\langle 12\rangle\langle 23\rangle}(\langle 13\rangle[51]+\langle 23\rangle[52]),
$$

$$
\left.\mathcal{A}_{\mathrm{B} 1 \mathrm{~g} 0 \mathrm{Z}}\left(1_{q}^{-}, 2_{g}^{-}, 3_{\bar{q}}^{+} ; 4_{\ell}^{-}, 5_{\bar{\ell}}^{+}\right)=\langle 4| \gamma_{\mu} \mid 5\right] \mathcal{A}_{q g q}^{\mu}\left(1_{q}^{-}, 2_{g}^{-}, 3_{\bar{q}}^{+}\right) .
$$

$$
\mathrm{B1g0Z}=\frac{8 \pi \alpha_{s} C_{F}}{C_{A}} \sum_{h_{q}, h_{g}, h_{\ell}= \pm}\left|\frac{g_{Z q}^{h_{q}} q_{Z}^{h_{\ell}} g_{h Z Z}}{D_{Z}\left(s_{123}\right) D_{Z}\left(s_{45}\right)} \mathcal{A}_{\mathrm{B1g} 1 \mathrm{~g}}\left(1_{q}^{h_{q}}, 2_{g}^{h_{g}}, 3_{\bar{q}}^{-h_{q}} ; 4_{\ell}^{h_{\ell}}, 5_{\bar{\ell}}^{-h_{\ell}}\right)\right|^{2}
$$

2. Details of the calculation

$2.1 q \bar{q}$-initiated contributions

How can we calculate the relevant SMEFT matrix elements?

$$
\mathcal{A}_{\mathrm{Bi}_{1802}}\left(1_{q}^{-}, 2_{g}^{-}, 3_{q}^{+} ; 4_{\ell}^{-}, 5_{\ell}^{+}\right)=\frac{\langle 34\rangle}{\langle 12\rangle\langle(23\rangle}(\langle 13\rangle[51]+\langle 23\rangle[52]),
$$

$$
\begin{aligned}
& \mathcal{A}_{\mathrm{B} 1 \mathrm{goz}}\left(1_{q}^{-}, 2_{g}^{+}, 3_{q}^{+} ; 4_{\ell}^{-}, 5_{\ell}^{+}\right)=-\mathcal{A}_{\mathrm{B} 1 \mathrm{goz}}\left(3_{q}^{-}, 2_{g}^{-}, 1_{q}^{+} ; 5_{\ell}^{-}, 4_{\ell}^{+}\right)^{*} \\
& \mathcal{A}_{\mathrm{B} 1 \mathrm{goz}}\left(1_{q}^{-}, 2_{g}^{h_{g}}, 3_{q}^{+} ; 4_{\ell}^{+}, 5_{\bar{\ell}}^{-}\right)=\mathcal{A}_{\mathrm{B1g} \mathrm{~g} Z}\left(1_{q}^{-}, 2_{g}^{h_{g}}, 3_{q}^{+} ; 5_{\ell}^{-}, 4_{\ell}^{+}\right),
\end{aligned}
$$

2. Details of the calculation

$2.1 q \bar{q}$-initiated contributions

How can we calculate the relevant SMEFT matrix elements?

$$
\mathcal{A}_{\mathrm{B} 1 \mathrm{~g} 0 Z}\left(1_{q}^{-}, 2_{g}^{-}, 3_{\bar{q}}^{+} ; 4_{\ell}^{-}, 5_{\bar{\ell}}^{+}\right)=\frac{\langle 34\rangle}{\langle 12\rangle\langle 23\rangle}(\langle 13\rangle[51]+\langle 23\rangle[52]),
$$

$$
\mathcal{A}_{q g q}^{\mu}\left(1_{q}^{-}, 2_{g}^{-}, 3_{\bar{q}}^{+}\right)=\frac{\left.\left.\langle 13\rangle\langle 3| \gamma^{\mu} \mid 1\right]+\langle 23\rangle\langle 3| \gamma^{\mu} \mid 2\right]}{2\langle 12\rangle\langle 23\rangle} .
$$

2. Details of the calculation

$2.1 q \bar{q}$-initiated contributions

How can we calculate the relevant SMEFT matrix elements?

2. Details of the calculation

$2.1 q \bar{q}$-initiated contributions

How can we calculate the relevant SMEFT matrix elements?

2. Details of the calculation

$2.1 q \bar{q}$-initiated contributions

How can we calculate the relevant SMEFT matrix elements?

2. Details of the calculation

$2.1 q \bar{q}$-initiated contributions

How can we calculate the relevant SMEFT matrix elements?

2. Details of the calculation

$2.1 q \bar{q}$-initiated contributions

How can we calculate the relevant SMEFT matrix elements?

$$
\begin{aligned}
& \mathcal{A}_{q g q}^{\mu}\left(1_{q}^{-}, 2_{g}^{-}, 3_{\bar{q}}^{+}\right)=\frac{\left.\left.\langle 13\rangle\langle 3| \gamma^{\mu} \mid 1\right]+\langle 23\rangle\langle 3| \gamma^{\mu} \mid 2\right]}{2\langle 12\rangle\langle 23\rangle} . \\
& \mathcal{A}_{h Z Z}^{\mu}\left(p_{123}, 4_{\ell}^{-}, 5_{\ell}^{+}\right)=\frac{g_{Z q}^{-} g_{Z \ell}^{-}}{D_{Z}\left(s_{123}\right) D_{Z}\left(s_{45}\right)}\left\{\langle 4| \gamma^{\mu} \mid 5\right]\left(g_{h Z Z}+\delta g_{h Z Z}^{(2)}\left(s_{123}+s_{34}\right)+\delta g_{h Z Z}^{(3)}\right) \\
& \left.\left.-\delta g_{h Z Z}^{(2)} p_{123}^{\mu}\langle 4| p_{123} \mid 5\right]-\frac{\delta g_{h Z Z}^{(1)}}{2}\left(\langle 4| \gamma^{\mu} p_{123}|4\rangle[45]+\langle 45\rangle\left[5\left|\not p_{123} \gamma^{\mu}\right| 5\right]\right)\right\}, \\
& \left.\mathcal{A}_{h \gamma Z}^{\mu}\left(p_{123}, 4_{\ell}^{-}, 5_{\ell}^{+}\right)=\frac{g_{\gamma q}^{-} g_{Z \ell}^{-}}{s_{123} D\left(s_{45}\right)}\left\{\left.-\frac{\delta g_{h \gamma Z}^{(1)}}{2}\left(\langle 4| \gamma^{\mu} \mid 5\right]\left(\langle 4| p_{123} \mid 4\right]+\langle 5| p_{123} \right\rvert\, 5\right]\right) \\
& \left.\left.\left.-2\left(p_{4}^{\mu}+p_{5}^{\mu}\right)\langle 4| \phi_{123}[5]\right)+\delta g_{h \gamma Z}^{(2)}\left(\langle 4| \gamma^{\mu} \mid 5\right] s_{123}-p_{123}^{\mu}\langle 4| \phi_{123}[5]\right)\right\},
\end{aligned}
$$

2. Details of the calculation

$2.1 q \bar{q}$-initiated contributions

How can we calculate the relevant SMEFT matrix elements?

$$
\begin{aligned}
& \mathcal{A}_{q g q}^{\mu}\left(1_{q}^{-}, 2_{g}^{-}, 3_{\bar{q}}^{+}\right)=\frac{\left.\left.\langle 13\rangle\langle 3| \gamma^{\mu} \mid 1\right]+\langle 23\rangle\langle 3| \gamma^{\mu} \mid 2\right]}{2\langle 12\rangle\langle 23\rangle} . \\
& \mathcal{A}_{h Z Z}^{\mu}\left(p_{123}, 4_{\ell}^{-}, 5_{\ell}^{+}\right)=\frac{g_{Z q}^{-} g_{Z \ell}^{-}}{D_{Z}\left(s_{123}\right) D_{Z}\left(s_{45}\right)}\left\{\langle 4| \gamma^{\mu} \mid 5\right]\left(g_{h Z Z}+\delta g_{h Z Z}^{(2)}\left(s_{123}+s_{34}\right)+\delta g_{h Z Z}^{(3)}\right) \\
& \left.\left.-\delta g_{h Z Z}^{(2)} p_{123}^{\mu}\langle 4| \not p_{123} \mid 5\right]-\frac{\delta g_{h Z Z}^{(1)}}{2}\left(\langle 4| \gamma^{\mu} \not{ }_{123}|4\rangle[45]+\langle 45\rangle\left[5| | p_{123} \gamma^{\mu} \mid 5\right]\right)\right\}, \\
& \left.\mathcal{A}_{h \gamma Z}^{\mu}\left(p_{123}, 4_{\ell}^{-}, 5_{\bar{l}}^{+}\right)=\frac{g_{\gamma q}^{-} g_{Z \ell}^{-}}{s_{123} D\left(s_{45}\right)}\left\{\left.-\frac{\delta g_{h \gamma Z}^{(1)}}{2}\left(\langle 4| \gamma^{\mu} \mid 5\right]\left(\langle 4| p_{123} \mid 4\right]+\langle 5| \not p_{123} \right\rvert\, 5\right]\right) \\
& \left.\left.\left.\left.\left.-2\left(p_{4}^{\mu}+p_{5}^{\mu}\right)\langle 4| \nmid p_{123} \mid 5\right]\right)+\delta g_{h \gamma Z}^{(2)}\left(\langle 4| \gamma^{\mu} \mid 5\right] s_{123}-p_{123}^{\mu}\langle 4| p_{123} \mid 5\right]\right)\right\},
\end{aligned}
$$

$$
\mathcal{A}_{q g q, \mu}\left(1_{q}^{h_{q}}, 2_{g}^{h_{g}}, 3_{\bar{q}}^{-h_{q}}\right)\left[\mathcal{A}_{h Z Z}^{\mu}\left(p_{123}, 4_{\ell}^{h_{\ell}}, 5_{\bar{\ell}}^{-h_{\ell}}\right)+\mathcal{A}_{h \gamma Z}^{\mu}\left(p_{123}, 4_{\ell}^{h_{\ell}}, 5_{\bar{\ell}}^{-h_{\ell}}\right)\right]
$$

2. Details of the calculation

$2.1 q \bar{q}$-initiated contributions

How can we calculate the relevant SMEFT matrix elements?

2. Details of the calculation

$2.1 q \bar{q}$-initiated contributions

How can we calculate the relevant SMEFT matrix elements?

2. Details of the calculation

$2.1 q \bar{q}$-initiated contributions

How can we calculate the relevant SMEFT matrix elements?

$$
\mathrm{B} 1 \mathrm{~g} 0 \mathrm{Z}=\frac{8 \pi \alpha_{s} C_{F}}{C_{A}} \sum_{h_{q}, h_{g}, h_{\ell}= \pm}\left|\frac{g_{Z q}^{h_{q}} g_{Z \ell}^{h_{\ell}} g_{h Z Z}}{D_{Z}\left(s_{123}\right) D_{Z}\left(s_{45}\right)} \mathcal{A}_{\mathrm{B} 1 \mathrm{~g} 0 \mathrm{Z}}\left(1_{q}^{h_{q}}, 2_{g}^{h_{g}}, 3_{\bar{q}}^{-h_{q}} ; 4_{\ell}^{h_{\ell}}, 5_{\bar{\ell}}^{-h_{\ell}}\right)\right|^{2}
$$

2. Details of the calculation

$2.1 q \bar{q}$-initiated contributions

How can we calculate the relevant SMEFT matrix elements?

$$
\mathrm{B} 1 \mathrm{~g} 0 \mathrm{Z}=\frac{8 \pi \alpha_{s} C_{F}}{C_{A}} \sum_{h_{q}, h_{g}, h_{\ell}= \pm}\left|\frac{g_{Z q}^{h_{q}} g_{Z \ell}^{h_{\ell}} g_{h Z Z}}{D_{Z}\left(s_{123}\right) D_{Z}\left(s_{45}\right)} \mathcal{A}_{\mathrm{B} 1 \mathrm{~g} 0 \mathrm{Z}}\left(1_{q}^{h_{q}}, 2_{g}^{h_{g}}, 3_{\bar{q}}^{-h_{q}} ; 4_{\ell}^{h_{\ell}}, 5_{\bar{\ell}}^{-h_{\ell}}\right)\right|^{2}
$$

These contributions give overall factors to the SM amplitude.

2. Details of the calculation

$2.1 q \bar{q}$-initiated contributions

How can we calculate the relevant SMEFT matrix elements?

$$
\mathrm{B} 1 \mathrm{~g} 0 \mathrm{Z}=\left.\frac{8 \pi \alpha_{s} C_{F}}{C_{A}} \sum_{h_{g, h_{\ell}= \pm 1}} \frac{\mid g_{Z q}^{h_{q}} g_{Z \ell}^{h_{\ell}} g_{h Z Z}}{D_{Z}\left(s_{123}\right) D_{Z}\left(s_{45}\right)} \mathcal{A}_{\mathrm{B} 1 \mathrm{~g} 0 \mathrm{Z}}\left(1_{q}^{h_{q}}, 2_{g}^{h_{g}}, 3_{\bar{q}}^{-h_{q}} ; 4_{\ell}^{h_{\ell}}, 5_{\bar{\ell}}^{-h_{\ell}}\right)\right|^{2}
$$

These contributions give overall factors to the SM amplitude.

$$
g_{Z f}^{ \pm}=\frac{g_{1}^{2} Y_{f}^{ \pm}-2 g_{2}^{2} T_{f}^{3 \pm}}{2 g_{+}}
$$

2. Details of the calculation

$2.1 q \bar{q}$-initiated contributions

How can we calculate the relevant SMEFT matrix elements?

$$
\mathrm{B} 1 \mathrm{~g} 0 \mathrm{Z}=\left.\frac{8 \pi \alpha_{s} C_{F}}{C_{A}} \sum_{h, \bar{g}, h_{\ell}= \pm 1} \frac{g_{Z q}^{h_{q}} g_{Z \ell}^{h_{\ell}} g_{h Z Z}}{D_{Z}\left(s_{123}\right) D_{Z}\left(s_{45}\right)} \mathcal{A}_{\mathrm{B} 1 \mathrm{~g} 0 \mathrm{Z}}\left(1_{q}^{h_{q}}, 2_{g}^{h_{g}}, 3_{\bar{q}}^{-h_{q}} ; 4_{\ell}^{h_{\ell}}, 5_{\bar{\ell}}^{-h_{\ell}}\right)\right|^{2}
$$

These contributions give overall factors to the SM amplitude.

Input scheme corrections

2. Details of the calculation

$2.1 q \bar{q}$-initiated contributions

How can we calculate the relevant SMEFT matrix elements?

$$
\mathrm{B} 1 \mathrm{~g} 0 \mathrm{Z}=\left.\frac{8 \pi \alpha_{s} C_{F}}{C_{A}} \sum_{h_{\mathrm{g}, h_{\ell}= \pm 1}} \frac{\mid g_{Z q}^{h_{q}} g_{Z \ell}^{h_{\ell}} g_{h Z Z}}{D_{Z}\left(s_{123}\right) D_{Z}\left(s_{45}\right)} \mathcal{A}_{\mathrm{B} 1 \mathrm{~g} 0 \mathrm{Z}}\left(1_{q}^{h_{q}}, 2_{g}^{h_{g}}, 3_{\bar{q}}^{-h_{q}} ; 4_{\ell}^{h_{\ell}}, 5_{\bar{\ell}}^{-h_{\ell}}\right)\right|^{2}
$$

These contributions give overall factors to the SM amplitude.

Input scheme corrections

LEP-scheme
$\left\{\alpha, G_{F}, m_{Z}\right\}$

2. Details of the calculation

$2.1 q \bar{q}$-initiated contributions

How can we calculate the relevant SMEFT matrix elements?

$$
\mathrm{B} 1 \mathrm{~g} 0 \mathrm{Z}=\left.\frac{8 \pi \alpha_{s} C_{F}}{C_{A}} \sum_{h_{\mathrm{g}, h_{\ell}= \pm 1}} \frac{\mid g_{Z q}^{h_{q}} g_{Z \ell}^{h_{\ell}} g_{h Z Z}}{D_{Z}\left(s_{\dot{\alpha}}\right) D_{Z}\left(s_{45}\right)} \mathcal{A}_{\mathrm{B} 1 \mathrm{~g} 0 \mathrm{Z}}\left(1_{q}^{h_{q}}, 2_{g}^{h_{g}}, 3_{\bar{q}}^{-h_{q}} ; 4_{\ell}^{h_{\ell}}, 5_{\bar{\ell}}^{-h_{\ell}}\right)\right|^{2}
$$

These contributions give overall factors to the SM amplit ade.

Direct contributions
$\delta g_{Z f}^{(0) \pm}=\frac{g_{1}^{3} \delta g_{1} Y_{f}^{ \pm}-2 g_{2}^{3} \delta g_{2} T_{f}^{3 \pm}-g_{1}^{2} g_{2} \delta g_{2}\left(Y_{f}^{ \pm}+4 T_{f}^{3 \pm}\right)+2 g_{1} g_{2}^{2} \delta g_{1}\left(Y_{f}^{ \pm}+T_{f}^{3 \pm}\right)}{2 \sqrt[3 / 2]{g_{+}}}$,
Input scheme corrections

LEP-scheme
$\left\{\alpha, G_{F}, m_{Z}\right\}$

2. Details of the calculation

$2.1 q \bar{q}$-initiated contributions

How can we calculate the relevant SMEFT matrix elements?

$$
\mathrm{B} 1 \mathrm{~g} 0 \mathrm{Z}=\left.\frac{8 \pi \alpha_{s} C_{F}}{C_{A}} \sum_{h_{\mathrm{g}, h_{\ell}= \pm 1}} \frac{\mid g_{Z q}^{h_{q}} g_{Z \ell}^{h_{\ell}} g_{h Z Z}}{D_{Z}\left(s_{\dot{\alpha}}\right) D_{Z}\left(s_{45}\right)} \mathcal{A}_{\mathrm{B} 1 \mathrm{~g} 0 \mathrm{Z}}\left(1_{q}^{h_{q}}, 2_{g}^{h_{g}}, 3_{\bar{q}}^{-h_{q}} ; 4_{\ell}^{h_{\ell}}, 5_{\bar{\ell}}^{-h_{\ell}}\right)\right|^{2}
$$

These contributions give overall factors to the SM amplitade.

$$
\delta g_{Z d}^{(1)-}=\frac{v^{2} g_{+}}{2}\left(C_{H q}^{(1)}+C_{H q}^{(3)}\right), \quad \delta g_{Z u}^{(1)-}=\frac{v^{2} g_{+}}{2}\left(C_{H q}^{(1)}-C_{H q}^{(3)}\right),
$$

$$
\left(\frac{\delta g_{h q}^{(1) h_{q}} g_{Z \ell}^{h_{\ell \ell}}}{D_{Z}\left(s_{45}\right)}+\frac{g_{Z q}^{h_{q}} \delta g_{h Z \ell}^{(1) h_{\ell}}}{D_{Z}\left(s_{123}\right)}\right) \mathcal{A}_{B 1 g^{2 z}}\left(1_{q}^{h_{q}}, 2 g_{g}^{h_{g}}, 3_{\bar{q}}^{-h_{q}} ; 4_{\ell}^{h_{\ell}}, 55_{\ell}^{-h_{\ell}}\right),
$$

Direct contributions
,Quartic" contributions
$\delta g_{Z f}^{(0) \pm}=\frac{g_{1}^{3} \delta g_{1} Y_{f}^{ \pm}-2 g_{2}^{3} \delta g_{2} T_{f}^{3 \pm}-g_{1}^{2} g_{2} \delta g_{2}\left(Y_{f}^{ \pm}+4 T_{f}^{3 \pm}\right)+2 g_{1} g_{2}^{2} \delta g_{1}\left(Y_{f}^{ \pm}+T_{f}^{3 \pm}\right)}{2 \sqrt[3 / 2]{g_{+}}}$.
Input scheme corrections

$$
\begin{gathered}
\alpha_{\mu} \text {-scheme } \\
\left\{\alpha, m_{Z}, m_{W}\right\}
\end{gathered}
$$

LEP-scheme
$\left\{\alpha, G_{F}, m_{Z}\right\}$

2. Details of the calculation

2.2 gg -initiated contributions

How can we calculate the relevant SMEFT matrix elements?

2. Details of the calculation

2.2 gg -initiated contributions

How can we calculate the relevant SMEFT matrix elements?

2. Details of the calculation

2.2 gg -initiated contributions

How can we calculate the relevant SMEFT matrix elements?

2. Details of the calculation

2.2 gg -initiated contributions

How can we calculate the relevant SMEFT matrix elements?

2. Details of the calculation

2.2 gg -initiated contributions

How can we calculate the relevant SMEFT matrix elements?

$$
\begin{aligned}
\mathcal{A}_{\mathrm{AO} 2 z \Delta}^{q}\left(1_{g}^{+}, 2_{g}^{+}, 3_{\ell}^{-},,_{\ell}^{+}\right)= & -\frac{2[21]([41]\langle\langle 3\rangle+[42]\langle 23\rangle)}{\langle 12\rangle}\left(1-\frac{s_{12}}{m_{Z}^{2}}\right) \\
& \times m_{q}^{2} C_{0}\left(s_{12}, 0,0, m_{q}, m_{q}, m_{q}\right) .
\end{aligned}
$$

(B-type)

(A-type)

2. Details of the calculation

2.2 gg -initiated contributions

How can we calculate the relevant SMEFT matrix elements?

$$
\begin{aligned}
& \mathcal{A}_{\hat{A} 0_{8}^{q} 2 \lambda \Delta}\left(1_{g}^{+}, 2_{g}^{+}, 3_{\ell}^{-}, 4_{\ell}^{+}\right)=-\frac{2[21]([41] \backslash\langle 13\rangle+[42]\langle 23\rangle)}{\langle 12\rangle}\left(1-\frac{s_{12}}{m_{Z}^{2}}\right) \\
& \times m_{q}^{2} C_{0}\left(s_{12}, 0,0, m_{q}, m_{q}, m_{q}\right) .
\end{aligned}
$$

2. Details of the calculation

2.2 gg -initiated contributions

How can we calculate the relevant SMEFT matrix elements?

(B-type)

(C,D-type)

(A-type)

$$
\begin{aligned}
& \mathcal{A}_{\text {A0g } 27 \Delta}^{q}\left(1_{g}^{ \pm}, 2_{g}^{ \pm}, b_{\ell}^{+}, 4_{\bar{\ell}}^{-}\right)=\mathcal{A}_{\text {A0g2 }}^{q}\left(1_{g}^{ \pm}, 2_{g}^{ \pm}, 4_{e}^{-}, 3_{\bar{\ell}}^{ \pm}\right),
\end{aligned}
$$

$$
\mathrm{A0g2Z}=\frac{\alpha_{s}^{2}}{8 \pi^{2}\left(C_{A}^{2}-1\right)^{2}} \sum_{h_{g}, h_{\ell}= \pm}\left|\sum_{q=t, b}\left(\mathcal{A}_{\Delta}^{q}+\sum_{s= \pm} \frac{m_{q}^{2}}{m_{Z}^{2}} \mathcal{A}_{\square}^{q, s}\right)\right|^{2}
$$

with

2. Details of the calculation

2.2 gg -initiated contributions

How can we calculate the relevant SMEFT matrix elements?

$$
\begin{aligned}
\mathcal{A}_{\mathrm{AOg} 2 \mathrm{~L} \Delta}^{q}\left(1_{g}^{+}, 2_{g}^{+}, 3_{\ell}^{-}, 4_{\ell}^{+}\right)= & -\frac{2[21]([41]\langle 13\rangle+[42]\langle 23\rangle)}{\langle 12\rangle}\left(1-\frac{s_{12}}{m_{Z}^{2}}\right) \\
& \times m_{q}^{2} C_{0}\left(s_{12}, 0,0, m_{q}, m_{q}, m_{q}\right) .
\end{aligned}
$$

(B-type)

(C,D-type)

$$
\begin{aligned}
& \mathcal{A}_{\mathrm{A0g22} \mathrm{\Delta}}^{q}\left(1_{g}^{-}, 2_{g}^{-}, 3_{\ell}^{\mp}, 4_{\bar{\ell}}^{ \pm}\right)=-\overline{\mathcal{A}_{\mathrm{Aog} 2 Z \Delta}^{q}\left(1_{g}^{+}, 2_{g}^{+}, 4_{\ell}^{\mp}, 3_{\bar{\ell}}^{ \pm}\right)}, \\
& \mathcal{A}_{\mathrm{Ag} 222 \Delta}^{q}\left(1_{g}^{ \pm}, 2_{g}^{ \pm}, 3_{\ell}^{+}, 4_{\bar{\ell}}^{-}\right)=\mathcal{A}_{\mathrm{A0g} 22 \Delta}^{q}\left(1_{g}^{ \pm}, 2_{g}^{ \pm}, 4_{\ell}^{-}, 3_{\bar{\ell}}^{ \pm}\right),
\end{aligned}
$$

with

2. Details of the calculation

2.2 gg -initiated contributions

How can we calculate the relevant SMEFT matrix elements?

$$
\begin{aligned}
& \mathcal{A}_{A A_{8}}^{\circ}{ }_{82 \Delta}\left(1_{g}^{+}, 2_{g}^{+}, 3_{\ell}^{-}, 4_{\ell}^{+}\right)=-\frac{2[21]([41]\langle 13\rangle+[42]\langle 23\rangle)}{\langle 12\rangle}\left(1-\frac{s_{12}}{m_{Z}^{2}}\right) \\
& \times m_{q}^{2} C_{0}\left(s_{12}, 0,0, m_{q}, m_{q}, m_{q}\right) \text {. }
\end{aligned}
$$

$$
\mathrm{A0g2Z}=\frac{\alpha_{s}^{2}}{8 \pi^{2}\left(C_{A}^{2}-1\right)^{2}} \sum_{h_{g}, h_{\ell}= \pm}\left|\sum_{q=t, b}\left(\mathcal{A}_{\Delta}^{q}+\sum_{s= \pm} \frac{m_{q}^{2}}{m_{Z}^{2}} \mathcal{A}_{\square}^{q, s}\right)\right|^{2}
$$

with

$$
\mathcal{A}_{\Delta}^{q}=\frac{\left(g_{Z_{q}}^{-}-g_{q}^{+}\right) g_{Z \ell}^{h_{\ell}} g_{h Z Z}}{D_{Z}\left(s_{12}\right) D_{Z}\left(s_{34}\right)} \mathcal{A}_{A Q_{2} 2 Z \Delta}^{q}\left(1_{g}^{h_{g}}, 2_{g}^{h_{g}}, 3_{\ell}^{h_{\ell}}, 4_{\bar{\ell}}^{-h_{\ell}}\right),
$$

2. Details of the calculation

2.2 gg -initiated contributions

How can we calculate the relevant SMEFT matrix elements?

$$
\begin{aligned}
\mathcal{A}_{\mathrm{A} 0 \mathrm{~g} 2 \mathrm{I}}^{q}\left(1_{g}^{+}, 2_{g}^{+}, 3_{\ell}^{-},,_{\ell}^{+}\right)= & -\frac{2[21]([41]\langle 13\rangle+[42]\langle 23\rangle)}{\langle 12\rangle}\left(1-\frac{s_{12}}{m_{Z}^{2}}\right) \\
& \times m_{q}^{2} C_{0}\left(s_{12}, 0,0, m_{q}, m_{q}, m_{q}\right)
\end{aligned}
$$

(B-type)

The axial current contributes.
\rightarrow gauge anomalies?
with

$$
\mathcal{A}_{\Delta}^{q}=\frac{\left(g_{Z q}^{-}-g_{Z q}^{+}\right) g_{Z \ell}^{h_{\ell}} g_{h Z Z}}{D_{Z}\left(s_{12}\right) D_{Z}\left(s_{34}\right)} \mathcal{A}_{\mathrm{AOg} 2 \mathrm{Z} \Delta}^{q}\left(1_{g}^{h_{g}}, 2_{g}^{h_{g}}, 3_{\ell}^{h_{\ell}}, 4_{\bar{\ell}}^{-h_{\ell}}\right),
$$

2. Details of the calculation

2.2 gg -initiated contributions

How can we calculate the relevant SMEFT matrix elements?

$$
\begin{aligned}
\mathcal{A}_{A 0 g 2 z \Delta}^{q}\left(1_{g}^{+}, 2_{g}^{+}, 3_{\ell}^{-},,_{\ell}^{+}\right)= & -\frac{2[21]([41]\langle 13\rangle+[42]\langle 23\rangle)}{\langle 12\rangle}\left(1-\frac{s_{12}}{m_{Z}^{2}}\right) \\
& \times m_{q}^{2} C_{0}\left(s_{12}, 0,0, m_{q}, m_{q}, m_{q}\right) .
\end{aligned}
$$

$$
\begin{aligned}
& \mathcal{A}_{\mathrm{AOg} 2 z \Delta}^{q}\left(1_{g}^{-}, 2_{g}^{-}, 3_{\ell}^{\mp}, 4_{\bar{\ell}}^{ \pm}\right)=-\overline{\mathcal{A}_{\mathrm{Aog} 2 z \Delta}^{q}\left(1_{g}^{+}, 2_{g}^{+}, 4_{\ell}^{\mp}, 3_{\bar{\ell}}^{ \pm}\right)}, \\
& \mathcal{A}_{\mathrm{AOg} 2 z \Delta}^{q}\left(1_{g}^{ \pm}, 2_{g}^{ \pm}, 3_{\ell}^{+}, 4_{\bar{\ell}}^{-}\right)=\mathcal{A}_{\mathrm{AOg} 2 z \Delta}^{q}\left(1_{g}^{ \pm}, 2_{g}^{ \pm}, 4_{\ell}^{-}, 3_{\bar{\ell}}^{+}\right),
\end{aligned}
$$

$$
\mathrm{AOg} 2 \mathrm{Z}=\frac{\alpha_{s}^{2}}{8 \pi^{2}\left(C_{A}^{2}-1\right)^{2}} \sum_{h_{g}, h_{\ell}= \pm}\left|\sum_{q=t, b}\left(\mathcal{A}_{\Delta}^{q}+\sum_{s= \pm} \frac{m_{q}^{2}}{m_{Z}^{2}} \mathcal{A}_{\square}^{q, s}\right)\right|^{2}
$$

with

$$
\mathcal{A}_{\Delta}^{q}=\frac{\left(g_{Z q}^{-}-g_{Z q}^{+}\right) g_{Z \ell}^{h_{\ell}} g_{h Z Z}}{D_{Z}\left(s_{12}\right) D_{Z}\left(s_{34}\right)} \mathcal{A}_{\mathrm{AO} 2 Z \Delta}^{q}\left(1_{g}^{h_{g}}, 2_{g}^{h_{g}}, 3_{\ell}^{h_{\ell}}, 4_{\bar{\ell}}^{-h_{\ell}}\right),
$$

(C,D-type)

(A-type)

The axial current contributes. \rightarrow gauge anomalies?

$$
\left(g_{Z t}^{-}-g_{Z t}^{+}\right)=-\left(g_{Z b}^{-}-g_{Z b}^{+}\right)
$$

Is required in the SM to cancel the relevant anomalies in the SM.

2. Details of the calculation

2.2 gg -initiated contributions

How can we calculate the relevant SMEFT matrix elements?

$$
\begin{aligned}
\mathcal{A}_{\mathrm{A0g} 2 \mathrm{Z} \Delta}^{q}\left(1_{g}^{+}, 2_{g}^{+}, 3_{\ell}^{-}, 4_{\ell}^{+}\right)= & -\frac{2[21]([41]\langle 13\rangle+[42]\langle 23\rangle)}{\langle 12\rangle}\left(1-\frac{s_{12}}{m_{Z}^{2}}\right) \\
& \times m_{q}^{2} C_{0}\left(s_{12}, 0,0, m_{q}, m_{q}, m_{q}\right) .
\end{aligned}
$$

(B-type)

(C,D-type)

The axial current contributes.
\rightarrow gauge anomalies?

$$
\left(g_{Z t}^{-}-g_{Z t}^{+}\right)=-\left(g_{Z b}^{-}-g_{Z b}^{+}\right)
$$

Is required in the SM to cancel the relevant anomalies in the SM.
\rightarrow how does this work in the SMEFT?

2. Details of the calculation

2.2 gg -initiated contributions

How can we calculate the relevant SMEFT matrix elements?

$$
\begin{aligned}
\mathcal{A}_{\mathrm{AOg} 2 \mathrm{Z} \Delta}^{q}\left(1_{g}^{+}, 2_{g}^{+}, 3_{\ell}^{-}, 4_{\ell}^{+}\right)= & -\frac{2[21]([41]\langle 13\rangle+[42]\langle 23\rangle)}{\langle 12\rangle}\left(1-\frac{s_{12}}{m_{Z}^{2}}\right) \\
& \times m_{q}^{2} C_{0}\left(s_{12}, 0,0, m_{q}, m_{q}, m_{q}\right) .
\end{aligned}
$$

$$
\begin{aligned}
& \mathcal{A}_{\mathrm{AOg} 2 z \Delta}^{q}\left(1_{g}^{-}, 2_{g}^{-}, 3_{\ell}^{\mp}, 4_{\bar{\ell}}^{ \pm}\right)=-\overline{\mathcal{A}_{\mathrm{AOg} 2 z \Delta}^{q}\left(1_{g}^{+}, 2_{g}^{+}, 4_{\ell}^{\mp}, 3_{\bar{\ell}}^{ \pm}\right)}, \\
& \mathcal{A}_{\mathrm{AOg} 2 z \Delta}^{q}\left(1_{g}^{ \pm}, 2_{g}^{ \pm}, 3_{\ell}^{+}, 4_{\bar{\ell}}^{-}\right)=\mathcal{A}_{\mathrm{AOg} 2 z \Delta}^{q}\left(1_{g}^{ \pm}, 2_{g}^{ \pm}, 4_{\ell}^{-}, 3_{\bar{\ell}}^{ \pm}\right),
\end{aligned}
$$

$$
\operatorname{A0g} 2 Z=\frac{\alpha_{s}^{2}}{8 \pi^{2}\left(C_{A}^{2}-1\right)^{2}} \sum_{h_{g}, h_{\ell}= \pm}\left|\sum_{q=t, b}\left(\mathcal{A}_{\Delta}^{q}+\sum_{s= \pm} \frac{m_{q}^{2}}{m_{Z}^{2}} \mathcal{A}_{\square}^{q, s}\right)\right|^{2}
$$

with

$$
\mathcal{A}_{\Delta}^{q}=\frac{\left(g_{Z q}^{-}-g_{Z q}^{+}\right) g_{Z \ell}^{h_{\ell}} g_{h Z Z}}{D_{Z}\left(s_{12}\right) D_{Z}\left(s_{34}\right)} \mathcal{A}_{\mathrm{AOg} 2 Z \Delta}^{q}\left(1_{g}^{h_{g}}, 2_{g}^{h_{g}}, 3_{\ell}^{h_{\ell}}, 4_{\bar{\ell}}^{-h_{\ell}}\right),
$$

(C,D-type)

The axial current contributes.
\rightarrow gauge anomalies?

$$
\left(g_{\bar{Z} t}^{-}-g_{Z t}^{+}\right)=-\left(g_{Z \overline{ } b}^{-}-g_{Z b}^{+}\right),
$$

Is required in the SM to cancel the relevant anomalies in the SM.
\rightarrow how does this work in the SMEFT?

There are no relevant anomalies induced by the SMEFT operators.

2. Details of the calculation

2.2 gg -initiated contributions

How can we calculate the relevant SMEFT matrix elements?

$$
\begin{aligned}
\mathcal{A}_{\mathrm{AOg} 22 \Delta}^{q}\left(1_{g}^{+}, 2_{g}^{+}, 3_{\ell}^{-}, 4_{\ell}^{+}\right)= & -\frac{2[21]([41]\langle 13\rangle+[42]\langle 23\rangle)}{\langle 12\rangle}\left(1-\frac{s_{12}}{m_{Z}^{2}}\right) \\
& \times m_{q}^{2} C_{0}\left(s_{12}, 0,0, m_{q}, m_{q}, m_{q}\right) .
\end{aligned}
$$

(B-type)

(C,D-type)

The axial current contributes.
\rightarrow gauge anomalies?

$$
\left(g_{Z t}^{-}-g_{Z t}^{+}\right)=-\left(g_{Z b}^{-}-g_{Z b}^{+}\right)
$$

Is required in the SM to cancel the relevant anomalies in the SM.
\rightarrow how does this work in the SMEFT?

There are no relevant anomalies induced by the SMEFT operators.

The irrelevant anomalies (depending on the loop momentum routing scheme) can be cancelled with a local counterterm.

2. Details of the calculation 2.3 Matrix element library

(C,D-type)

(A-type)

We implemented all squared matrix elements in a self-contained Fortran library.

It includes the spinor-helicity amplitudes for the dimension-four SM and dimension-six SMEFT contributions as well as the definitions for the couplings and the propagators depending on the EW input scheme.

$$
2 s_{b} \mathcal{B}_{i j}=-N \sum_{\substack{\text { spins } \\ \text { colours }}} \mathcal{M}_{\left\{c_{k}\right\}}\left(\mathcal{M}_{\substack{\left\{c_{k}\right\}}}^{\dagger}\right)_{\substack{c_{i} \rightarrow c_{i}^{\prime} \\ c_{j} \rightarrow c_{j}^{\prime}}} T_{c_{i}, c_{i}^{\prime}}^{a} T_{c_{j}, c_{j}^{\prime}}^{a}
$$

$$
\mathcal{B}_{j}^{\mu \nu}=N \sum_{\{i\}, s_{j}, s_{j}^{\prime}} \mathcal{M}\left(\{i\}, s_{j}\right) \mathcal{M}^{\dagger}\left(\{i\}, s_{j}^{\prime}\right)\left(\epsilon_{s_{j}}^{\mu}\right)^{*} \epsilon_{s_{j}^{\prime}}^{\nu}
$$

$$
\text { B1g0Z(i1,i2,i3,i4,i5, } \mathrm{K}, \mathrm{f} 1, \mathrm{f} 2)
$$

2. Details of the calculation

2.4 POWHEG event generator

We implemented the matrix element library in a POWHEG MiNNLOPS event generator.

We will make it available for download on the POWHEG-BOX web page [1].
4. Results

4. Results

4.1 Spectra

4. Results

4.1 Spectra

$$
g_{\overline{Z u}}^{\bar{Z}} \sim \frac{1}{3} g_{1}^{2}-g_{2}^{2} \sim-0.38 \quad g_{\overline{Z d}}^{-} \sim \frac{4}{3} g_{1}^{2}+g_{2}^{2} \sim 0.60 \quad \delta g_{Z u}^{(1)-}=\delta g_{Z d}^{(1)-} \sim C_{H q}^{(1)}
$$

4. Results

4.2 NNLO vs NLO

4. Results
 4.2 NNLO vs NLO

From [1]: only $\left|M_{\text {dim- }}+M_{\text {dim-6 }}\right|^{2}$, no input scheme corrections.

4. Results
 4.2 NNLO vs NLO

From [1]: only $\left|M_{\text {dim- }}+M_{\text {dim-6 }}\right|^{2}$, no input scheme corrections.

Our code can do $\left|M_{\operatorname{dim}-4}\right|^{2}, 2 \operatorname{Re}\left\{M_{\operatorname{dim}-4}^{\dagger} M_{\operatorname{dim}-6}\right\},\left|M_{\operatorname{dim}-6}\right|^{2}$ individually, for all three input schemes.

5. Conclusions

5. Conclusions

5. Conclusions

- The associated Higgs production (Vh) channel is interesting phenomenologically, since it allows to measure Higgs couplings precisely.

5. Conclusions

- The associated Higgs production (Vh) channel is interesting phenomenologically, since it allows to measure Higgs couplings precisely.
- We calculated SMEFT contributions to $p p \rightarrow V\left(\rightarrow l^{+} l^{-}\right) h$ at NNLO and implemented them in an NNLO + PS accurate POWHEG MinNLOps event generator.

5. Conclusions

- The associated Higgs production (Vh) channel is interesting phenomenologically, since it allows to measure Higgs couplings precisely.
- We calculated SMEFT contributions to $p p \rightarrow V\left(\rightarrow l^{+} l^{-}\right) h$ at NNLO and implemented them in an NNLO + PS accurate POWHEG MinNLOps event generator.
\rightarrow essential tool for future Higgs characterisation studies at the LHC

5. Conclusions

- The associated Higgs production (Vh) channel is interesting phenomenologically, since it allows to measure Higgs couplings precisely.
- We calculated SMEFT contributions to $p p \rightarrow V\left(\rightarrow l^{+} l^{-}\right) h$ at NNLO and implemented them in an NNLO +PS accurate POWHEG MiNNLOps event generator.
\rightarrow essential tool for future Higgs characterisation studies at the LHC
- Higher-order SMEFT calculations come with interesting theoretical aspects, including the „recycling" of SM spinor-helicity amplitudes and the treatment of gauge anomalies.

Thank you for your attention!

Introduction

Theoretical predictions (BSM)
What about new effects?

Has to be heavy, otherwise we would have produced it resonantly.

$$
\int \frac{d k^{D}}{(2 \pi)^{D}} \frac{\ldots}{\left((p+k)^{2}-M_{S}^{2}\right) \ldots}
$$

$$
\int \frac{d k^{D}}{(2 \pi)^{D}} \frac{\ldots}{\left((\ddots+k)^{2}-M_{S}^{2}\right) \ldots} \sim \underbrace{\int \frac{d k^{D}}{(2 \pi)^{D}} \frac{\ldots}{\left(k^{2}-M_{S}^{2}\right) \ldots}}_{\text {independent of kinematics }}
$$

The SMEFT allows us to study the indirect contributions from high-scale BSM physics in a (largely) model-independent way.

Anatomy of SMEFT effects

Current constraints

What are the current constraints on these types of SMEFT operators?
V(h)qq: $\quad C_{H q}^{(1)}, C_{H q}^{(3)}, C_{H u}, C_{H d}$

$$
\delta g_{L}^{\psi}=\frac{g_{2}}{c_{w}} \frac{v^{2}}{\Lambda^{2}}\left[g_{T_{\psi}^{3}} T_{\psi}^{3}-g_{Q_{\psi}} Q_{\psi}-\frac{1}{2}\left(C_{H \psi_{L}}^{(1)}-2 T_{\psi}^{3} C_{H \psi_{L}}^{(3)}\right)\right],
$$

V(h)ll: $C_{H l}^{(1)}, C_{H l}^{(3)}, C_{H e}$

LEP/SLD:

$$
\delta g_{L}^{u} \in[0.2,6.8] \cdot 10^{-2}
$$

$$
\delta g_{L}^{e} \in[-7.1,2.0] \cdot 10^{-4}
$$

$$
\begin{gathered}
\frac{C_{H q}^{(3)}}{\Lambda^{2}} \in[-0.9,2.8] \mathrm{TeV}^{-2} \\
\frac{C_{H \ell}^{(3)}}{\Lambda^{2}} \in[-3.6,1.0] \cdot 10^{-2} \mathrm{TeV}^{-2}
\end{gathered}
$$

$$
\begin{aligned}
\delta \kappa_{\gamma \gamma} & \simeq \frac{1}{g_{h \gamma \gamma}} \frac{v^{2}}{\Lambda^{2}}\left[c_{w}^{2} C_{H B}+s_{w}^{2} C_{H W}-c_{w} s_{w} C_{H W B}\right] \\
\delta \kappa_{\gamma Z} & \simeq-\frac{1}{g_{h \gamma Z}} \frac{v^{2}}{\Lambda^{2}}\left[2 c_{w} s_{w}\left(C_{H B}-C_{H W}\right)+\left(c_{w}^{2}-s_{w}^{2}\right) C_{H W B}\right],
\end{aligned}
$$

LHC:

$\mu_{\mathrm{ggF}}^{\gamma \gamma}=1.05 \pm 0.09$,
$\mu_{\mathrm{ggF}}^{\gamma Z}=2.2 \pm 0.7$

$$
\begin{aligned}
& C_{H B} \simeq-\frac{s_{w}^{2}}{c_{w}^{2}} C_{H W} \\
& C_{H B}=0.015 \\
& C_{H W}=-0.05,
\end{aligned}
$$

Anatomy of SMEFT Effects

Current constraints

Z couplings to lighter quark generations are less constrained than couplings to heavier quark generations:

LEP EW Working Group, SLD EW and Heavy Flavour Groups)

Anatomy of SMEFT Effects

Input scheme corrections

Input scheme corrections:

$$
Q_{\ell \ell}=\left(\overline{\gamma_{\gamma}}{ }_{\mu} \ell\right)\left(\bar{\ell} \gamma^{\mu} \ell\right)
$$

$$
Q_{H D}=\left(H^{\dagger} D_{\mu} H\right)^{*}\left(H^{\dagger} D^{\mu} H\right)
$$

$$
\begin{aligned}
G_{F} & =\frac{1}{\sqrt{2} v^{2}}\left(1+\frac{\delta G_{F}}{G_{F}}\right) \\
\frac{\delta G_{F}}{G_{F}} & =v^{2}\left(\left[C_{H \ell}^{(3)}\right]_{\mu \mu}+\left[C_{H \ell}^{(3)}\right]_{e e}-\frac{1}{2}\left[C_{\ell \ell}\right]_{\mu e e \mu}-\frac{1}{2}\left[C_{\ell \ell}\right]_{e \mu \mu \ell}\right)+\mathcal{O}\left(\Lambda^{-4}\right)
\end{aligned}
$$

Source: ArXiv:1812.08163 (S. Descotes-Genon, A. Falkowski, M. Fedele, M. González-Alonso, J. Virto)

Let us consider the situation in the LEP input scheme $\left\{\alpha, G_{F}, M_{Z}\right\}$:

Input scheme corr.:

$$
\frac{\delta m_{W}}{m_{W}}=-\frac{c_{w} s_{w}}{2\left(c_{w}^{2}-s_{w}^{2}\right)} \frac{v^{2}}{\Lambda^{2}}\left[2 C_{H W B}+\frac{s_{w}}{c_{w}}\left(2 C_{H \ell}^{(3)}-C_{\ell \ell}\right)+\frac{c_{w}}{2 s_{w}} C_{H D}\right]
$$

Details of the calculation

The POWHEG method

$$
\begin{aligned}
\sigma_{\mathrm{NLO}} & =\int d \mathbf{\Phi}_{n} \mathcal{L}\left[\mathcal{B}\left(\mathbf{\Phi}_{n}\right)+\mathcal{V}_{\mathrm{b}}\left(\mathbf{\Phi}_{n}\right)\right]+\int d \mathbf{\Phi}_{n+1} \mathcal{L} \mathcal{R}\left(\mathbf{\Phi}_{n+1}\right) \\
& +\int d \mathbf{\Phi}_{n, \oplus} \mathcal{L} \mathcal{G}_{\oplus, \mathrm{b}}\left(\mathbf{\Phi}_{n, \oplus}\right)+\int d \mathbf{\Phi}_{n, \ominus} \mathcal{L} \mathcal{G}_{\ominus, \mathrm{b}}\left(\mathbf{\Phi}_{n, \ominus}\right)
\end{aligned}
$$

(NLO)

$(\mathrm{LO}+\mathrm{PS})$
\rightarrow how to avoid double counting?

Sudakov form factor:

$$
\Delta\left(\boldsymbol{\Phi}_{n}, p_{\mathrm{T}}\right)=\exp \left\{-\int \frac{\left[d \Phi_{\mathrm{rad}} R\left(\boldsymbol{\Phi}_{n+1}\right) \theta\left(k_{\mathrm{T}}\left(\boldsymbol{\Phi}_{n+1}\right)-p_{\mathrm{T}}\right)\right]^{\overline{\boldsymbol{\Phi}}_{n}=\boldsymbol{\Phi}_{n}}}{B\left(\boldsymbol{\Phi}_{n}\right)}\right\}
$$

$$
d \sigma=\bar{B}\left(\boldsymbol{\Phi}_{n}\right) d \boldsymbol{\Phi}_{n}\left\{\Delta\left(\boldsymbol{\Phi}_{n}, p_{\mathrm{T}}^{\min }\right)+\Delta\left(\boldsymbol{\Phi}_{n}, k_{\mathrm{T}}\left(\boldsymbol{\Phi}_{n+1}\right)\right) \frac{R\left(\boldsymbol{\Phi}_{n+1}\right)}{B\left(\boldsymbol{\Phi}_{n}\right)} d \boldsymbol{\Phi}_{\mathrm{rad}}\right\}_{\overline{\boldsymbol{\Phi}}_{n}=\boldsymbol{\Phi}_{n}},
$$

\rightarrow exclusive NLO above $p_{T}^{\min }$
\rightarrow parton shower for radiation below $p_{T}^{\min }$

Details of the calculation

The POWHEG method

In practice, what one has to implement is

- Flavour structure for Vhj and Vhjj
- Vhj phase space
- Born matrix element (Vh)
- Virtual
- Double virtual
- Real (Vhj)
- Colour-correlated real
- Spin-correlated real
- Virtual-real (Vhj)
- Double real (Vhjj)

$$
2 s_{b} \mathcal{B}_{i j}=-N \sum_{\substack{\text { spins } \\ \text { colours }}} \mathcal{M}_{\left\{c_{k}\right\}}\left(\mathcal{M}_{\left\{c_{k}\right\}}^{\dagger}\right)_{\substack{c_{i} \rightarrow c_{i}^{\prime} \\ c_{j} \rightarrow c_{j}^{\prime}}} T_{c_{i}, c_{i}^{\prime}}^{a} T_{c_{j}, c_{j}^{\prime}}^{a}
$$

$$
\mathcal{B}_{j}^{\mu \nu}=N \sum_{\{i\}, s_{j}, s_{j}^{\prime}} \mathcal{M}\left(\{i\}, s_{j}\right) \mathcal{M}^{\dagger}\left(\{i\}, s_{j}^{\prime}\right)\left(\epsilon_{s_{j}}^{\mu}\right)^{*} \epsilon_{s_{j}^{\prime}}^{\nu},
$$

Results

Event generator

Our code will be available for download on the POWHEG-BOX web page.

