Improving NLO QCD event generators with high-energy EW corrections: $t\bar{t}H$ production

Timea Vitos In collaboration with: Davide Pagani, Marco Zaro based on [arXiv:2309.00452]

Lund University

Workshop of LHC Higgs Working Group November 15, 2023 Technical details of the $\text{NLO}_{\text{QCD}} \otimes \text{EWSL+PS}$ implementation in MG5 000000

Numerical results for $t\overline{t}H$ 0000000

Today's talk

1. Technical details of the NLO_{OCD} \otimes EWSL+PS implementation in MG5

2. Numerical results for $t\overline{t}H$

Timea Vitos

2 / 16

NLOPS+EWSL

Technical details of the NLO $_{QCD} \otimes \text{EWSL+PS}$ implementation in MG5 $\bullet \text{000000}$

Numerical results for $t\overline{t}H$ 0000000

Today's talk

1. Technical details of the NLO_{OCD} \otimes EWSL+PS implementation in MG5

2. Numerical results for $t\overline{t}H$

The one-loop approximation of NLO EW corrections

- Focus on electroweak corrections: automations of NLO EW corrections
- Current problems:
 - 1. time-consuming computations
 - 2. no automated matching to PS
- Alternative: capture the dominant part of it (in high-energy limit)!
 - \rightarrow electroweak Sudakov logarithms (EWSL)

¹A. Denner, S. Pozzorini, arXiv:hep-ph/0010201 Timea Vitos

NLOPS+EWSL

4 / 16

(1)

The one-loop approximation of NLO EW corrections

- Focus on electroweak corrections: automations of NLO EW corrections
- Current problems:
 - 1. time-consuming computations
 - 2. no automated matching to PS
- Alternative: capture the dominant part of it (in high-energy limit)!
 → electroweak Sudakov logarithms (EWSL)
- One-loop leading approximation: worked out originally by Denner and Pozzorini¹
- · Arise as corrections to the Born-level matrix-element as

 $\mathcal{M}^{\text{LO}+\text{EWSL}} = \mathcal{M}_0 + \mathcal{M}_0 \times \delta^{\text{EWSL}}$

¹A. Denner, S. Pozzorini, arXiv:hep-ph/0010201 Timea Vitos

NLOPS+EWSL

4 / 16

The Denner-Pozzorini algorithm and MG5_aMC@NLO

- One-loop Denner-Pozzorini implemented also in Sherpa²
- One-loop Denner-Pozzorini algorithm revised and implemented in MG5³

• Current project:

combination of this implementation with

 $\mathsf{NLO}_{\mathsf{QCD}} + \mathsf{PS}$

event generation via reweighting

²E. Bothmann, D. Napoletano arXiv:2006.14635

³D. Pagani, M. Zaro arXiv:2110.03714

Reweighting NLO events with EWSL

Reweighting NLO events with EWSL

Problem 1

 Sudakov logarithm expressions not valid in the soft/collinear regions!

Problem 2

• IR cancellation might not be secured anymore!

Proposed procedure:⁴

- 1. Check all $r_{kl} = (p_k \pm p_l)^2$
- 2. If all $|r_{kl}| > M_W^2$: use (n+1)-body Sudakov
- 3. If any $|r_{kl}| < M_W^2$: merge particles k, l
- 4. If reasonable merged process: use n-body Sudakov of the mapped kinematics, else

use the (n+1)-body Sudakov and replace $|r_{kl}|
ightarrow M_W^2$

⁴D. Pagani, T. Vitos, M. Zaro arXiv:2309.00452 Timea Vitos

Summary of the implementation

1. Reweight all events in the described procedure and apply parton shower:

$\mathsf{NLO}_{QCD} \otimes \mathsf{EWSL}{+}\mathsf{PS}$

2. Assign EWSL only to Born events and apply parton shower:

 $\mathsf{NLO}_{\mathsf{QCD}+\mathsf{EWSL}}\mathsf{+}\mathsf{PS}$

· Comparison to full NLO QCD+EW (fixed-order) of order

 $\mathcal{O}(\alpha_S) + \mathcal{O}(\alpha)$

 \rightarrow expected to behave as **additive** approach while **multiplicative** behaves more like $\mathcal{O}(\alpha_5 \alpha)$ corrections

• A similar approach has been implemented in Sherpa⁵⁶

⁵E. Bothmann, D. Napoletano, M. Schönherr, S. Schumann, S. L. Villani arXiv:2111.13453

⁶S. Kallweit, J. M. Lindert, S. Pozzorini, M. Schönherr, P. Maierhöfer arXiv:1511.08692

Timea Vitos

Technical details of the $\text{NLO}_{\text{QCD}} \otimes \text{EWSL+PS}$ implementation in MG5 000000

Numerical results for $t\overline{t}H$ \bullet 0000000

Today's talk

1. Technical details of the NLO_{OCD} \otimes EWSL+PS implementation in MG5

2. Numerical results for $t\overline{t}H$

NLOPS+EWSL

9 / 16

Timea Vitos

Numerical setup

Input

- Focus on LHC: $\sqrt{s} = 13$ TeV
- Defining jets: **anti**- k_T **algorithm** with

$$p_T^{\min} = 10$$
 GeV and $R = 0.4$

• Use PYTHIA8 for the parton shower, with hadronization off

No cuts (inclusive)

• Note: Sudakov not valid in all regions here!

Hard cuts

- $p_T > 400$ GeV cut on all heavy final particles
- ΔR > 0.5 for any two final particles

 Gray curve: NLO_{QCD}+PS Blue curve: multiplicative EWSL Red curve: additive EWSL Technical details of the $\text{NLO}_{\text{QCD}} \otimes \text{EWSL+PS}$ implementation in MG5 000000

Results for $t\bar{t}H$: $m(t\bar{t})$

- Difference between additive and multiplicative in high-energy range
- Scale band differences: EWSL on top of NLO events (blue) and LO events (red)

Results for $t\bar{t}H$: $p_T(H)$ inclusive

- Again, up to 5% difference between the two approaches
- Positive corrections (also FO NLO EW) at low- p_T

Results for $t\bar{t}H$: $p_T(H)$ inclusive

Technical details of the $\text{NLO}_{\text{QCD}} \otimes \text{EWSL+PS}$ implementation in MG5 000000

Numerical results for $t\overline{t}H$ 00000000

Results for $t\bar{t}H$: $p_T(j_1)$

Summary and outlook

Summary

- ✓ Combined EWSL implementation and reweight module in MG5_aMC@NLO for obtaining NLO_{QCD} ⊗ EWSL+PS precision
- ✓ Preliminary comparison to full NLO EW fixed-order corrections shows expected behaviours for $t\bar{t}H$

Outlook: phenomenological analyses

- Processes of interest: jet-associated processes, $t\overline{t} + X$
- Quantitative comparison to fixed-order NLO EW
- Comparison to data: include hadronization

Outlook: merging

· Combine with multi-jet merging in the FxFx formalism

Thank you for listening!

	Adding parton showers	
NLO QCD:	$\mathcal{O}(\alpha_{S}) \xrightarrow{QCD PS} \mathcal{O}(\alpha_{S}^{n})$	n > 1
	\rightarrow matching needed!	
NLO QCD+EWSL:	$\mathcal{O}(\alpha_{S}\alpha) \xrightarrow{QCD PS} \mathcal{O}(\alpha_{S}^{n}\alpha)$	n > 1
	\rightarrow no additional matching needed!	
NLO QCD+EWSL:	$\mathcal{O}(\alpha_{S}\alpha) \xrightarrow{QCD PS + QED PS} \mathcal{O}(\alpha_{S}^{n}\alpha_{(\mathrm{QED})}^{m})$	n > 1, m > 1
	\rightarrow matching needed!	
Turn off QED in the Sudakov! (SDK _{weak})		
• NLO QCD+EWSL:		
$\mathcal{O}(\alpha_{S}\alpha_{(\text{weak})}) \xrightarrow{\text{QCD PS}+\text{QED PS}} \mathcal{O}(\alpha_{S}^{n}\alpha_{(\text{weak})}\alpha_{(\text{QED})}^{m}), n > 1, m > 0$		
• A similar approach has been implemented in Sherpa ⁷		
⁷ E. Bothmann, D. Napoletano, M. Schönherr, S. Schumann, S. L. Villani arXiv:2111.13453		
Timea Vitos	NLOPS+EWSL	1 / 13

NLOPS+EWSL 1 / 13

Results for $t\bar{t}H$: $p_T(t)$

- Similar positive corrections in low- p_T range
- 0 Stable agreement to FO NLO EW
- · Again, small difference between multiplicative and additive approaches

Timea Vitos

Example results: ZZZ

Timea Vitos

NLOPS+EWSL

3 / 13

Results for ZZZ: $p_T(Z_1)$

- $\circ\,$ Smaller scale uncertainty bands: no LO $\sim \alpha_S$
- Larger EWSL effects + larger QCD K-factor

Timea Vitos

NLOPS+EWSL

Results for ZZZ: $m(Z_1, Z_2)$

• At < 700 GeV, dominated by hard events \rightarrow red converges to grey $\sqrt{s} = 13 \text{ TeV}$ ZZZ→ZZZ $\sqrt{s} = 13 \text{ TeV}$ 10-2 pp→ZZZ No cuts Cuts 10-6 10-3 10-7 J per bin [pb] σ per bin [pb] 10^{-4} 10-8 10-10-9 - NLO_{QCD}+PS NLO_{QCD}+PS 10^{-6} 10^{-10} NLOOCD & EWSL+PS NLOOCD & EWSL+PS NLO_{OCD+FWSI}+PS NLO_{QCD+EWSL}+PS 10-11 10-3 ratio to NLO_{QCD}+PS 0.2 atio to NLO_{QCD}+PS 1.2 NLO_{OCD} ⊗ EWSL NLO_{QCD+EWSL} 1.0 0.8 NLO_{DCD} @ EWSL NLO_{QCD+EWS} 0.8 1.2 NLO_{QCD} @ EWSL+PS NLO_{QCD}+PS $c_{H \rightarrow S} = 1.0$ $c_{H \rightarrow S} = 2.0$ ···· $c_{H \to S} = 0.5$ NLO_{QCD} @ EWSL+PS NLO_{QCD}+PS 0.6 1.0 0.4 0.8 0.2 $c_{H,a,c} = 1.0$ $c_{H \to 5} = 2.0$ ····· c_{V a s} = 0.5 103 103 $m(Z_1, Z_2)$ [GeV] $m(Z_1, Z_2)$ [GeV]

Timea Vitos

NLOPS+EWSL

5 / 13

Example results: ZZZ with decays

(4)

Example results: ZZZ with decays

- First perform EWSL reweighting on ZZZ sample, then decay with MadSpin
- Lepton classification with jet algorithm (accepted event if 6 charged jets found):

$$p_T(\text{lepton}) > 25 \text{ GeV}$$
 (2)

• To catch correct BW shapes: label positrons e_i^+ such that they minimize

$$\sum_{i} |m(e_{i}^{-}e_{i}^{+}) - M_{Z}|^{2}$$
(3)

 Final-state QED radiation: investigate its effect by turning it off/on, including only photon radiation:

Timea Vitos

NLOPS+EWSL

7 / 13

Results for ZZZ with decays: $m(e_i^-e_i^+)$

- $\circ\,$ EWSL: red and blue $\sim-5\%$
- · Assess QED radiation effects: around peak region only!

Timea Vitos

NLOPS+EWSL 8 / 13

Results for ZZZ: $p_T(j_1)$

Results for ZZZ: $m(Z_1, Z_2, Z_3)$

Results for ZZZ with decays: $p_T(e_1)$

Results for ZZZ with decays: $p_T(e_2)$

Results for ZZZ with decays: $p_T(e_3)$

