ATLAS Boosted Higgs

LHC Higgs Working group

Andrea Sciandra(UC Santa Cruz), Zhi Zheng (SLAC) 15/11/2023

SLAC NATIONAL ACCELERATOR LABORATORY

ATLAS

EXPERIMENT

Why Higgs in Boost region

Increased impact expected from new physics

Probe beyond standard model (BSM)

Increased interests in understanding dynamic properties of the Higgs

• All production modes contribution similarly toward $p_T^H \sim 1 \text{ TeV}$

Ca

Boosted Higgs @ ATLAS

Clean signal

Measurement of the total and differential Higgs boson production cross-sections at $\sqrt{s} = 13$ TeV with the ATLAS detector by combining the $H \rightarrow ZZ$ and $H \rightarrow \gamma\gamma$ decay channels

JHEP 05 (2023) 028

Constraints on Higgs boson production with large transverse momentum using $H \rightarrow b\bar{b}$ decays in the ATLAS detector

Measurement of high-momentum Higgs boson production in association with a vector boson in the qqbb final state with the ATLAS detector

Large Branching fraction

Measurement of the associated production of a Higgs boson decaying into b-quarks with a vector boson at high transverse momentum in pp collisions at $\sqrt{s} = 13$ TeV with the ATLAS detector

<u>Phys. Rev. D 105</u> (2022) 092003

<u>ATLAS-</u> <u>CONF-2023-067</u>

<u>Phys. Lett. B 816</u> (2021) 136204

$H \rightarrow ZZ$ and $H \rightarrow \gamma\gamma$ combination

Phys. Lett. B 816 (2021) 136204

Combine H \rightarrow ZZ (JHEP 08 (2022) 027) and H $\rightarrow \gamma\gamma$ (Eur. Phys. J. C 80 (2020) 942) results

Compare with results from individual channels, total uncertainty is lowered by 20%-40%

4

Combine H \rightarrow ZZ (JHEP 08 (2022) 027) and H $\rightarrow \gamma\gamma$ (Eur. Phys. J. C 80 (2020) 942) results

Compare with results from individual channels, total uncertainty is lowered by 20%-40%

Limited by Statistics in both channels

The prediction based on NNLOPS simulation of gluon-gluon fusion events is lightly favored over the MG5 FxFx simulation

SM prediction	p_{T}^{H}
NNLOPS	91%
MG5 FxFx	73%

All-Hadronic Higgs in Boost region

High p_T Higgs decay product clustered inside large-redius calorimeter jet

All-Hadronic Higgs in Boost region

Advancement of **novel jets substructure** enabled searches for $H \rightarrow bb$ in hadronic final states despite the large irreducible QCD background

Double-b-tagging Neural networks based tagging Used in **Boost all had Higgs** Used in VH \rightarrow bbgg Standard b-tagging algorithm for VR track jets Training NN with DL1r out pt for each large-R jets with 2b-tagged VR track jets track jets DL1r algorithm Multijet Rejection ⁰⁰ ⁰⁰ Double Subjet B-Labelling Efficiency $D_{\rm Xbb}, f_{\rm top} = 0.25$ **ATLAS** Simulation 76 GeV < m_{iet} < 146 GeV_ **ATLAS** Simulation Preliminary 2 VR DL1r Preliminary $\sqrt{s} = 13 \text{ TeV}$ 2 VR MV2 2R = 0.2 MV2 Large-R Jet 0.8 Eta ᢞᢆᢣᡠᡠᡠᡠ_ᡠᡠᡠᡠ_ᡐ 0.6 $= 0.4, R_{min} = 0.02$ **Neural Network** R=0.2 Track Jet = 10 Ge\ 60 0.4 pQCD 45 $\varepsilon_{\text{Higgs}} = 0.6$ 0.2 30 Preselection: $|\eta_{\rm I}| < 2.0$ 15 76 < m_l/GeV < 146 500 1000 1500 2500 3000 2000 0.25 0.50 0.75 1.00 1.25 1.501.75 2.00Higgs Jet p₋ [GeV] Large-R Jet p_{T} [TeV]

Subjet (x 3)

pb pc pu

gTop

Boosted All-Had $H \rightarrow bb$

Large-R jet trigger, $p_T > 450$ GeV, m > 60 GeV

At least 1 additional jet, $p_T > 200 \,\mathrm{GeV}$

Higgs Candidate jets:

- $p_T > 250 \text{ GeV}, m > 60 \text{ GeV}, \eta < 2$
- Boosted: 2m/*p*_{*T*} < 1
- 2 VR track jets with MV2 b-tagging algorithm at 77% WP

Region	Candidate je SRL	t p _T [GeV] SRS
Inclusive	>450	>250
Fiducial	>450	>450
Differential	450–650, 650–1000, > 1000	250–450, 450–650, 650–1000

Phys. Rev. D 105

(2022) 092003

Boosted All-Had $H \rightarrow bb$

SLAC

ZHI ZHENG

Phys. Rev. D 105 (2022) 092003

Jet mass [GeV]

Boosted All-Had H→ bb: Composition

<u>Phys. Rev. D 105</u> (2022) 092003

Higgs signal: ggF, VBF, VH, ttH

- Corrections for NLO electroweak effects applied to VBF, VH and ttH
- ggF, VBF, VH cross section (Xsec) from MC compatible with <u>LHCXSWG</u>, ttH Xsec scale to LHCXSWG

Process	250-450	Jet $p_{\rm T}$ Ra 450–650	inge [GeV] 650–1000	> 1000	
		SRL			
ggF	_	0.56	0.50	0.39	ggF dominant
VBF	_	0.17	0.16	0.17	
VH	_	0.14	0.18	0.25	
$t\bar{t}H$	—	0.13	0.16	0.19	
		\mathbf{SRS}			
ggF	0.28	0.46	0.43	_	
VBF	0.07	0.19	0.21	_	
VH	0.26	0.24	0.26	_	
$t\bar{t}H$	0.39	0.11	0.10	_	

Jet mass [GeV]

Boosted All-Had H→ bb: Results

Signal extraction:	fit to jet	mass dist	tribution of	m_{bb} with SRL,	GeV	1.2
SRS and $CR_{t\bar{t}}$	Result	μ_H	μ_Z	$\mu_{tar{t}}$	ts / 10	
	Expected	1.0 ± 3.2	1.00 ± 0.17	1.00 ± 0.07	Event	0.8
_	Observed	0.8 ± 3.2	1.29 ± 0.22	0.80 ± 0.06	ш	0.0
Fiducial region (p	$_{T}^{H} > 450$) GeV, y_1	$_{H}$ < 2): σ_{H}	< 115(128) fb		0.4
• SM prediction:	18.4 fb					0.
Uncertainty Contribution	$p_{\mathrm{T}}^{H} > 4$	50 GeV			Aultijet	10
Total		3.5	Limited by	data statistics	ata-N	(
Statistical	4	2.6	Leading sou	urce of systematic	Δ	
Systematic		2.3	uncertainty	/:	okg	5(
Jet systematic uncertaint	ties	2.2	• let mass	resolution and	ata-k	(
Modeling and theory syst	US. ().8	- JCC111055		ŭ	,
Flavor-tagging systs.	().2	mass sca	le	-	-5

Boosted All-Had H→ bb: Results—Differential

Signal extraction: fit to jet mass distribution of m_{bb} with SRL, SRS and $CR_{t\bar{t}}$

Observed $\sigma(p_T^H > 1 \text{ TeV}) = 2.3 \pm 3.9 \text{(stat.)} \pm 1.3 \text{(syst.)} \pm 0.5 \text{ (the.)} \text{fb}$

• SM prediction: 0.13 fb

ZHI ZHENG

Phys. Rev. D 105

(2022) 092003

Boosted All-Ha	$d H \rightarrow bb: Re$	esults-Diffe	erential	<u>Phys. Rev. D 10</u> (2022) 092003	<u>05</u> 2
Signal extraction: fit to i	et mass distributi	on of $m_{\mu\nu}$ with SRL	Volume	p_{T}^{H} [GeV]	$ y_H $
SRS and CR_{-}		DD	Fiducial	>450	< 2
• SM prediction: 0.13 fb	√) =2.3 ± 3.9(stat.)±	=1.3(syst.)±0.5 (the.)	fb STXS	$300-450, \\ 450-650, \\ 650-1000, \\ >1000$	< 2
Statistically limited: Largest systematics— Uncertainty Contribution	et uncertainty • j $300 < p_{\mathrm{T}}^{H} < 450 \text{ GeV}$	et mass scale driv $450 < p_{\mathrm{T}}^{H} < 650 \; \mathrm{GeV}$	en $650 < p_{\mathrm{T}}^{H} < 1000 \; \mathrm{GeV}$	$p_{\mathrm{T}}^{H} > 1 \ \mathrm{TeV}$	
Total	18	5.0	6.5	32	
Statistical Systematic	$ \begin{array}{c} 16\\ 7 \end{array} $	$\begin{array}{c} 3.0\\ 3.9\end{array}$	$5.5\\3.4$	30 10	-40
Jet systematic uncertainties Modeling and theory systs. Flavor-tagging systs.	$\begin{array}{c} 6 \\ 4 \\ 0.2 \end{array}$	$3.8 \\ 0.7 \\ 0.4$	$3.4 \\ 0.7 \\ 0.4$	9.5 2 2	

VH→qqbb

Similar trigger strategy as Hbb inclusive analysis Signal Region:

- At least of the two p_T -leading jets must pass $H \rightarrow b\bar{b}$ tagger requirements
 - The jet pass $H \rightarrow b\bar{b}$ tagger (NN based) is Higgs candidate
 - If both, jet with larger mass is Higgs candidate
- Other jet must satisfy <u>V-tagger</u> requirements

Events are split according to Higgs-candidate $p_T(p_{T,I}^H)$:

 $[250, 450), [450, 650), \ge 650 \, \text{GeV}$

VH→qqbb: Analysis strategy

<u>ATLAS-</u> <u>CONF-2023-067</u>

Higgs candidate jet mass fit (m_J^H) to extract signal in SR

CR used to drive multijet background

Validation region: Validate multijet background

In SR, VH production mechanism dominates: ~ 85%

• $t\bar{t}H$ (8%), ggF (6%), VBF (1.4%)

ATLAS-

CONF-2023-067

VH→qqbb: Signal & Background composition

In SR, VH production mechanism dominates: ~ 85%

• $t\bar{t}H$ (8%), ggF (6%), VBF (1.4%)

Background dominated by multi-jets production (90%)

• *tt*(5%), V+jets (3.6%), VV(0.7%)

Key is to have full control of multi-jets background estimation

- Two data-driven estimation
- Transfer factor methods

ATLAS-

CONF-2023-067

$VH \rightarrow qqbb$: Inclusive Results - post-fit plots in SR CONF-2023-067

ATLAS-

Observed Z+jets normalization: $\mu_Z = 1.41^{+0.80}_{-0.58}$

Observed VH signal strength: $\mu_{VH} = 1.39^{+1.02}_{-0.88}$

- Observed significance for rejection of null-signal hypothesis 1.7σ (1.2σ expected)
- Corresponding to an observed cross-cross section: $3.3 \pm 1.5(\text{stat})^{+1.9}_{-1.5}(\text{syst}) \text{ pb}$

Limited by data statistics

Systematics uncertainties dominate by shape of multi-jet datadriven estimate & $H \rightarrow b\bar{b}$ tagger scale factors

Uncertainty source δμ +0.10Signal modeling -0.02+0.13MC statistical uncertainty -0.13+0.012Instrumental (pileup, luminosity) -0.004+0.13Large-*R* jet -0.14+0.14Top-quark modeling -0.15+0.050Other theory modeling -0.031+0.52 $H \rightarrow b\bar{b}$ tagging -0.23+0.52Multijet estimate (TF uncertainty) -0.41+0.14Multijet modeling (TF vs. BDT) -0.18+0.80Total systematic uncertainty -0.61+0.60Signal statistical uncertainty -0.60+0.42Z+jets normalization -0.20+0.63Total statistical uncertainty -0.63+1.02Total uncertainty -0.88

$VH \rightarrow qqbb$: Differential Results

Signal strength resulting from fit to each of the three p_T categories

Summary

Currently with different channels ATLAS is able to measure the different p_T distribution for Higgs

- H \rightarrow ZZ and H $\rightarrow \gamma\gamma$ Combination Phys. Lett. B 816 (2021) 136204 \rightarrow access $p_T^H > 650$ GeV
- All-Hadronic Higgs in Boost region <u>Phys. Rev. D 105 (2022) 092003</u> \rightarrow access $p_T^H > 1$ TeV
- VH \rightarrow qqbb <u>ATLAS-CONF-2023-067</u> \rightarrow access $p_T^H > 650 \text{ GeV}$

Most of the analysis still limited by statistics

For $H \rightarrow$ bb channels improvements are expected to come with better tagger

Wishlist

- NLO EW corrections for ggF, partially unknown and expected to be sizable at large transverse momentum!
- Current STXS is not ideal for boosted bb analysis
 - We have ability to reach 1 TeV for ggF
 - Introducing additional p_T^H bins in $p_T^H > 200$ GeV would help the VH all hadronic analysis

BOLD PEOPLE VISIONARY SCIENCE REAL IMPACT BOLD PEOPLE VISIONARY SCIENCE REAL IMPACT

Back up

Limited by Statistics from both channels

The acceptance drops for $H \rightarrow ZZ$ due to lepton separation requirement ($\Delta R(I_i, I_j) > 0.1$)

The acceptance for $H \rightarrow \gamma \gamma$ increase because of pT requirement for photon

Boosted All-Had H→ bb: Systematics

Description	Processes	Category	Effect			
Reconstructed object systematic uncertainties						
JMR	$t\bar{t}, V+$ jets, H	$p_{\rm T}$ bins	N+S			
JMS (dominant)	$t\bar{t}, V+$ jets, H	$p_{\rm T}$ bins	N+S			
JMS (rest)	$t\bar{t}, V+$ jets $+H$	all	N+S			
Jet energy scale	$\operatorname{all}^{(*)}$	all	N+S			
Jet energy resolution	all	all	N+S			
b-tag efficiency for b -jets	all	all	N+S			
b-tag efficiency for c -jets	all	all	N+S			
b-tag efficiency for light-flavor jets	all	all	N+S			
Process modeling sy	stematic uncertain	ties				
Renormalization and factorization scale	V + jets	all	N+S			
Cross section	$W + \mathrm{jets}$	all	Ν			
Cross section and acceptance	$W(\ell u)$	all	Ν			
Parton shower model	$tar{t}$	all	N+S			
Matrix element calculation	$tar{t}$	all	N+S			
Initial- and final-state radiation	$tar{t}$	all	N+S			
Cross section and acceptance	t	all	Ν			
Cross section and acceptance ^(\bullet)	H	all	Ν			
NLO EW corrections	$VBF+VH+t\bar{t}H$	all	Ν			
Spurious signal	H	p_{T}^{H} bins \times LS	Ν			
Spurious signal	$Z + \text{jets}^{(\circ)}$	$p_{\rm T}^Z$ bins \times LS	Ν			

Boosted All-Had $H \rightarrow$ bb: MC

Process	ME generator	ME PDF	PS and hadronization	$\begin{array}{c} \mathrm{UE} \ \mathrm{model} \\ \mathrm{tune} \end{array}$	Cross-section order
Higgs Boson					
$gg \to H \to b\bar{b}$ $qq \to H \to q'q'b\bar{b}$ $aa \to WH$	Powheg Box v2 $^{(*)}$ [46,47,48] + MiNLO [43,44,45] Powheg Box v2 [50,46,47,48]	NNPDF3.0nnlo [69] NNPDF3.0nlo [69]	Рутніа 8.212 [70] Рутніа 8.230	AZNLO [71] AZNLO	NLO(QCD) + LO(EW) $NLO(QCD) + NLO(EW)^{(\bullet)}$
$ \begin{array}{c} \rightarrow qq'b\bar{b} \\ \rightarrow \ell\nu b\bar{b} \\ \gamma \ell\nu b\bar{b} \end{array} $	Powheg Box v2 + GoSAM [53] + MINLO [52]	NNPDF3.0nlo	Рутніа 8.240 Рутніа 8.212	AZNLO	$NNLO(QCD) + NLO(EW)^{(\bullet)}$
$\begin{array}{c} qq \rightarrow 2\Pi \\ \rightarrow q\bar{q}b\bar{b} \\ \rightarrow \nu\nu b\bar{b} \\ \rightarrow \nu\nu b\bar{b} \\ \rightarrow \ell \ell b\bar{b} \end{array}$	Powheg Box $v2$ + GoSAM + MINLO	NNPDF3.0nlo	Рутніа 8.240 Рутніа 8.212	AZNLO	$NNLO(QCD) + NLO(EW)^{(\bullet)}$
$gg ightarrow ZH \ ightarrow qar{q}bar{b} \ ightarrow u u b b \ ightarrow u b \ ightarrow u b \ ightarrow u b ightarrow u b \ ightarrow u b ightarr$	Powheg Box v2 $[51]$	NNPDF3.0nlo	Рутніа 8.240 Рутніа 8.212	AZNLO	LO + NLL(QCD)
$\begin{array}{c} gg \to ttH \\ tt \to \text{all} \\ H \to \text{all} \end{array}$	Powheg Box v2	NNPDF3.0nlo	Рутніа 8.230	AZNLO	$NLO(QCD) + NLO(EW)^{(\circ)}$
Vector boson + jets					
$ \begin{array}{c} W \to qq \\ Z \to qq \end{array} $	Sherpa 2.2.8 [72,67,73]	NNPDF3.0nnlo	Sherpa 2.2.8 [74,75]	Default	$\frac{\text{NNLO(QCD)}^{(\dagger)}}{\text{approx NLO(EW)}} [76,62,63]$
Top quark, mass set to 172.5 ${\rm GeV}$					
$ \begin{array}{l} t \overline{t} \rightarrow \text{all} \\ t W \\ t \text{ t-channel} \\ t \text{ s-channel} \end{array} $	Powheg Box v2 [79,47,48,46] Powheg Box v2 [82,47,48,46] Powheg Box v2 [83,47,48,46] Powheg Box v2 [84,47,48,46]	NNPDF3.0nlo NNPDF3.0nlo NNPDF3.0nlo NNPDF3.0nlo	Рутніа 8.230 Рутніа 8.230 Рутніа 8.230 Рутніа 8.230 Рутніа 8.230	A14 [80] A14 A14 A14 A14	NNLO+NNLL [81] NLO NLO NLO
Multijet					
Dijets	Рутніа 8.230	NNPDF2.3L0 [85]	Рутніа 8.230	A14	LO

Boosted All-Had H→ bb: W/Z jets

Interaction between V+j template and QCD analytic function make it impossible to simultaneously extract V+j width and normalization

→ Extraction of dedicated W/Z Jet mass resolution constrains in VRL and VRS

Boosted All-Had $H \rightarrow$ bb: Background

Background: Dominated with QCD

QCD multijet:

modeled with smooth analytical model

W/Z + jets:

modeled with Sherpa 2.2.8 (NLO QCD+NLO EW) + QCD NNLO k-factor by NNLOJet group

"Standard candle" for Higgs extraction

Mass resolution constrains from VRs

Top:

Model by Powheg+Pythia

Normalisation contraient in semileptonic CR

Phys. Rev. D 105

Boosted All-Had $H \rightarrow$ bb: QCD

VR_{hyb} used for data-driven validation of QCD fit model

- Each signal region (ie: p_{TJ} bin) has corresponding validation region
- Data in VR split into slices with statistics representing SR
 - Tests fit model in scenario statistically equal to final SR fits
 - Results from each slice are averaged for final number
- $MJ_{S/VR}$ from full fit to signal/val regions
 - Higgs mass window blinded in SR's
 - MJ_{VR} is average of 10 slices

VH→qqbb

Single large-R (R=1.0 anti- k_t) jet trigger with Mass and p_T threshold

At least two large-R jets p_T > 200 GeV & $|\eta|$ <2

- p_T leading jet: p_T > 450, M_J > 60 GeV
- Second p_T leading jet: M_J > 40 GeV

Events with isolated charges leptons are rejected

Higgs Candidate

ATLAS-

CONF-2023-067

VH→qqbb: multijet background

Aim to predict the multijet mass distribution in the SR using event in CR region: SR = CR ×transfer factor (TF)

• TF as a function of $\rho = \log(m^2/p_T^2)$ and pT

•
$$TF(p_T, \rho) = \sum_{k,l} \alpha_{kl} \rho^k p_T^l$$
, where α_{kl} are polynomial coefficients

- Polynomial order determined via Fisher F-test
 - 1 st in both p_T and ρ

Alternative method: BDT

• Validation TF method and used as systematics

