

Boosted Higgs production via vector boson fusion with the CMS experiment

Jennet Dickinson on behalf of the CMS Collaboration 20th Workshop of the LHC Higgs Working Group

Higgs production in pp collisions

Gluon fusion accounts for 90% of the Higgs boson cross section at 13 TeV

Higgs production in pp collisions

Gluon fusion accounts for 90% of the Higgs boson cross section at 13 TeV ...
 if you measure inclusively in p_T

Why VBF at high p_T?

- ggF becomes less dominant at high p_T And we have precise predictions for other production modes (link)
- High p_T tails are sensitive to new physics at high energy scales

Different production modes probe different BSM operators

0.8

0.6 1.2

0.8

0.6

NEO+PS/LO

0.6

1.2

0.6

1 0.8

Fermilab

Analysis overview

- Apply selection targeting boosted Higgs candidates, rejecting backgrounds
- Add tailored cuts to target the VBF process
 Define orthogonal ggF and VBF categories
- Divide into b-tag passing and failing regions using the **DeepDoubleB** (DDB) tagger

Use DDB fail for data-driven QCD background estimate

 Fit to the soft drop mass of the Higgs candidate jet in both b-tag regions

Simultaneously extract signal strength for ggF and VBF

Event selection

- Start with events passing ≥1 trigger selecting for H_T, jet p_T, jet mass, b-tagging Fully efficient for leading jet p_T > 500 GeV
- Require at least one large radius jet

AK8 jet with $p_T > 450$ GeV, $|\eta| < 2.5$

Must have two-prong substructure: N_2 variable decorrelated with mass $N_2^{DDT} < 0$

If more than one jet qualifies, select the one with highest DDB score

- Lepton veto
- Top veto: MET < 140 GeV, no b-jet in the hemisphere opposite candidate jet
- If event has ≥ 2 more thin jets with Δη_{jj} > 3.5 and m_{jj} > 1 TeV → VBF category
 Otherwise → ggF category

DeepDoubleBvL-v2 tagger (DDB)

 CNN architecture trained on simulation to separate QCD and scalar X → bb decays

Signal generated for m_X from 20-200 GeV

• Input features include:

Particle flow candidates (up to 40 charged, 60 neutral) Secondary vertices High-level jet variables

- DDB threshold chosen to optimize VBF sensitivity
 Events below DDB threshold (DDB fail) are used to estimate QCD background
- **Tagger efficiency** is constrained in-situ by the $Z \rightarrow bb$ peak

One of the dominant experimental systematics

Congqiao's talk CMS-DP-2022-041

Signal Monte Carlo

• **ggF**: POWHEG HJMINLO

Good agreement with LHC XS WG recommendations

 VBF: POWHEG re-weighted for EW and N³LO corrections

Good agreement with LHC XS WG recommendations

 Other Higgs (WH, ZH, ttH, ggZH): POWHEG reweighted for EW corrections

 Renormalization/factorization scale, PDF and parton shower uncertainties included on all Higgs samples

Scale uncertainty on ggF (~20%) and VBF (~5%) is the dominant theory systematic

Differential bins

- Combining multiple bins with different signal purity gives better sensitivity
- ggF category: 6 bins in Higgs candidate p_T
 [450, 500, 550, 600, 675, 800, 1200] GeV

Differential bins

- Combining multiple bins with different signal purity gives better sensitivity
- ggF category: 6 bins in Higgs candidate p_T
 [450, 500, 550, 600, 675, 800, 1200] GeV
- VBF category: 2 bins in the invariant mass of the forward jets, m_{ii}

[1000, 2000, ∞] GeV

QCD background estimation

- Goal: predict the QCD distribution in the DDB pass region
- Use data in the DDB fail region as a starting point and apply two polynomial transfer factors

First transfer factor: F_{P/F}

- Accounts for differences in the m_{SD} shape in the DDB pass / fail regions due to tagger selection
- Coefficients extracted from a standalone fit to the DDB pass / fail ratio in QCD MC only

Overall normalization is treated as a separate factor, $R_{P/F}^{MC}$

Uncertainties are propagated to the final fit

$$\frac{N_P^{\text{MC},i}}{N_F^{\text{MC},i}} = R_{\text{P/F}}^{\text{MC}} F_{\text{P/F}}^i$$

First transfer factor: F_{P/F}

- Accounts for differences in the m_{SD} shape in the DDB pass / fail regions due to tagger selection
- Coefficients extracted from a standalone fit to the DDB pass / fail ratio in QCD MC only

Overall normalization is treated as a separate factor, $R_{P/F}^{MC}$

Uncertainties are propagated to the final fit

Second transfer factor: F_{res}

- Accounts for any additional differences the m_{SD} shape in the DDB pass / fail regions
- Coefficients extracted from simultaneous fit to DDB pass and fail regions

Uncertainty on fitted polynomial coefficients is a dominant systematic

$$rac{N_P^{\mathrm{MC},i}}{N_F^{\mathrm{MC},i}} = R_{\mathrm{P/F}}^{\mathrm{MC}} F_{\mathrm{P/F}}^i$$

$$N_P^i = R_{\mathrm{P/F}}^{\mathrm{MC}} F_{\mathrm{P/F}}^i F_{\mathrm{res}}^i N_F^{\mathrm{data},i}$$

😎 Fermilab

Transfer factor polynomials

ggF category

1 x 2D Bernstein polynomial in jet p_T and $\rho = \ln (m_{SD}^2/p_T^2)$

VBF category

2 x 1D Bernstein polynomial in jet ρ only (one per m_{ij} bin)

Determining polynomial order

Start with a low order polynomial, which is nested within higher order polynomials Systematically increase polynomial order until the goodness of fit no longer increases significantly

• Independent fits performed per category, per data-taking period

$$F_{\rm P/F}(p_{\rm T},\rho) = \sum_{k=0}^{n_{\rho}} \sum_{l=0}^{n_{p_{\rm T}}} a_{k,l} \left[b_{k,n_{\rho}}(\rho) b_{l,n_{p_{\rm T}}}(p_{\rm T}) \right]$$
$$b_{\nu,n} = \binom{n}{\nu} x^{\nu} (1-x)^{n-\nu}$$

Control regions

 Top control region: derive normalization and DDB efficiency on top background processes from data

Nominal selection, but 0 $\mu \rightarrow$ 1 loose μ and require an additional b-jet

Treated as a single bin counting experiment per data taking period in the final fit

Control regions

• **Top control region**: derive normalization and DDB efficiency on top background processes from data

Nominal selection, but 0 $\mu \rightarrow$ 1 loose μ and require an additional b-jet

Treated as a single bin counting experiment per data taking period in the final fit

 W-tag control region: derive scale factors for substructure selection, jet mass scale & resolution

Require μ and MET \rightarrow reco W = (μ +MET) with p_T > 200 GeV

Split each MC sample into truth W-matched and unmatched

Fit regions $N_2^{DDT} > 0$ and < 0 simultaneously for substructure scale factor, jet mass resolution and jet mass scale

CMS Experiment at the LHC, CERN Data recorded: 2018-Sep-29 22:54:37.754176 GMT Run / Event / LS: 323727 / 488169591 / 262

VBF candidate event

Large-radius jet: $m_{SD} = 125.2 \text{ GeV}, p_T = 613.5 \text{ GeV}$ Forward jets: $m_{jj} = 2220.7 \text{ GeV}, \Delta \eta_{jj} = 4.2$

Results

- Observed significance is calculated with other process freely floating
- VBF: 3.0σ (0.9σ expected)
- ggF: 1.2σ (0.9σ expected)

	Lumi [fb ⁻¹]	μ _{VE}	ßF	μ _{gg}	
Early 2016	19.5	2.9	+5.8 -4.5	4.3	+5.5 -5.4
Late 2016	16.8	5.8	+6.3 -4.7	-0.9	+4.7 -5.1
2017	41.5	-0.7	+2.8 -2.6	6.7	+4.0 -3.1
2018	59.8	10.0	+4.4 -3.4	-0.6	+2.8 -3.1
Combined	137.6	5.0	+2.1 -1.8	2.1	+1.9 -1.7

ggF category

VBF category

Results

CMS Preliminary

800 < p_ < 1200 GeV

675 < p_ < 800 GeV

138 fb⁻¹ (13 TeV)

Combined fit SM expectation

• Per-bin fit

Summary

- We have presented the first search for VBF in the boosted H(bb) channel
- Simultaneous measurement of ggF and VBF signals is performed

```
\mu_{VBF} = 5.0^{+2.1}_{-1.8}
```

- $\mu_{ggF} = 2.1 \ ^{+1.9} \ _{-1.7}$
- Observed results differ from SM expectation by 2.6σ
- Further details in HIG-21-020

Additional material

Background simulation

• V+jets:

Madgraph LO corrected to NLO gen-level p_T spectrum

NNLO QCD, EW corrections applied following <u>"mono-jet" prescription</u>

- Electroweak V: Madgraph LO
- **Diboson**: Pythia LO corrected to NNLO with MCFC
- ttbar, single top: POWHEG NLO
- **QCD**: p_T sliced Pythia8

Estimation mostly from data

Substructure selection

 Variable N₂ (N₂¹) identifies two-prong jets using IRC safe energy correlation functions

$$e_2^{\beta} = \sum_{1 \le i < j \le n_J} z_i z_j \Delta R_{ij}^{\beta} \qquad \longrightarrow \qquad N_2^{\beta} = \frac{2e_3^{\beta}}{(1e_2^{\beta})^2}$$

- Find the cut value on N₂ that has 26% efficiency on QCD MC, as a function of p_T and ρ: c_{0.26}(p_T, ρ)
- Resulting variable is decorrelated from jet p_{T} and mass

$$N_2^{1,{
m DDT}} = N_2^1 - c_{0.26}(p_{
m T},\rho) \; .$$

W-tag control region

• Derive scale factors for substructure selection, jet mass scale & resolution Require μ and MET \rightarrow reco W = (μ +MET) with $p_T > 200$ GeV

Split each MC sample into truth W-matched and unmatched

Fit regions $N_2^{DDT} > 0$ and < 0 simultaneously for substructure scale factor, jet mass resolution and jet mass scale

$$f_1 n_{\text{match}}^{\text{P-sub}}(\delta_m, \sigma_m) + \left[(1 - f_1) \frac{\sum N_{\text{match}}^{\text{P-sub}}}{\sum N_{\text{match}}^{\text{F-sub}}} + 1 \right] N_{\text{match}}^{\text{F-sub}}(\delta_m, \sigma_m) + \\ f_2 N_{\text{unmatch}}^{\text{P-sub}} + \left[(1 - f_2) \frac{\sum N_{\text{unmatch}}^{\text{P-sub}}}{\sum N_{\text{unmatch}}^{\text{F-sub}}} + 1 \right] N_{\text{unmatch}}^{\text{F-sub}} + 1$$

🚰 Fermilab

	Substructure (f_1)	Mass scale (δ_m) [GeV]	Mass resolution (σ_m)
Early 2016	0.85 ± 0.14	-1.50 ± 0.45	0.98 ± 0.04
Late 2016	0.68 ± 0.18	$+1.13\pm0.41$	1.26 ± 0.04
2017	1.18 ± 0.14	$+0.49\pm1.16$	1.18 ± 0.08
2018	0.90 ± 0.10	-0.84 ± 0.24	1.14 ± 0.04

